444
Views
27
CrossRef citations to date
0
Altmetric
Review

Centipede venoms as a source of drug leads

, &
Pages 1139-1149 | Received 21 Jul 2016, Accepted 07 Sep 2016, Published online: 19 Sep 2016

References

  • King GF, editor. Venoms to drugs: venom as a source for the development of human therapeutics. London (UK): Royal Society of Chemistry; 2015.
  • Fox JW, Serrano SM. Approaching the golden age of natural product pharmaceuticals from venom libraries: an overview of toxins and toxin-derivatives currently involved in therapeutic or diagnostic applications. Curr Pharm Des. 2007;13:2927–2934. DOI:10.2174/138161207782023739
  • Han TS, Teichert RW, Olivera BM, et al. Conus venoms—a rich source of peptide-based therapeutics. Curr Pharm Des. 2008;14:2462–2479. DOI:10.2174/138161208785777469
  • Saez NJ, Senff S, Jensen JE, et al. Spider-venom peptides as therapeutics. Toxins. 2010;2:2851–2871. DOI:10.3390/toxins2122851
  • King GF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther. 2011;11:1469–1484. DOI:10.1517/14712598.2011.621940
  • Vetter I, Davis JL, Rash LD, et al. Venomics: a new paradigm for natural products-based drug discovery. Amino Acids. 2011;40:15–28. DOI:10.1007/s00726-010-0693-1
  • Koh CY, Kini RM. From snake venom toxins to therapeutics—cardiovascular examples. Toxicon. 2012;59:497–506. DOI:10.1016/j.toxicon.2011.03.017
  • King GF. Venoms to drugs: translating venom peptides into therapeutics. Austr Biochemist. 2013;44:13–15.
  • Harvey AL. Toxins and drug discovery. Toxicon. 2014;92:193–200. DOI:10.1016/j.toxicon.2014.10.020
  • Ortiz E, Gurrola GB, Schwartz EF, et al. Scorpion venom components as potential candidates for drug development. Toxicon. 2015;93:125–135. DOI:10.1016/j.toxicon.2014.11.233
  • Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat Rev Drug Discov. 2003;2:790–802. DOI:10.1038/nrd1197
  • Pineda SS, Undheim EA, Rupasinghe DB, et al. Spider venomics: implications for drug discovery. Future Med Chem. 2014;6:1699–1714. DOI:10.4155/fmc.14.103
  • von Reumont BM, Campbell LI, Jenner RA. Quo vadis venomics? A roadmap to neglected venomous invertebrates. Toxins (Basel). 2014;6:3488–3551. DOI:10.3390/toxins6123488
  • Walker AA, Weirauch C, Fry BG, et al. Venoms of heteropteran insects: a treasure trove of diverse pharmacological toolkits. Toxins. 2016;8:43. DOI:10.3390/toxins8050139
  • Pemberton RW. Insects and other arthropods used as drugs in Korean traditional medicine. J Ethnopharmacol. 1999;65:207–216. DOI:10.1016/S0378-8741(98)00209-8
  • Hakim MA, Yang S, Lai R. Centipede venoms and their components: resources for potential therapeutic applications. Toxins. 2015;7:4832–4851. DOI:10.3390/toxins7051738
  • Su XL, Su W, He ZL, et al. Tripeptide SQL inhibits platelet aggregation and thrombus formation by affecting PI3K/Akt signaling. J Cardiovasc Pharmacol. 2015;66:254–260. DOI:10.1097/FJC.0000000000000269
  • Undheim EAB, Fry B, King GF. Centipede venom: recent discoveries and current state of knowledge. Toxins. 2015;7:679–704. DOI:10.3390/toxins7051738
  • Uhlig T, Kyprianou T, Martinelli FG, et al. The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteomics. 2014;4:58–69. DOI:10.1016/j.euprot.2014.05.003
  • Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20:122–128. DOI:10.1016/j.drudis.2014.10.003
  • Yang S, Xiao Y, Kang D, et al. Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci USA. 2013;110:17534–17539. DOI:10.1073/pnas.1306285110 .
