1,364
Views
17
CrossRef citations to date
0
Altmetric
Review

Identification of protein binding partners of small molecules using label-free methods

Pages 1017-1025 | Received 29 May 2016, Accepted 18 Aug 2016, Published online: 31 Aug 2016

References

  • Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10:507–519. doi:10.1038/nrd3480.
  • Eder J, Sedrani R, Wiesmann C. The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Discov. 2014;13:577–587. doi:10.1038/nrd4336.
  • Wagner BK, Schreiber SL. The power of sophisticated phenotypic screening and modern mechanism-of-action methods. Cell Chem Biol. 2016;23:3–9. doi:10.1016/j.chembiol.2015.11.008.
  • Lee JA, Berg EL. Neoclassic drug discovery: the case for lead generation using phenotypic and functional approaches. J Biomol Screen. 2013;18:1143–1155. doi:10.1177/1087057113506118.
  • Schirle M, Jenkins JL. Identifying compound efficacy targets in phenotypic drug discovery. Drug Discov Today. 2016;21:82–89. doi:10.1016/j.drudis.2015.08.001.
  • Dawson JC, Carragher NO. Quantitative phenotypic and pathway profiling guides rational drug combination strategies. Front Pharmacol. 2014;5:118. doi:10.3389/fphar.2014.00118.
  • Moffat JG, Rudolph J, Bailey D. Phenotypic screening in cancer drug discovery – past, present and future. Nat Rev Drug Discov. 2014;13:588–602. doi:10.1038/nrd4366.
  • Prior M, Chiruta C, Currais A, et al. Back to the future with phenotypic screening. ACS Chem Neurosci. 2014;5:503–513. doi:10.1021/cn500051h.
  • Gilbert IH. Drug discovery for neglected diseases: molecular target-based and phenotypic approaches. J Med Chem. 2013;56:7719–7726. doi:10.1021/jm400362b.
  • Patel AC. Clinical relevance of target identity and biology: implications for drug discovery and development. J Biomol Screen. 2013;18:1164–1185. doi:10.1177/1087057113505906.
  • Saxena C, Zhen E, Higgs RE, et al. An immuno-chemo-proteomics method for drug target deconvolution. J Proteome Res. 2008;7:3490–3497. doi:10.1021/pr800222q.
  • Saxena C, Higgs RE, Zhen E, et al. Small-molecule affinity chromatography coupled mass spectrometry for drug target deconvolution. Expert Opin Drug Discov. 2009;4:701–714. doi:10.1517/17460440903005565
  • Terstappen GC, Schlüpen C, Raggiaschi R, et al. Target deconvolution strategies in drug discovery. Nat Rev Drug Discov. 2007;6:891–903. doi:10.1038/nrd2410.
  • Heynen-Genel S, Pache L, Chanda SK, et al. Functional genomic and high-content screening for target discovery and deconvolution. Expert Opin Drug Discov. 2012;7:955–968. doi:10.1517/17460441.2012.711311.
  • Lee J, Bogyo M. Target deconvolution techniques in modern phenotypic profiling. Curr Opin Chem Biol. 2013;17:118–126. doi:10.1016/j.cbpa.2012.12.022.
  • Wang J, Gao L, Lee YM, et al. Target identification of natural and traditional medicines with quantitative chemical proteomics approaches. Pharmacol Ther. 2016;162:10–22. doi:10.1016/j.pharmthera.2016.01.010.
  • Bantscheff M, Drewes G. Chemoproteomic approaches to drug target identification and drug profiling. Bioorg Med Chem. 2012;20:1973–1978. doi:10.1016/j.bmc.2011.11.003.
  • Wright MH, Sieber SA. Chemical proteomics approaches for identifying the cellular targets of natural products. Nat Prod Rep. 2016;33:681–708. doi:10.1039/c6np00001k.
  • Bantscheff M. Mass spectrometry-based chemoproteomic approaches. Methods Mol Biol. 2012;803:3–13. doi:10.1007/978-1-61779-364-6_1.
  • Chang J, Kim Y, Kwon HJ. Advances in identification and validation of protein targets of natural products without chemical modification. Nat Prod Rep. 2016;33:719–730. doi:10.1039/c5np00107b.
  • Saxena C, Bonacci TM, Huss KL, et al. Capture of drug targets from live cells using a multipurpose immuno-chemo-proteomics tool. J Proteome Res. 2009;8:3951–3957. doi:10.1021/pr900277x.
  • Target ID Services. Shantani. [ cited 2016 Aug 12]. Available from: http://www.shantani.com/Services%20Products.php.
  • Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228:1315–1317. doi:10.1126/science.4001944.
  • Rossenu S, Dewitte D, Vandekerckhove J, et al. A phage display technique for a fast, sensitive, and systematic investigation of protein–protein interactions. J Protein Chem. 1997;16:499–503. doi:10.1023/A:1026317612554.
