640
Views
19
CrossRef citations to date
0
Altmetric
Review

Protein-protein interaction inhibitors: advances in anticancer drug design

, &
Pages 957-968 | Received 30 May 2016, Accepted 08 Aug 2016, Published online: 02 Sep 2016

References

  • Jin L, Wang W, Fang G. Targeting protein-protein interaction by small molecules. Annu Rev Pharmacol Toxicol. 2014;54:435–456. doi:10.1146/annurev-pharmtox-011613-140028.
  • Lounnas V, Ritschel T, Kelder J, et al. Current progress in structure-based rational drug design marks a new mindset in drug discovery. Comput Struct Biotechnol J. 2013;5:e201302011. doi:10.5936/csbj.201302011.
  • Honarparvar B, Govender T, Maguire GE, et al. Integrated approach to structure-based enzymatic drug design: molecular modeling, spectroscopy, and experimental bioactivity. Chem Rev. 2014;114:493–537. doi:10.1021/cr300314q.
  • Alvarez-Garcia D, Barril X. Relationship between protein flexibility and binding: lessons for structure-based drug design. J Chem Theory Comput. 2014;10:2608–2614. doi:10.1021/ct500182z.
  • Eder J, Sedrani R, Wiesmann C. The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Discov. 2014;13:577–587. doi:10.1038/nrd4336.
  • Valkov E, Sharpe T, Marsh M, et al. Targeting protein-protein interactions and fragment-based drug discovery. Top Curr Chem. 2012;317:145–179. doi:10.1007/128_2011_265.
  • Stumpf MPH, Thorne T, de Silva E, et al. Estimating the size of the human interactome. Proc Natl Acad Sci USA. 2008;105:6959–6964. doi:10.1073/pnas.0708078105.
  • Arkin MR, Tang Y, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol. 2014;21:1102–1114. doi:10.1016/j.chembiol.2014.09.001.
  • Fuller JC, Burgoyne NJ, Jackson RM. Predicting druggable binding sites at the protein-protein interface. Drug Discov Today. 2009;14:155–161. doi:10.1016/j.drudis.2008.10.009.
  • Sable R, Jois S. Surfing the protein-protein interaction surface using docking methods: application to the design of PPI inhibitors. Molecules. 2015;20:11569–11603. doi:10.3390/molecules200611569.
  • Xu GG, Guo J, Wu Y. Chemokine receptor CCR5 antagonist maraviroc: medicinal chemistry and clinical applications. Curr Top Med Chem. 2014;14:1504–1514.
  • Safety study of ABT-263 in combination with rituximab in lymphoid cancers. ClinicalTrials.gov, 2016. [cited 2016 Apr 03]. Available from: https://clinicaltrials.gov/ct2/show/NCT00788684.
  • Park C-M, Bruncko M, Adickes J, et al. Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins. J Med Chem. 2008;51:6902–6915. doi:10.1021/jm800669s.
  • A study evaluating ABT-199 in combination with low-dose cytarabine in treatment-naïve subjects with acute myelogenous leukemia (AML). ClinicalTrials.gov, 2016. [cited 2016 Apr 03]. Available from: https://clinicaltrials.gov/ct2/show/NCT02287233.
  • Touzeau C, Dousset C, Le Gouill S, et al. The Bcl-2 specific BH3 mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma. Leukemia. 2014;28:210–212. doi:10.1038/leu.2013.216.
  • Open label study of single agent oral RG7388 in patients with polycythemia vera and essential thrombocythemia. ClinicalTrials.gov, 2016. [cited 2016 Apr 03]. Available from: https://clinicaltrials.gov/ct2/show/NCT02407080.
  • Ding Q, Zhang Z, Jj L, et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem. 2013;56:5979–5983. doi:10.1021/jm400487c.
  • A phase 1b study evaluating AMG 232 alone and in combination with trametinib in acute myeloid leukemia. ClinicalTrials.gov, 2016. [cited 2016 Apr 03]. Available from: https://clinicaltrials.gov/ct2/show/NCT02016729.
  • Phase 1 safety testing of SAR405838. ClinicalTrials.gov, 2016. [cited 2016 Apr 03]. Available from: https://clinicaltrials.gov/ct2/show/NCT01636479.
  • Wang S, Sun W, Zhao Y, et al. SAR405838: an optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Res. 2014;74:5855–5865. doi:10.1158/0008-5472.CAN-14-0799.