  • Herzig V, King G. The cystine knot is responsible for the exceptional stability of the insecticidal spider toxin ω-hexatoxin-Hv1a. Toxins. 2015;7:4366–4380. DOI:10.3390/toxins7051738
  • Fernández R, Laumer CE, Vahtera V, et al. Evaluating topological conflict in centipede phylogeny using transcriptomic data sets. Mol Biol Evol. 2014;31:1500–1513. DOI:10.1093/molbev/msu108
  • Undheim EAB, King GF. On the venom system of centipedes (Chilopoda), a neglected group of venomous animals. Toxicon. 2011;57:512–524. DOI:10.1016/j.toxicon.2011.01.004
  • Undheim EAB, Sunagar K, Hamilton BR, et al. Multifunctional warheads: diversification of the toxin arsenal of centipedes via novel multidomain transcripts. J Proteomics. 2014;102:1–10. DOI:10.1016/j.jprot.2014.02.024
  • Undheim EA, Hamilton BR, Kurniawan ND, et al. Production and packaging of a biological arsenal: evolution of centipede venoms under morphological constraint. Proc Natl Acad Sci USA. 2015;112:4026–4031. DOI:10.1073/pnas.1424068112
  • Rates B, Bemquerer MP, Richardson M, et al. Venomic analyses of Scolopendra viridicornis nigra and Scolopendra angulata (Centipede, Scolopendromorpha): shedding light on venoms from a neglected group. Toxicon. 2007;49:810–826. DOI:10.1016/j.toxicon.2006.12.001 .
  • Yang S, Liu Z, Xiao Y, et al. Chemical punch packed in venoms makes centipedes excellent predators. Mol Cell Proteomics. 2012;11:640–650. DOI:10.1074/mcp.M112.018853 .
  • Liu Z-C, Zhang R, Zhao F, et al. Venomic and transcriptomic analysis of centipede Scolopendra subspinipes dehaani. J Proteome Res. 2012;11:6197–6212. .
  • Undheim EAB, Jones A, Clauser KR, et al. Clawing through evolution: toxin diversification and convergence in the ancient lineage Chilopoda (Centipedes). Mol Biol Evol. 2014;31:2124–2148. DOI:10.1093/molbev/msu162 .
  • Rong M, Yang S, Wen B, et al. Peptidomics combined with cDNA library unravel the diversity of centipede venom. J Proteomics. 2014;114:28–37. DOI:10.1016/j.jprot.2014.10.014
  • González-Morales L, Pedraza-Escalona M, Diego-Garcia E, et al. Proteomic characterization of the venom and transcriptomic analysis of the venomous gland from the Mexican centipede Scolopendra viridis. J Proteomics. 2014;111:224–237. DOI:10.1016/j.jprot.2014.04.033
  • Fry BG, Roelants K, Champagne DE, et al. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet. 2009;10:483–511. DOI:10.1146/annurev.genom.9.081307.164356
  • Kikuchi K, Sugiura M, Kimura T. High proteolytic resistance of spider-derived inhibitor cystine knots. Int J Pept. 2015;2015:537508. DOI:10.1155/2015/537508
  • Undheim EAB, Grimm Lena L, Low C-F, et al. Weaponization of a hormone: convergent recruitment of hyperglycemic hormone into the venom of arthropod predators. Structure. 2015;23:1283–1292. DOI:10.1016/j.str.2015.01.003 .
  • Bohlen CJ, Priel A, Zhou S, et al. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell. 2010;141:834–845. DOI:10.1016/j.cell.2010.03.052
  • Martin L, Stricher F, Misse D, et al. Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes. Nat Biotechnol. 2003;21:71–76. DOI:10.1038/nbt768
  • Li C, Liu M, Monbo J, et al. Turning a scorpion toxin into an antitumor miniprotein. J Am Chem Soc. 2008;130:13546–13548. DOI:10.1021/ja8042036
  • Vaz B, Möcklinghoff S, Folkertsma S, et al. Computational design, synthesis, and evaluation of miniproteins as androgen receptor coactivator mimics. Chem Commun. 2009;5377–5379. DOI:10.1039/b910677d
  • Ackerman SE, Currier NV, Bergen JM, et al. Cystine-knot peptides: emerging tools for cancer imaging and therapy. Expert Rev Proteomics. 2014;11:561–572. DOI:10.1586/14789450.2014.932251
  • Avrutina O. Synthetic cystine-knot miniproteins—valuable scaffolds for polypeptide engineering. Adv Exp Med Biol. 2016;917:121–144.
