227
Views
8
CrossRef citations to date
0
Altmetric
Review

The development of novel polypharmacological agents targeting the multiple binding sites of nicotinic acetylcholine receptors

&
Pages 969-981 | Received 14 Jun 2016, Accepted 18 Aug 2016, Published online: 30 Aug 2016

References

  • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4:682–690. doi:10.1038/nchembio.118.
  • Peters JU. Polypharmacology - foe or friend? J Med Chem. 2013;56:8955–8971.
  • Medina-Franco JL, Giulianotti MA, Welmaker GS, et al. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today. 2013;18:495–501.
  • Zhang W, Bai Y, Wang Y, et al. Polypharmacology in drug discovery: a review from systems pharmacology perspective. Curr Pharm Des. 2016;21:3171–3181.
  • Dineley KT, Pandya AA, Yakel JL. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci. 2015;36:96–108.
  • Nemecz Á, Prevost MS, Menny A, et al. Emerging molecular mechanisms of signal transduction in pentameric ligand-gated ion channels. Neuron. 2016;90:452–470.
  • Iturriaga-Vásquez P, Alzate-Morales J, Bermudez I, et al. Multiple binding sites in the nicotinic acetylcholine receptors: an opportunity for polypharmacology. Pharmacol Res. 2015;101:9–17.
  • Chatzidaki A, Millar NS. Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol. 2015;97:408–417.
  • Garcia-Ratés S, Camarasa J, Escubedo E, et al. Methamphetamine and 3,4-methylenedioxymethamphetamine interact with central nicotinic receptors and induce their up-regulation. Toxicol Appl Pharmacol. 2007;223:195–205.
  • Verrico CD, Miller GM, Madras BK. MDMA (Ecstasy) and human dopamine, norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology (Berl). 2007;189:489–503.
  • Mihalak KB, Carroll FI, Luetje CW. Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Mol Pharmacol. 2006;70:801–805.
  • Lummis SC, Thompson AJ, Bencherif M, et al. Varenicline is a potent agonist of the human 5-hydroxytryptamine3 receptor. J Pharmacol Exp Ther. 2011;339:125–131.
  • Macor JE, Gurley D, Lanthorn T, et al. The 5-HT3 antagonist tropisetron (ICS 205-930) is a potent and selective alpha7 nicotinic receptor partial agonist. Bioorg Med Chem Lett. 2001;11:319–321.
  • Ouach A, Pin F, Bertrand E, et al. Design of α7 nicotinic acetylcholine receptor ligands using the (het)Aryl-1,2,3-triazole core: Synthesis, in vitro evaluation and SAR studies. Eur J Med Chem. 2016;107:153–164.
  • Matera C, Pucci L, Fiorentini C, et al. Bifunctional compounds targeting both D2 and non-α7 nACh receptors: design, synthesis and pharmacological characterization. Eur J Med Chem. 2015;101:367–383.
  • Rao TS, Adams PB, Correa LD, et al. In vitro pharmacological characterization of (±)-4-[2-(1-methyl-2-pyrrolidinyl)ethyl]thio]phenol hydrochloride (SIB-1553A), a nicotinic acetylcholine receptor ligand. Brain Res. 2003;981:85–98.
  • Exley R, Iturriaga-Vásquez P, Lukas RJ, et al. Evaluation of benzyltetrahydroisoquinolines as ligands for neuronal nicotinic acetylcholine receptors. Br J Pharmacol. 2005;146:15–24.
  • Iturriaga-Vásquez P, Miquel R, Ivorra MD, et al. Simplified tetrandrine congeners as possible antihypertensive agents with a dual mechanism of action. J Nat Prod. 2003;66:954–957.
  • Talka R, Salminen O, Tuominen RK. Methadone is a non-competitive antagonist at the α4β2 and α3* nicotinic acetylcholine receptors and an agonist at the α7 nicotinic acetylcholine receptor. Basic Clin Pharmacol Toxicol. 2015;116:321–328.
  • Kristensen K, Christensen CB, Christrup LL. The mu1, mu2, delta, kappa opioid receptor binding profiles of methadone stereoisomers and morphine. Life Sci. 1995;56:PL45–PL50.
  • Oz M, Al Kury L, Keun-Hang SY, et al. Targeting the interaction between fatty acid ethanolamides and nicotinic receptors: therapeutic perspectives. Eur J Pharmacol. 2014;731:100–105.
  • Pertwee RG. Endocannabinoids and their pharmacological actions. Handb Exp Pharmacol. 2015;231:1–37.