  • A phase I dose escalation study of CGM097 in adult patients with selected advanced solid tumors (CCGM097X2101). ClinicalTrials.gov, 2016. [cited 2016 Apr 03]. Available from: https://clinicaltrials.gov/ct2/show/NCT01760525.
  • Effect of RVX000222 on time to major adverse cardiovascular events in high-risk T2DM subjects with CAD (BETonMACE). ClinicalTrials.gov, 2016. [cited 2016 Apr 03]. Available from: https://clinicaltrials.gov/ct2/show/NCT02586155.
  • McLure KG, Gesner EM, Tsujikawa L, et al. RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist. PLoS One. 2013;8:e83190. doi:10.1371/journal.pone.0083190.
  • A dose escalation study to investigate the safety, pharmacokinetics (PK), pharmacodynamics (PD) and clinical activity of GSK525762 in subjects with relapsed, refractory hematologic malignancies. ClinicalTrials.gov, 2016. [cited 2016 Apr 03]. Available from: https://clinicaltrials.gov/ct2/show/NCT01943851.
  • Nicodeme E, Jeffrey KL, Schaefer U, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468:1119–1123. doi:10.1038/nature09589.
  • A phase 1 study evaluating CPI-0610 in patients with progressive lymphoma. ClinicalTrials.gov, 2016. [cited 2016 Apr 03]. Available from: https://clinicaltrials.gov/ct2/show/NCT01949883.
  • A dose-finding study of OTX105/MK-8628, a small molecule inhibitor of the bromodomain and extra-terminal (BET) proteins, in adults with selected advanced solid tumors (MK-8628-003). ClinicalTrials.gov, 2016. [cited 2016 Apr 03]. Available from: https://clinicaltrials.gov/ct2/show/NCT02259114.
  • Coudé MM, Braun T, Berrou J, et al. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget. 2015;6:17698–17712. doi:10.18632/oncotarget.4131.
  • Ferreira LG, Dos Santos RN, Oliva G, et al. Molecular docking and structure-based drug design strategies. Molecules. 2015;20:13384–13421. doi:10.3390/molecules200713384.
  • Chen J, Ma X, Yuan Y, et al. Protein-protein interface analysis and hot spots identification for chemical ligand design. Curr Pharm Des. 2014;20:1192–1200.
  • Zheng X, Gan L, Wang E, et al. Pocket-based drug design: exploring pocket space. AAPS J. 2013;15:228–241. doi:10.1208/s12248-012-9426-6.
  • Yuan Y, Pei J, Lai L. Binding site detection and druggability prediction of protein targets for structure-based drug design. Curr Pharm Des. 2013;19:2326–2333.
  • Rooklin D, Wang C, Katigbak J, et al. AlphaSpace: Fragment-centric topographical mapping to target protein-protein interaction interfaces. J Chem Inf Model. 2015;55:1585–1599. doi:10.1021/acs.jcim.5b00103.
  • Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinf. 2009;10:168. doi:10.1186/1471-2105-10-168.
  • Laurie AT, Jackson RM. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics. 2005;21:1908–1916. doi:10.1093/bioinformatics/bti315.
  • Dhanjal JK, Goyal S, Sharma S, et al. Mechanistic insights into mode of action of potent natural antagonists of BACE-1 for checking Alzheimer’s plaque pathology. Biochem Biophys Res Commun. 2014;443:1054–1059. doi:10.1016/j.bbrc.2013.12.088.
  • Méndez-Luna D, Martínez-Archundia M, Maroun RC, et al. Deciphering the GPER/GPR30-agonist and antagonists interactions using molecular modeling studies, molecular dynamics, and docking simulations. J Biomol Struct Dyn. 2015;33:2161–2172. doi:10.1080/07391102.2014.994102.
  • Zarzycka B, Seijkens T, Nabuurs SB, et al. Discovery of small molecule CD40-TRAF6 inhibitors. J Chem Inf Model. 2015;55:294–307. doi:10.1021/ci500631e.
  • Meireles LM, Dömling AS, Camacho CJ. ANCHOR: a web server and database for analysis of protein-protein interaction binding pockets for drug discovery. Nucleic Acids Res. 2010;38:W407–11. doi:10.1093/nar/gkq502.
  • Camacho CJ, Zhang C. FastContact: rapid estimate of contact and binding free energies. Bioinformatics. 2005;21:2534–2536. doi:10.1093/bioinformatics/bti322.
  • Pedley AM, Lill MA, Davisson VJ. Flexibility of PCNA-protein interface accommodates differential binding partners. PLoS One. 2014;9:e102481. doi:10.1371/journal.pone.0102481.