  • King GF, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu Rev Entomol. 2013;58:475–496. DOI:10.1146/annurev-ento-120811-153650
  • Pallaghy PK, Nielsen KJ, Craik DJ, et al. A common structural motif incorporating a cystine knot and a triple-stranded β-sheet in toxic and inhibitory polypeptides. Protein Sci. 1994;3:1833–1839. DOI:10.1002/pro.5560030613
  • Undheim EA, Mobli M, King GF. Toxin structures as evolutionary tools: using conserved 3D folds to study the evolution of rapidly evolving peptides. Bioessays. 2016;38:539–548. DOI:10.1002/bies.201500165
  • Katayama H, Nagata K, Ohira T, et al. The solution structure of molt-inhibiting hormone from the Kuruma prawn Marsupenaeus japonicus. J Biol Chem. 2003;278:9620–9623. DOI:10.1074/jbc.M212962200
  • Sun P, Wu F, Wen M, et al. A distinct three-helix centipede toxin SSD609 inhibits Iks channels by interacting with the KCNE1 auxiliary subunit. Sci Rep. 2015;5:13399. DOI:10.1038/srep13399 .
  • Yang S, Yang F, Wei N, et al. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nat Commun. 2015;6:8297. DOI:10.1038/ncomms9297 .
  • Rash LD, Hodgson WC. Pharmacology and biochemistry of spider venoms. Toxicon. 2002;40:225–254. DOI:10.1016/S0041-0101(01)00199-4
  • Corzo G, Escoubas P. Pharmacologically active spider peptide toxins. Cell Mol Life Sci. 2003;60:2409–2426. DOI:10.1007/s00018-003-3108-6
  • Escoubas P, Bosmans F. Spider peptide toxins as leads for drug development. Expert Opin Drug Discov. 2007;2:823–835. DOI:10.1517/17460441.2.1.115
  • King GF. Modulation of insect CaV channels by peptidic spider toxins. Toxicon. 2007;49:513–530. DOI:10.1016/j.toxicon.2006.11.012
  • King GF, Escoubas P, Nicholson GM. Peptide toxins that selectively target insect NaV and CaV channels. Channels. 2008;2:100–116. DOI:10.4161/chan.2.2.6022
  • Kuhn-Nentwig L, Stöcklin R, Nentwig W. Venom composition and strategies in spiders: is everything possible? Adv. Insect Physiol. 2011;40:1–86.
  • Klint JK, Senff S, Rupasinghe DB, et al. Spider-venom peptides that target voltage-gated sodium channels: pharmacological tools and potential therapeutic leads. Toxicon. 2012;60:478–491. DOI:10.1016/j.toxicon.2012.04.337
  • de la Vega RC, Corzo G, Possani LD. Scorpion venoms as a platform for drug development. In: King GF, editor. Venoms to drugs: venoms as a source for the development of human therapeutics. Cambridge (UK): Royal Society of Chemistry; 2015. p. 204–220.
  • Smith JJ, Lau CHY, Herzig V, et al. Therapeutic applications of spider-venom peptdies. In: King GF, editor. Venoms to drugs: venoms as a source for the development of human therapeutics. Cambridge (UK): Royal Society of Chemistry; 2015. p. 221–244.
  • Chen M, Li J, Zhang F, et al. Isolation and characterization of SsmTx-I, a specific Kv2.1 blocker from the venom of the centipede Scolopendra subspinipes mutilans L. Koch. J Pept Sci. 2014;20:159–164. DOI:10.1002/psc.2588
  • Peng K, Kong Y, Zhai L, et al. Two novel antimicrobial peptides from centipede venoms. Toxicon. 2010;55:274–279. DOI:10.1016/j.toxicon.2009.07.040
  • Kong Y, Hui J, Huang S, et al. Cytotoxic and anticoagulant peptide from Scolopendra subspinipes mutilans venom. Afr J Pharm Pharmacol. 2013;7:2238–2245. DOI:10.5897/AJPP2013.3765
  • Miljanich GP. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem. 2004;11:3029–3040.