  • Coates KM, Flood P. Ketamine and its preservative benzethonium chloride, both inhibit human recombinant α7 and α4β2 neuronal nicotinic acetylcholine receptors in Xenopus oocytes. Br J Pharmacol. 2001;134:871–879.
  • Zeilhofer HU, Swandulla D, Geisslinger G, et al. Differential effects of ketamine enantiomers on NMDA receptor currents in cultured neurons. Eur J Pharmacol. 1992;213:155–158.
  • Dunlop J, Lock T, Jow B, et al. Old and new pharmacology: positive allosteric modulation of the alpha7 nicotinic acetylcholine receptor by the 5-hydroxytryptamine(2B/C) receptor antagonist SB-206553 (3,5-dihydro-5-methyl-N-3-pyridinylbenzo[1,2-b:4,5-b’]di pyrrole-1(2H)-carboxamide). J Pharmacol Exp Ther. 2009;328:766–776.
  • Graves SM, Napier TC. SB 206553, a putative 5-HT2C inverse agonist, attenuates methamphetamine seeking in rats. BMC Neurosci. 2012;13:65.
  • Samochocki M, Höffle A, Fehrenbacher A, et al. Galantamine is an allosterically potentiating ligand of neuronal nicotinic but not of muscarinic acetylcholine receptors. J Pharmacol Exp Ther. 2003;305:1024–1036.
  • Villarroya M, García AG, Marco-Contelles J, et al. An update on the pharmacology of galantamine. Expert Opin Investig Drugs. 2007;16:1987–1998.
  • Arias HR. Is the inhibition of nicotinic acetylcholine receptors by bupropion involved in its clinical actions? Int J Biochem Cell Biol. 2009;41:2098–2108.
  • Di Resta C, Ambrosi P, Curia G, et al. Effect of carbamazepine and oxcarbazepine on wild-type and mutant neuronal nicotinic acetylcholine receptorslinked to nocturnal frontal lobe epilepsy. Eur J Pharmacol. 2010;643:13–20.
  • Picard F, Bertrand S, Steinlein OK, et al. Mutated nicotinic receptors responsible for autosomal dominant nocturnal frontal lobe epilepsy are more sensitive to carbamazepine. Epilepsia. 1999;40:1198–1209.
  • Kolok S, Nagy J, Szombathelyi Z, et al. Functional characterization of sodium channel blockers by membrane potential measurements in cerebellar neurons: prediction of compound preference for the open/inactivated state. Neurochem Int. 2006;49:593–604.
  • Rosini M. Polypharmacology: the rise of multitarget drugs over combination therapies. Future Med Chem. 2014;6:485–487.
  • Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov. 2004;3:353–359.
  • Zhao S, Iyengar R. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol. 2012;52:505–521.
  • Engin HB, Gursoy A, Nussinov R, et al. Network-based strategies can help mono and poly-pharmacology drug discovery: a systems biology view. Curr Pharm Des. 2014;20:1201–1207.
  • Viayna E, Sola I, Di Pietro O, et al. Human disease and drug pharmacology, complex as real life. Curr Med Chem. 2013;20:1623–1634.
  • Reddy AS, Zhang S. Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol. 2013;6:41–47.
  • Cumming JG, Finlay MR, Giordanetto F, et al. Potential strategies for increasing drug-discovery productivity. Future Med Chem. 2014;6:515–527.
  • Brodie JS, Di Marzo V, Guy GW. Polypharmacology shakes hands with complex aetiopathology. Trends Pharmacol Sci. 2015;36:802–821.
  • Sanchez C, Asin KE, Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther. 2015;145:43–57.
  • Poornima P, Kumar JD, Zhao Q, et al. Network pharmacology of cancer: from understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Pharmacol Res. 2016;111:290–302.
  • Butini S, Nikolic K, Kassel S, et al. Polypharmacology of dopamine receptor ligands. Prog Neurobiol. 2016;142:68–103.
  • Kumari S, Mishra CB, Tiwari M. Polypharmacological drugs in the treatment of epilepsy: the comprehensive review of marketed and new emerging molecules. Curr Pharm Des. 2016;22:3212–3225.
  • Bolognesi ML, Cavalli A. Multitarget drug discovery and polypharmacology. ChemMedChem. 2016;11:1190–1192.
  • Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J Med Chem. 2014;57:7874–7887.
  • Pujol A, Mosca R, Farrés J, et al. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci. 2010;31:115–123.