  • Shim JS, Lee J, Park HJ, et al. A new curcumin derivative, HBC, interferes with the cell cycle progression of colon cancer cells via antagonization of the Ca2 + /calmodulin function. Chem Biol. 2004;11:1455–1463. doi:10.1016/j.chembiol.2004.08.015.
  • Licitra EJ. Liu JO. A three-hybrid system for detecting small ligand–protein receptor interactions. Proc Natl Acad Sci USA. 1996;93:12817–12821. doi:10.1073/pnas.93.23.12817.
  • Gray NS, Wodicka L, Thunnissen AMWH, et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science. 1998;281:533–538. doi:10.1126/science.281.5376.533.
  • Zhu H, Snyder M. Protein chip technology. Curr Opin Chem Biol. 2003;7:55–63.
  • Jacinto E, Hall MN. Tor signalling in bugs, brain and brawn. Nature Rev Mol Cell Biol. 2003;4:117–126. doi:10.1038/nrm1018.
  • Huang J, Zhu H, Haggarty SJ, et al. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA. 2004;101:16594–16599. doi:10.1073/pnas.0407117101.
  • Godl K, Wissing J, Kurtenbach A, et al. An efficient proteomics method to identify the cellular targets of protein kinase inhibitors. Proc Natl Acad Sci U S A. 2003;100:15434–15439. doi:10.1073/pnas.2535024100.
  • Brehmer D, Greff Z, Godl K, et al. Cellular targets of gefitinib. Cancer Res. 2005;65:379–382.
  • Bantscheff M, Eberhard D, Abraham Y, et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol. 2007;25:1035–1044. doi:10.1038/nbt1328
  • Ong SE, Schenone M, Margolin AA, et al. Identifying the proteins to which small-molecule probes and drugs bind in cells. Proc Natl Acad Sci USA. 2009;106:4617–4622. doi:10.1073/pnas.0900191106.
  • Zhu S, Wurdak H, Wang J, et al. A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell. 2009;4:416–426. doi:10.1016/j.stem.2009.04.001.
  • Trippier PC, Zhao KT, Fox SG, et al. Proteasome activation is a mechanism for pyrazolone small molecules displaying therapeutic potential in amyotrophic lateral sclerosis. ACS Chem Neurosci. 2014;5:823–829. doi:10.1021/cn500147v.
  • Smith E, Collins I. Photoaffinity labeling in target- and binding-site identification. Future Med Chem. 2015;7:159–183. doi:10.4155/fmc.14.152.
  • Fleming SA. Chemical reagents in photoaffinity labeling. Tetrahedron. 1995;51:12479–12520. doi:10.1016/0040-4020(95)00598-3.
  • Webb Y, Zhou X, Ngo L, et al. Photoaffinity labeling and mass spectrometry identify ribosomal protein S3 as a potential target for hybrid polar cytodifferentiation agents. J Biol Chem. 1999;274:14280–14287. doi:10.1074/jbc.274.20.14280.
  • Kotake Y, Sagane K, Owa T, et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol. 2007;3:570–575. doi:10.1038/nchembio.2007.16.
  • Zhang L, Zhang Y, Dong J, et al. Design and synthesis of novel photoaffinity probes for study of the target proteins of oleanolic acid. Bioorg Med Chem Lett. 2012;22:1036–1039. doi:10.1016/j.bmcl.2011.11.123.
  • Colca JR, McDonald WG, Cavey GS, et al. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT) – relationship to newly identified mitochondrial pyruvate carrier proteins. PLoS ONE. 2013;8:e61551. doi:10.1371/journal.pone.0061551.
  • Kotoku N, Nakata C, Kawachi T, et al. Synthesis and evaluation of effective photoaffinity probe molecule of furospinosulin-1, a hypoxia-selective growth inhibitor. Bioorg Med Chem. 2014;22:2102–2112. doi:10.1016/j.bmc.2014.02.026.
  • Crump CJ, Am Ende CW, Ballard TE, et al. Development of clickable active site-directed photoaffinity probes for γ-secretase. Bioorg Med Chem Lett. 2012;22:2997–3000. doi:10.1016/j.bmcl.2012.02.027.
  • Liu Y, Patricelli MP, Cravatt BF. Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci USA. 1999;96:14694–14699.
  • Speers AE, Cravatt BF. Chemical strategies for activity-based proteomics. Chembiochem. 2004;5:41–47. doi:10.1002/cbic.200300721.
  • Jessani N, Cravatt BF. The development and application of methods for activity-based protein profiling. Curr Opin Chem Biol. 2004;8:54–59. doi:10.1016/j.cbpa.2003.11.004.
  • Jessani N, Liu Y, Humphrey M, et al. Enzyme activity profiles of the secreted and membrane proteome that depict cancer invasiveness. Proc Natl Acad Sci USA. 2002;99:10335–10340. doi:10.1073/pnas.162187599.
  • Jessani N, Humphrey M, McDonald WH, et al. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc Natl Acad Sci USA. 2004;101:13756–13761. doi:10.1073/pnas.0404727101.