  • Craik DJ, Swedberg JE, Mylne JS, et al. Cyclotides as a basis for drug design. Expert Opin Drug Discov. 2012;7:179–194. DOI:10.1517/17460441.2012.661554
  • Hu Y, Chen J, Wang B, et al. Engineering a peptide inhibitor towards the KCNQ1/KCNE1 potassium channel (IKs). Peptides. 2015;71:77–83. DOI:10.1016/j.peptides.2015.07.011
  • McDonald TV, Yu Z, Ming Z, et al. A minK-HERG complex regulates the cardiac potassium current IKr. Nature. 1997;388:289–292. DOI:10.1038/40882
  • Abbott GW. Biology of the KCNQ1 potassium channel. New J Sci. 2014;2014:1–26. DOI:10.1155/2014/237431
  • Siemens J, Zhou S, Piskorowski R, et al. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature. 2006;444:208–212. DOI:10.1038/nature05376
  • Bohlen CJ, Chesler AT, Sharif-Naeini R, et al. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature. 2011;479:410–414. DOI:10.1038/nature10607
  • Osteen JD, Herzig V, Gilchrist J, et al. Selective spider toxins reveal a role for the NaV1.1 channel in mechanical pain. Nature. 2016;534:494–499. DOI:10.1038/nature17976
  • Meunier FA, Feng ZP, Molgo J, et al. Glycerotoxin from Glycera convoluta stimulates neurosecretion by up-regulating N-type Ca2+ channel activity. Embo J. 2002;21:6733–6743. DOI:10.1093/emboj/cdf677
  • Tarr TB, Valdomir G, Liang M, et al. New calcium channel agonists as potential therapeutics in Lambert-Eaton myasthenic syndrome and other neuromuscular diseases. Ann NY Acad Sci. 2012;1275:85–91. DOI:10.1111/nyas.12001
  • Tarr TB, Malick W, Liang M, et al. Evaluation of a novel calcium channel agonist for therapeutic potential in Lambert-Eaton myasthenic syndrome. J Neurosci. 2013;33:10559–10567. DOI:10.1523/JNEUROSCI.3846-13.2013
  • Zhou Q, Nakada MT, Arnold C, et al. Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix contortrix, inhibits angiogenesis. Angiogenesis. 1999;3:259–269. DOI:10.1023/A:1009059210733
  • Calvete JJ, Moreno-Murciano MP, Theakston RD, et al. Snake venom disintegrins: novel dimeric disintegrins and structural diversification by disulphide bond engineering. Biochem J. 2003;372:725–734. DOI:10.1042/bj20021739
  • Loughnan M, Nicke A, Jones A, et al. Identification of a novel class of nicotinic receptor antagonists: dimeric conotoxins VxXIIA, VxXIIB, and VxXIIC from Conus vexillum. J Biol Chem. 2006;281:24745–24755. DOI:10.1074/jbc.M603703200
  • Xu S, Zhang T, Kompella SN, et al. Conotoxin αD-GeXXA utilizes a novel strategy to antagonize nicotinic acetylcholine receptors. Sci Rep. 2015;5:14261. DOI:10.1038/srep14261
  • Tarr TB, Wipf P, Meriney SD. Synaptic pathophysiology and treatment of Lambert-Eaton myasthenic syndrome. Mol Neurobiol. 2015;52:456–463. DOI:10.1007/s12035-014-8887-2
  • Armstrong GA, Drapeau P. Calcium channel agonists protect against neuromuscular dysfunction in a genetic model of TDP-43 mutation in ALS. J Neurosci. 2013;33:1741–1752. DOI:10.1523/JNEUROSCI.3846-13.2013
  • Hu HH, Li SJ, Wang P, et al. An L-type calcium channel agonist, bay K8644, extends the window of intervention against ischemic neuronal injury. Mol Neurobiol. 2013;47:280–289. DOI:10.1007/s12035-012-8362-x
  • Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67:181–198. DOI:10.1016/j.neuron.2010.07.002
  • Gurevitz M, Karbat I, Cohen L, et al. The insecticidal potential of scorpion β-toxins. Toxicon. 2007;49:473–489. DOI:10.1016/j.toxicon.2006.11.015
  • Billen B, Bosmans F, Tytgat J. Animal peptides targeting voltage-activated sodium channels. Curr Pharm Des. 2008;14:2492–2502. DOI:10.2174/138161208785777423