  • Wierling C, Kessler T, Ogilvie LA, et al. Network and systems biology: essential steps in virtualising drug discovery and development. Drug Discov Today Technol. 2015;15:33–40.
  • Hopkins AL, Mason JS, Overington JP. Can we rationally design promiscuous drugs? Curr Opin Struct Biol. 2006;16:127–136.
  • Koch U, Hamacher M, Nussbaumer P. Cheminformatics at the interface of medicinal chemistry and proteomics. Biochim Biophys Acta. 2014;1844(1 Pt A):156–161.
  • Atreya RV, Sun J, Zhao Z. Exploring drug-target interaction networks of illicit drugs. BMC Genomics. 2013;14(Suppl 4):S1.
  • Kibble M, Saarinen N, Tang J, et al. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep. 2015;32:1249–1266.
  • Hu Y, Bajorath J. Compound promiscuity: what can we learn from current data? Drug Discov Today. 2013;18:644–650.
  • Jasial S, Hu Y, Bajorath J. Determining the degree of promiscuity of extensively assayed compounds. PLoS One. 2016;11:e0153873.
  • Gebicke-Haerter PJ. Systems psychopharmacology: A network approach to developing novel therapies. World J Psychiatry. 2016;6:66–83.
  • Terry AV Jr, Callahan PM, Hernandez CM. Nicotinic ligands as multifunctional agents for the treatment of neuropsychiatric disorders. Biochem Pharmacol. 2015;97:388–398.
  • Lavecchia A, Cerchia C. In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discov Today. 2016;21:288–298.
  • McKie SA. Polypharmacology: in silico methods of ligand design and development. Future Med Chem. 2016;8:579–602.
  • Zindo FT, Joubert J, Malan SF. Propargylamine as functional moiety in the design of multifunctional drugs for neurodegenerative disorders: MAO inhibition and beyond. Future Med Chem. 2015;7:609–629.
  • Sisignano M, Parnham MJ, Geisslinger G. Drug repurposing for the development of novel analgesics. Trends Pharmacol Sci. 2016;37:172–183.
  • Jackson VM, Breen DM, Fortin JP, et al. Latest approaches for the treatment of obesity. Expert Opin Drug Discov. 2015;10:825–839.
  • Monzon JG, Dancey J. Combination agents versus multi-targeted agents - pros and cons. In: Morphy RM, Harris CJ, editors. Designing multi-target drugs. Cambridge, UK: RSC Publishing; 2012. p. 155–180.
  • Xie L, Xie L, Kinnings SL, et al. Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annu Rev Pharmacol Toxicol. 2012;52:361–379.
  • Liu X, Zhu F, Ma XH, et al. Predicting targeted polypharmacology for drug repositioning and multi-target drug discovery. Curr Med Chem. 2013;20:1646–1661.
  • Tan Z, Chaudhai R, Zhang S. Polypharmacology in drug development: A minireview of current technologies. ChemMedChem. 2016. doi:10.1002/cmdc.201600067.
  • Sauguet L, Shahsavar A, Delarue M. Crystallographic studies of pharmacological sites in pentameric ligand-gated ion channels. Biochim Biophys Acta. 2015;1850:511–523.
  • Jazayeri A, Dias JM, Marshall FH. From G protein-coupled receptor structure resolution to rational drug design. J Biol Chem. 2015;290:19489–19495.
  • Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Ann Rev Pharmacol Toxicol. 2007;47:699–729.
  • Gotti C, Clementi F, Fornari A, et al. Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol. 2009;78:703–711.
  • Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol. 2008;154:1558–1571.
  • Bertrand D, Lee CH, Flood D, et al. Therapeutic potential of α7 nicotinic acetylcholine receptors. Pharmacol Rev. 2015;67:1025–1073.
  • Grando SA. Connections of nicotine to cancer. Nat Rev Cancer. 2014 Jun;14(6):419–429.
  • Wallace TL, Bertrand D. Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem Pharmacol. 2013;85:1713–1720.
  • Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci. 2006;27:482–491.
  • Picciotto MR, Lewis AS, Van Schalkwyk GI, et al. Mood and anxiety regulation by nicotinic acetylcholine receptors: A potential pathway to modulate aggression and related behavioral states. Neuropharmacology. 2015;96(Pt B):235–243.
  • Becchetti A, Aracri P, Meneghini S, et al. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol. 2015;6:22.
  • Quik M, Zhang D, Perez XA, et al. Role for the nicotinic cholinergic system in movement disorders; therapeutic implications. Pharmacol Ther. 2014;144:50–59.