  • Dominguez C, Boelens R, Bonvin AM. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc. 2003;125:1731–1737. doi:10.1021/ja026939x.
  • Planesas JM, Pérez-Nueno VI, Borrell JI, et al. Studying the binding interactions of allosteric agonists and antagonists of the CXCR4 receptor. J Mol Graph Model. 2015;60:1–14. doi:10.1016/j.jmgm.2015.05.004.
  • Ouyang L, Shi Z, Zhao S, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45:487–498. doi:10.1111/j.1365-2184.2012.00845.x.
  • Allocati N, Graziano V, Di Ilio C, et al. Role of apoptosis in disease. Aging (Albany NY). 2012;4:330–349. doi:10.18632/aging.100459.
  • Bodur C, Basaga H. Bcl-2 inhibitors: emerging drugs in cancer therapy. Curr Med Chem. 2012;19:1804–1820.
  • Brady RM, Vom A, Roy MJ. De-novo designed library of benzoylureas as inhibitors of BCL-XL: synthesis, structural and biochemical characterization. J Med Chem. 2014;57:1323–1343. doi:10.1021/jm401948b.
  • Pelz NF, Bian Z, Zhao B, et al. Discovery of 2-Indole-acylsulfonamide myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods. J Med Chem. 2016;59:2054–2066. doi:10.1021/acs.jmedchem.5b01660.
  • Wertz IE, Kusam S, Lam C, et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature. 2011;471:110–114. doi:10.1038/nature09779.
  • Wei SH, Dong K, Lin F, et al. Inducing apoptosis and enhancing chemosensitivity to gemcitabine via RNA interference targeting Mcl-1 gene in pancreatic carcinoma cell. Cancer Chemother Pharmacol. 2008;62:1055–1064. doi:10.1007/s00280-008-0697-7.
  • Vazquez A, Bond EE, Levine AJ, et al. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov. 2008;7:979–987. doi:10.1038/nrd2656.
  • Chène P. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer. 2003;3:102–109. doi:10.1038/nrc991.
  • Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014;13:217–236. doi:10.1038/nrd4236.
  • Kussie PH, Gorina S, Marechal V, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996;274:948–953.
  • Gessier F, Kallen J, Jacoby E, et al. Discovery of dihydroisoquinolinone derivatives as novel inhibitors of the p53-MDM2 interaction with a distinct binding mode. Bioorg Med Chem Lett. 2015;25:3621–3625. doi:10.1016/j.bmcl.2015.06.058.
  • Holzer P, Masuya K, Furet P, et al. Discovery of a dihydroisoquinolinone derivative (NVP-CGM097): a highly potent and selective MDM2 inhibitor undergoing phase 1 clinical trials in p53wt tumors. J Med Chem. 2015;58:6348–6358. doi:10.1021/acs.jmedchem.5b00810.
  • Rew Y, Sun D. Discovery of a small molecule MDM2 inhibitor (AMG 232) for treating cancer. J Med Chem. 2014;57:6332–6341. doi:10.1021/jm500627s.
  • Ferri E, Petosa C, McKenna CE. Bromodomains: structure, function and pharmacology of inhibition. Biochem Pharmacol. 2016;106:1–18. doi:10.1016/j.bcp.2015.12.005.
  • Dey A, Chitsaz F, Abbasi A, et al. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci USA. 2003;100:8758–8763. doi:10.1073/pnas.1433065100.
  • Dawson MA, Prinjha RK, Dittmann A, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478:529–533. doi:10.1038/nature10509.
  • Wyce A, Ganji G, Smitheman KN, et al. BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models. PLoS One. 2013;8:e72967. doi:10.1371/journal.pone.0072967.
  • Albrecht BK, Gehling VS, Hewitt MC, et al. Identification of a benzoisoxazoloazepine inhibitor (CPI-0610) of the bromodomain and extra-terminal (BET) family as a candidate for human clinical trials. J Med Chem. 2016;59:1330–1339. doi:10.1021/acs.jmedchem.5b01882.
  • Seal J, Lamotte Y, Donche F, et al. Identification of a novel series of BET family bromodomain inhibitors: binding mode and profile of I-BET151 (GSK1210151A). Bioorg Med Chem Lett. 2012;22:2968–2972. doi:10.1016/j.bmcl.2012.02.041.
  • Ran X, Zhao Y, Liu L, et al. Structure-based design of γ-carboline analogues as potent and specific BET bromodomain inhibitors. J Med Chem. 2015;58:4927–4939. doi:10.1021/acs.jmedchem.5b00613.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.