  • Simon GM, Cravatt BF. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J Biol Chem. 2010;285:11051–11055. doi:10.1074/jbc.R109.097600.
  • Adam GC, Sorensen EJ, Cravatt BF. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nat Biotechnol. 2002;20:805–809. doi:10.1038/nbt714.
  • Lapinsky DJ, Johnson DS. Recent developments and applications of clickable photoprobes in medicinal chemistry and chemical biology. Future Med Chem. 2015;7:2143–2171. doi:10.4155/fmc.15.136.
  • Pace CN, McGrath T. Substrate stabilization of lysozyme to thermal and guanidine hydrochloride denaturation. J Biol Chem. 1980;255:3862–3865.
  • Vedadi M, Niesen FH, Allali-Hassani A, et al. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc Natl Acad Sci USA. 2006;103:15835–15840. doi:10.1073/pnas.0605224103.
  • Martinez MD, Jafari R, Ignatushchenko M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341:84–87. doi:10.1126/science.1233606.
  • Savitski MM, Reinhard FB, Franken H, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science. 2014;346:1255784. doi:10.1126/science.1255826
  • Huber KV, Olek KM, Müller AC, et al. Proteome-wide drug and metabolite interaction mapping by thermal-stability profiling. Nat Methods. 2015;12:1055–1057. doi:10.1038/nmeth.3590.
  • Franken H, Mathieson T, Childs D, et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat Protoc. 2015;10:1567–1593. doi:10.1038/nprot.2015.101.
  • Reinhard FB, Eberhard D, Werner T, et al. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins. Nat Methods. 2015;12:1129–1131. doi:10.1038/nmeth.3652.
  • Werner T, Becher I, Sweetman G, et al. High-resolution enabled TMT 8-plexing. Anal Chem. 2012;84:7188–7194. doi:10.1021/ac301553x.
  • Lomenick B, Hao R, Jonai N, et al. Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci USA. 2009;106:21984–21989. doi:10.1073/pnas.0910040106
  • Robinson TJ, Pai M, Liu JC, et al. High-throughput screen identifies disulfiram as a potential therapeutic for triple-negative breast cancer cells: interaction with IQ motif-containing factors. Cell Cycle. 2013;12:3013–3024. doi:10.4161/cc.26063.
  • Gong F, Peng X, Sang Y, et al. Dichloroacetate induces protective autophagy in LoVo cells: involvement of cathepsin D/thioredoxin-like protein 1 and Akt-mTOR-mediated signaling. Cell Death Dis. 2013;4:e913. doi:10.1038/cddis.2013.438.
  • Derry MM, Somasagara RR, Raina K, et al. Target identification of grape seed extract in colorectal cancer using drug affinity responsive target stability (DARTS) technique: role of endoplasmic reticulum stress response proteins. Curr Cancer Drug Targets. 2014;14:323–336.
  • Chin RM, Fu X, Pai MY, et al. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature. 2014;510:397–401. doi:10.1038/nature13264.
  • Lomenick B, Olsen RW, Huang J. Identification of direct protein targets of small molecules. ACS Chem Biol. 2011;6:34–46. doi:10.1021/cb100294v.
  • West GM, Tang L, Fitzgerald MC. Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass spectrometry-based strategy. Anal Chem. 2008;80:4175–4185. doi:10.1021/ac702610a.
  • West GM, Tucker CL, Xu T, et al. Quantitative proteomics approach for identifying protein–drug interactions in complex mixtures using protein stability measurements. Proc Natl Acad Sci USA. 2010;107:9078–9082. doi:10.1073/pnas.1000148107
  • Dearmond PD, Xu Y, Strickland EC, et al. Thermodynamic analysis of protein-ligand interactions in complex biological mixtures using a shotgun proteomics approach. J Proteome Res. 2011;10:4948–4958. doi:10.1021/pr200403c.
  • Tran DT, Adhikari J, Fitzgerald MC. Stable isotope labeling with amino acids in cell culture (SILAC)-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions. Mol Cell Proteomics. 2014;13:1800–1813. doi:10.1074/mcp.M113.034702.
  • Bathula C, Tripathi S, Srinivasan R, et al. Synthesis of novel 5-arylidenethiazolidinones with apoptotic properties via a three component reation using piperidine as a bifunctional reagent. Org Biomol Chem. 2016. Just Accepted. doi:10.1039/C6OB01257D.
  • Unique Polymer Technology (UPT). Shantani. [ cited 2016 Aug 12]. Available from: http://www.shantani.com/UPT.php.
  • Santanu H, Tripathi S, Dutta PK, et al. Spiro[pyrrolidine-3, 3´-oxindole] as potent anti-breast cancer compounds: their design, synthesis, biological evaluation and cellular target identification. Sci Rep. Forthcoming 2016. Just accepted
  • Schenone M, Dančík V, Wagner BK, et al. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol. 2013;9:232–240. doi:10.1038/nchembio.1199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.