  • Korpi ER, Den Hollander B, Farooq U, et al. Mechanisms of action and persistent neuroplasticity by drugs of abuse. Pharmacol Rev. 2015;67:872–1004.
  • Millar NS, Gotti C. Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacol. 2009;56:237–246.
  • Grupe M, Grunnet M, Bastlund JF, et al. Targeting α4β2 nicotinic acetylcholine receptors in central nervous system disorders: perspectives on positive allosteric modulation as a therapeutic approach. Basic Clin Pharmacol Toxicol. 2015;116:187–200.
  • Gotti C, Guiducci S, Tedesco V, et al. Nicotinic acetylcholine receptors in the mesolimbic pathway: primary role of ventral tegmental area alpha6beta2* receptors in mediating systemic nicotine effects on dopamine release, locomotion, and reinforcement. J Neurosci. 2010;30:5311–5325.
  • Wu J, Lukas RJ. Naturally-expressed nicotinic acetylcholine receptor subtypes. Biochem Pharmacol. 2011;82:800–807.
  • Proulx E, Piva M, Tian MK, et al. Nicotinic acetylcholine receptors in attention circuitry: the role of layer VI neurons of prefrontal cortex. Cell Mol Life Sci. 2014;71:1225–1244.
  • Mohamed TS, Jayakar SS, Hamouda AK. Orthosteric and allosteric ligands of nicotinic acetylcholine receptors for smoking cessation. Front Mol Neurosci. 2015;8:71.
  • Wu J, Liu Q, Tang P, et al. Heteromeric α7β2 nicotinic acetylcholine receptors in the brain. Trends Pharmacol Sci. 2016. DOI:10.1016/j.tips.2016.03.005.
  • Möller-Acuña P, Contreras-Riquelme JS, Rojas-Fuentes C, et al. Similarities between the binding sites of SB-206553 at serotonin type 2 and α7 acetylcholine nicotinic receptors: rationale for its polypharmacological profile. PLoS One. 2015;10:e0134444.
  • Celie PH, Van Rossum-Fikkert SE, Van Dijk WJ, et al. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron. 2004;41:907–914.
  • Spurny R, Debaveye S, Farinha A, et al. Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A. 2015;112:E2543–2552.
  • Bondarenko V, Mowrey DD, Tillman TS, et al. NMR structures of the human α7 nAChR transmembrane domain and associated anesthetic binding sites. Biochim Biophys Acta. 2014;1838:1389–1395.
  • Giovannini MG, Lana D, Pepeu G. The integrated role of ACh, ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory. Neurobiol Learn Mem. 2015;119:18–33.
  • Zhao Y. The oncogenic functions of nicotinic acetylcholine receptors. J Oncol. 2016;2016:9650481.
  • Zdanowski R, Krzyżowska M, Ujazdowska D, et al. Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways. Cent Eur J Immunol. 2015;40:373–379.
  • Cecchini M, Changeux JP. The nicotinic acetylcholine receptor and its prokaryotic homologues: structure, conformational transitions & allosteric modulation. Neuropharmacology. 2015;96:137–149.
  • Bertrand D, Gopalakrishnan M. Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol. 2007;74:1155–1163.
  • Arias HR. Allosteric modulation of nicotinic acetylcholine receptors. In: Arias HR, editor. Pharmacology of nicotinic acetylcholine receptors from the basic and therapeutic perspectives. Kerala, India: Research Signpost; 2011. p. 151–173.
  • Lemoine D, Jiang R, Taly A, et al. Ligand-gated ion channels: new insights into neurological disorders and ligand recognition. Chem Rev. 2012;112:6285–6318.
  • Jensen AA, Frølund B, Liljefors T, et al. Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem. 2005;48:4705–4745.
  • Taly A, Hénin J, Changeux JP, et al. Allosteric regulation of pentameric ligand-gated ion channels: an emerging mechanistic perspective. Channels. 2014;8:350–360.
  • Changeux JP. The concept of allosteric modulation: an overview. Drug Discov Today Technol. 2013;10:e223- e228.
  • Hénault CM, Sun J, Therien JP, et al. The role of the M4 lipid-sensor in the folding, trafficking, and allosteric modulation of nicotinic acetylcholine receptors. Neuropharmacology. 2015;96:157–168.
  • Arias HR. Positive and negative modulation of nicotinic receptors. Adv Protein Chem Struct Biol. 2010;80:153–203.
  • Williams DK, Wang J, Papke RL. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations. Biochem Pharmacol. 2011;82:915–930.