  • Smith JJ, Herzig V, King GF, et al. The insecticidal potential of venom peptides. Cell Mol Life Sci. 2013;70:3665–3693. DOI:10.1007/s00018-013-1315-3
  • Murray JK, Ligutti J, Liu D, et al. Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the NaV1.7 sodium channel. J Med Chem. 2015;58:2299–2314. DOI:10.1021/jm501765v
  • Revell JD, Lund PE, Linley JE, et al. Potency optimization of Huwentoxin-IV on hNav1.7: a neurotoxin TTX-S sodium-channel antagonist from the venom of the Chinese bird-eating spider Selenocosmia huwena. Peptides. 2013;44:40–46. DOI:10.1016/j.peptides.2013.03.011
  • Minassian NA, Gibbs A, Shih AY, et al. Analysis of the structural and molecular basis of voltage-sensitive sodium channel inhibition by the spider toxin huwentoxin-IV (μ-TRTX-Hh2a). J Biol Chem. 2013;288:22707–22720. DOI:10.1074/jbc.M113.461392
  • Middleton RE, Warren VA, Kraus RL, et al. Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry. 2002;41:14734–14747. DOI:10.1021/bi026546a
  • Schmalhofer WA, Calhoun J, Burrows R, et al. ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors. Mol Pharmacol. 2008;74:1476–1484. DOI:10.1124/mol.108.047670
  • Cox JJ, Reimann F, Nicholas AK, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature. 2006;444:894–898. DOI:10.1038/nature05376
  • King GF, Vetter I. No gain, no pain: NaV1.7 as an analgesic target. ACS Chem Neurosci. 2014;5:749–751. DOI:10.1021/cn500171p
  • Catterall WA, Cestele S, Yarov-Yarovoy V, et al. Voltage-gated ion channels and gating modifier toxins. Toxicon. 2007;49:124–141. DOI:10.1016/j.toxicon.2006.09.022
  • Green BR, Bulaj G, Norton RS. Structure and function of μ-conotoxins, peptide-based sodium channel blockers with analgesic activity. Future Med Chem. 2014;6:1677–1698. DOI:10.4155/fmc.14.107
  • Klint JK, Smith JJ, Vetter I, et al. Seven novel modulators of the analgesic target NaV1.7 uncovered using a high-throughput venom-based discovery approach. Br J Pharmacol. 2015;172:2445–2458. DOI:10.1111/bph.13081
  • Jimenez EC, Olivera BM, Gray WR, et al. Contryphan is a D-tryptophan-containing Conus peptide. J Biol Chem. 1996;271:28002–28005. DOI:10.1074/jbc.271.45.28002
  • Bansal PS, Torres AM, Crossett B, et al. Substrate specificity of platypus venom L-to-D-peptide isomerase. J Biol Chem. 2008;283:8969–8975. DOI:10.1074/jbc.M709762200
  • Shikata Y, Watanabe T, Teramoto T, et al. Isolation and characterization of a peptide isomerase from funnel web spider venom. J Biol Chem. 1995;270:16719–16723. DOI:10.1074/jbc.270.28.16719
  • Kong Y, Shao Y, Chen H, et al. A novel Factor Xa-inhibiting peptide from centipedes venom. Int J Pept Res Ther. 2013;19:303–311. DOI:10.1007/s10989-013-9353-0
  • You WK, Sohn YD, Kim KY, et al. Purification and molecular cloning of a novel serine protease from the centipede, Scolopendra subspinipes mutilans. Insect Biochem Mol Biol. 2004;34:239–250. DOI:10.1016/j.ibmb.2003.10.003
  • Kong Y, Huang SL, Shao Y, et al. Purification and characterization of a novel antithrombotic peptide from Scolopendra subspinipes mutilans. J Ethnopharmacol. 2013;145:182–186. DOI:10.1016/j.jep.2012.10.056
  • Cushman DW, Ondetti MA. History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension. 1991;17:589–592. DOI:10.1161/01.HYP.17.4.589
  • Olivera BM, Gray WR, Zeikus R, et al. Peptide neurotoxins from fish-hunting cone snails. Science. 1985;230:1338–1343. DOI:10.1126/science.4071055

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.