  • Pandya A, Yakel JL. Allosteric modulators of the α4β2 subtype of neuronal nicotinic acethtylcholine receptors. Biochem Pharmacol. 2011;82:952–958.
  • Amoroso T. The psychopharmacology of ±3,4 methylenedioxymethamphetamine and its role in the treatment of posttraumatic stress disorder. J Psychoactive Drugs. 2015;47:337–344.
  • Rau T, Ziemniak J, Poulsen D. The neuroprotective potential of low-dose methamphetamine in preclinical models of stroke and traumatic brain injury. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:231–236.
  • Escubedo E, Camarasa J, Chipana C, et al. Involvement of nicotinic receptors in methamphetamine- and MDMA-induced neurotoxicity: pharmacological implications. Int Rev Neurobiol. 2009;88:121–166.
  • Llabrés S, García-Ratés S, Cristóbal-Lecina E, et al. Molecular basis of the selective binding of MDMA enantiomers to the alpha4beta2 nicotinic receptor subtype: synthesis, pharmacological evaluation and mechanistic studies. Eur J Med Chem. 2014;81:35–46.
  • Wang KH, Penmatsa A, Gouaux E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature. 2015;521:322–327.
  • Coleman JA, Green EM, Gouaux E. X-ray structures and mechanism of the human serotonin transporter. Nature. 2016;532:334–339.
  • Thompson AJ, Lester HA, Lummis SC. The structural basis of function in Cys-loop receptors. Q Rev Biophys. 2010;43:449–499.
  • Hsu ES. A review of granisetron, 5-hydroxytryptamine3 receptor antagonists, and other antiemetics. Am J Ther. 2010;17:476–486.
  • Koike K, Hashimoto K, Takai N, et al. Tropisetron improves deficits in auditory P50 suppression in schizophrenia. Schizophr Res. 2005;76:67–72.
  • Shiina A, Shirayama Y, Niitsu T, et al. A randomised, double-blind, placebo-controlled trial of tropisetron in patients with schizophrenia. Ann Gen Psychiatry. 2010;9:27.
  • Kishi T, Mukai T, Matsuda Y, et al. Selective serotonin 3 receptor antagonist treatment for schizophrenia: meta-analysis and systematic review. Neuromolecular Med. 2014;16:61–69.
  • Olincy A, Freedman R. Nicotinic mechanisms in the treatment of psychotic disorders: a focus on the α7 nicotinic receptor. Handb Exp Pharmacol. 2012;213:211–232.
  • Ellenbroek BA, Prinssen EP. Can 5-HT3 antagonists contribute toward the treatment of schizophrenia? Behav Pharmacol. 2015;26:33–44.
  • Hashimoto K. Targeting of α7 nicotinic acetylcholine receptors in the treatment of schizophrenia and the use of auditory sensory gating as a translational biomarker. Curr Pharm Des. 2015;21:3797–3806.
  • Billen B, Spurny R, Brams M, et al. Molecular actions of smoking cessation drugs at α4β2 nicotinic receptors defined in crystal structures of a homologous binding protein. Proc Natl Acad Sci USA. 2012;109:9173–9178.
  • Rucktooa P, Haseler CA, Van Elk R, et al. Structural characterization of binding mode of smoking cessation drugs to nicotinic acetylcholine receptors through study of ligand complexes with acetylcholine-binding protein. J Biol Chem. 2012;287:23283–23293.
  • Price KL, Lillestol RK, Ulens C, et al. Varenicline interactions at the 5-HT3 receptor ligand binding site are revealed by 5-HTBP. ACS Chem Neurosci. 2015;6:1151–1157.
  • Turnaturi R, Aricò G, Ronsisvalle G, et al. Multitarget opioid ligands in pain relief: new players in an old game. Eur J Med Chem. 2016;108:211–228.
  • Rosini M, Simoni E, Bartolini M, et al. The bivalent ligand approach as a tool for improving the in vitro anti-Alzheimer multitarget profile of dimebon. ChemMedChem. 2013;8:1276–1281.
  • Yu LF, Zhang HK, Gunosewoyo H, et al. From α4β2 nicotinic ligands to the discovery of σ1 receptor ligands: pharmacophore analysis and rational design. ACS Med Chem Lett. 2012;3:1054–1058.
  • Chu UB, Ruoho AE. Biochemical pharmacology of the sigma-1 receptor. Mol Pharmacol. 2016;89:142–153.
  • Su TP, Su TC, Nakamura Y, et al. The sigma-1 receptor as a pluripotent modulator in living systems. Trends Pharmacol Sci. 2016;37:262–278.
  • Yasui Y, Su TP. Potential molecular mechanisms on the role of the sigma-1 receptor in the action of cocaine and methamphetamine. J Drug Alcohol Res. 2016. doi:10.4303/jdar/235970.
  • Schmidt HR, Zheng S, Gurpinar E, et al. Crystal structure of the human σ1 receptor. Nature. 2016;532:527–530.
  • Bontempi B, Whelan KT, Risbrough VB, et al. Cognitive enhancing properties and tolerability of cholinergic agents in mice: a comparative study of nicotine, donepezil, and SIB-1553A, a subtype-selective ligand for nicotinic acetylcholine receptors. Neuropsychopharmacology. 2003;28:1235–1246.
  • Schneider JS, Tinker JP, Menzaghi F, et al. The subtype-selective nicotinic acetylcholine receptor agonist SIB-1553A improves both attention and memory components of a spatial working memory task in chronic low dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys. J Pharmacol Exp Ther. 2003;306:401–406.
  • Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev. 2003;42:33–84.
  • Triposkiadis F, Karayannis G, Giamouzis G, et al. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747–1762.
  • Zamponi GW, Striessnig J, Koschak A, et al. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015;67:821–870.
  • Fitzgerald PJ. Elevated norepinephrine may be a unifying etiological factor in the abuse of a broad range of substances: alcohol, nicotine, marijuana, heroin, cocaine, and caffeine. Subst Abuse. 2013;7:171–183.
  • Biala G, Kruk M. Calcium channel antagonists suppress cross-tolerance to the anxiogenic effects of D-amphetamine and nicotine in the mouse elevated plus maze test. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:54–61.
  • Iorga B, Herlem D, Barré E, et al. Acetylcholine nicotinic receptors: finding the putative binding site of allosteric modulators using the “blind docking” approach. J Mol Model. 2006;12:366–372.
  • Luttmann E, Ludwig J, Höffle-Maas A, et al. Structural model for the binding sites of allosterically potentiating ligands on nicotinic acetylcholine receptors. Chem Med Chem. 2009;4:1874–1882.
  • Zemkova H, Tvrdonova V, Bhattacharya A, et al. Allosteric modulation of ligand gated ion channels by ivermectin. Physiol Res. 2014;63(Suppl 1):S215–S224.
  • Forman SA, Chiara DC, Miller KW. Anesthetics target interfacial transmembrane sites in nicotinic acetylcholine receptors. Neuropharmacology. 2015;96:169–177.
  • Hamouda AK, Jayakar SS, Chiara DC, et al. Photoaffinity labeling of nicotinic receptors: diversity of drug binding sites! J Mol Neurosci. 2014;53:480–486.
  • Mowrey DD, Kinde MN, Xu Y, et al. Atomistic insights into human Cys-loop receptors by solution NMR. Biochim Biophys Acta. 2015;1848:307–314.
  • Gill-Thind JK, Dhankher P, D’Oyley JM, et al. Structurally similar allosteric modulators of α7 nicotinic acetylcholine receptors exhibit five distinct pharmacological effects. J Biol Chem. 2015;290:3552–3562.
  • Gill JK, Savolainen M, Young GT, et al. Agonist activation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc Natl Acad Sci USA. 2011;108:5867–5872.
  • Horenstein NA, Papke RL, Kulkarni AR, et al. Critical molecular determinants of α7 nicotinic acetylcholine receptor allosteric activation: separation of direct allosteric activation and positive allosteric modulation. J Biol Chem. 2016;291:5049–5067.
  • Jones CK, Byun N, Bubser M. Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology. 2012;37:16–42.
  • Mantione E, Micheloni S, Alcaino C, et al. Allosteric modulators of α4β2 nicotinic acetylcholine receptors: a new direction for antidepressant drug discovery. Future Med Chem. 2012;4:2217–2230.
  • Uteshev VV. The therapeutic promise of positive allosteric modulation of nicotinic receptors. Eur J Pharmacol. 2014;727:181–185.
  • Echeverria V, Yarkov A, Aliev G. Positive modulators of the α7 nicotinic receptor against neuroinflammation and cognitive impairment in Alzheimer’s disease. Prog Neurobiol. 2016. doi:10.1016/j.pneurobio.2016.01.002.
  • Yang JS, Seo SW, Jang S, et al. Rational engineering of enzyme allosteric regulation through sequence evolution analysis. PLoS Comput Biol. 2012;8:e1002612.
  • Nussinov R, Tsai CJ. Allostery in disease and in drug discovery. Cell. 2013;153:293–305.
  • Gill JK, Dhankher P, Sheppard TD, et al. A series of α7 nicotinic acetylcholine receptor allosteric modulators with close chemical similarity but diverse pharmacological properties. Mol Pharmacol. 2012;81:710–718.
  • Nirogi R, Goura V, Abraham R, et al. alpha4beta2* neuronal nicotinic receptor ligands (agonist, partial agonist and positive allosteric modulators) as therapeutic prospects for pain. Eur J Pharmacol. 2013;712:22–29.
  • Umana IC, Daniele CA, McGehee DS. Neuronal nicotinic receptors as analgesic targets: it’s a winding road. Biochem Pharmacol. 2013;86:1208–1214.
  • Pandya AA, Yakel JL. Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies. Biochem Pharmacol. 2013;86:1054–1062.
  • Motel WC, Coop A, Cunningham CW. Cholinergic modulation by opioid receptor ligands: potential application to Alzheimer’s disease. Mini Rev Med Chem. 2013;13:456–466.
  • Talka R, Tuominen RK, Salminen O. Methadone’s effect on nAChRs-a link between methadone use and smoking? Biochem Pharmacol. 2015;97:542–549.
  • Talka R, Salminen O, Whiteaker P, et al. Nicotine–morphine interactions at α4β2, α7 and α3* nicotinic acetylcholine receptors. Eur J Pharmacol. 2013;701:57–64.
  • Shiraishi M, Minami K, Uezono Y, et al. Inhibitory effects of tramadol on nicotinic acetylcholine receptors in adrenal chromaffin cells and in Xenopusoocytes expressing alpha 7 receptors. Br J Pharmacol. 2002;136:207–216.
  • Storch A, Schrattenholz A, Cooper JC, et al. Physostigmine, galanthamine and codeine act as ‘noncompetitive nicotinic receptor agonists’ on clonal rat pheochromocytoma cells. Eur J Pharmacol. 1995;290:207–219.
  • Del Bufalo A, Cesario A, Salinaro G, et al. Alpha9 alpha10 nicotinic acetylcholine receptors as target for the treatment of chronic pain. Curr Pharm Des. 2014;20:6042–6047.
  • Mohammadi SA, Christie MJ. Conotoxin interactions with α9α10-nAChRs: Is the α9α10-nicotinic acetylcholine receptor an important therapeutic target for pain management? Toxins (Basel). 2015;7:3916–3932.
  • Goldfeld DA, Murphy R, Kim B, et al. Docking and free energy perturbation studies of ligand binding in the kappa opioid receptor. J Phys Chem B. 2015;119:824–835.
  • Chiodo L, Malliavin TE, Maragliano L, et al. A structural model of the human α7 nicotinic receptor in an open conformation. PLoS One. 2015;10:e0133011.
  • Shang Y, Filizola M. Opioid receptors: structural and mechanistic insights into pharmacology and signaling. Eur J Pharmacol. 2015;763(Pt B):206–213.
  • Scherma M, Muntoni AL, Melis M, et al. Interactions between the endocannabinoid and nicotinic cholinergic systems: preclinical evidence and therapeutic perspectives. Psychopharmacology (Berl). 2016;233:1765–1777.
  • Gamaleddin IH, Trigo JM, Gueye AB, et al. Role of the endogenous cannabinoid system in nicotine addiction: novel insights. Front Psychiatry. 2015;6:41.
  • Oz M, Zhang L, Ravindran A, et al. Differential effects of endogenous and synthetic cannabinoids on alpha7-nicotinic acetylcholine receptor-mediated responses in Xenopus Oocytes. J Pharmacol Exp Ther. 2004;310:1152–1160.
  • Oz M, Ravindran A, Diaz-Ruiz O, et al. The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes. J Pharmacol Exp Ther. 2003;306:1003–1010.
  • Spivak CE, Lupica CR, Oz M. The endocannabinoid anandamide inhibits the function of alpha4beta2 nicotinic acetylcholine receptors. Mol Pharmacol. 2007;72:1024–1032.
  • Hill AJ, Williams CM, Whalley BJ, et al. Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Ther. 2012;133:79–97.
  • Mahgoub M, Keun-Hang SY, Sydorenko V, et al. Effects of cannabidiol on the function of α7-nicotinic acetylcholine receptors. Eur J Pharmacol. 2013;720:310–319.
  • Hans M, Wilhelm M, Swandulla D. Menthol suppresses nicotinic acetylcholine receptor functioning in sensory neurons via allosteric modulation. Chem Senses. 2012;37:463–469.
  • Ashoor A, Nordman JC, Veltri D, et al. Menthol binding and inhibition of alpha7-nicotinic acetylcholine receptors. PLoS One. 2013;8:e67674.
  • Wickham RJ. How menthol alters tobacco-smoking behavior: a biologicalperspective. Yale J Biol Med. 2015;88:279–287.
  • Sharma C, Al Kaabi JM, Nurulain SM, et al. Polypharmacological properties and therapeutic potential of β-caryophyllene: a dietary phytocannabinoid of pharmaceutical promise. Curr Pharm Des. 2016;22:3237–3264.
  • Fond G, Loundou A, Rabu C, et al. Ketamine administration in depressive disorders: a systematic review and meta-analysis. Psychopharmacology (Berl). 2014;231:3663–3676.
  • Naughton M, Clarke G, O’Leary OF, et al. A review of ketamine in affective disorders: current evidence of clinical efficacy, limitations of use and pre-clinical evidence on proposed mechanisms of action. J Affect Disord. 2014;156:24–35.
  • Abdallah CG, Averill LA, Krystal JH. Ketamine as a promising prototype for a new generation of rapid-acting antidepressants. Ann N Y Acad Sci. 2015;1344:66–77.
  • Niciu MJ, Henter ID, Luckenbaugh DA, et al. Glutamate receptor antagonists as fast-acting therapeutic alternatives for the treatment of depression: ketamine and other compounds. Annu Rev Pharmacol Toxicol. 2014;54:119–139.
  • Potter DE, Choudhury M. Ketamine: repurposing and redefining a multifaceted drug. Drug Discov Today. 2014;19:1848–1854.
  • Chen L, Malek T. Follow me down the K-hole: ketamine and its modern applications. Crit Care Nurs Q. 2015;38:211–216.
  • Sleigh J, Harvey M, Voss L, et al. Ketamine – More mechanisms of action than just NMDA blockade. Trends Anaesth Crit Care. 2014;4:76–81.
  • Yamakura T, Chavez-Noriega LE, Harris RA. Subunit-dependent inhibition of human neuronal nicotinic acetylcholine receptors and other ligand-gated ion channels by dissociative anesthetics ketamine and dizocilpine. Anesthesiology. 2000;92:1144–1155.
  • Moaddel R, Abdrakhmanova G, Kozak J, et al. Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors. Eur J Pharmacol. 2013;698:228–234.
  • Bondarenko V, Mowrey D, Liu LT, et al. NMR resolved multiple anesthetic binding sites in the TM domains of the α4β2 nAChR. Biochim Biophys Acta. 2013;1828:398–404.
  • Pan J, Chen Q, Willenbring D, et al. Structure of the pentameric ligand-gated ion channel GLIC bound with anesthetic ketamine. Structure. 2012;20:1463–1469.
  • Zanos P, Moaddel R, Morris PJ, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–486.
  • Singh NS, Zarate CA Jr, Moaddel R, et al. What is hydroxynorketamine and what can it bring to neurotherapeutics? Expert Rev Neurother. 2014;14:1239–1242.
  • Paul RK, Singh NS, Khadeer M, et al. (R,S)-Ketamine metabolites (R,S)-norketamine and (2S,6S)-hydroxynorketamine increase the mammalian target of rapamycin function. Anesthesiology. 2014;121:149–159.
  • Abdallah CG, Sanacora G, Duman RS, et al. Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu Rev Med. 2015;66:509–523.
  • Kennett GA, Wood MD, Bright F, et al. In vitro and in vivo profile of SB206553, a potent 5-HT2C/5-HT2B receptor antagonist with anxiolytic-like properties. Br J Pharmacol. 1996;117:427–434.
  • Berg KA, Stout BD, Cropper JD, et al. Novel actions of inverse agonists on 5-HT2C receptor systems. Mol Pharmacol. 1999;55:863–872.
  • Schrattenholz A, Pereira EF, Roth U, et al. Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Mol Pharmacol. 1996;49:1–6.
  • García-Colunga J, Miledi R. Blockage of mouse muscle nicotinic receptors by serotonergic compounds. Exp Physiol. 1999;84:847–864.
  • Pereira EF, Hilmas C, Santos MD, et al. Unconventional ligands and modulators of nicotinic receptors. J Neurobiol. 2002;53:479–500.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.