136
Views
3
CrossRef citations to date
0
Altmetric
Review

In silico frameworks for systematic pre-clinical screening of potential anti-leukemia therapeutics

, &
Pages 1213-1222 | Received 01 Jul 2016, Accepted 28 Sep 2016, Published online: 11 Oct 2016

References

  • Welch JS, Ley TJ, Link DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012 Jul 20;150(2):264–278.
  • Khwaja A, Bjorkholm M, Gale RE, et al. Acute myeloid leukaemia. Nat Rev Dis Primers. 2016;2:16010. DOI:10.1038/nrdp.2016.10.
  • Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008 Feb 22;132(4):631–644.
  • Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer. 2005 Apr;5(4):311–321. DOI:10.1038/nrc1592.
  • Eppert K, Takenaka K, Lechman ER, et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011 Sep;17(9):1086–1093. DOI:10.1038/nm.2415.
  • Varn FS, Andrews EH, Cheng C. Systematic analysis of hematopoietic gene expression profiles for prognostic prediction in acute myeloid leukemia. Sci Rep. 2015;5:16987. DOI:10.1038/srep16987.
  • Howlader NNA, Krapcho M, Miller D, editors., et al., SEER Cancer statistics review. 1975–2013. Bethesda (MD): National Cancer Institute. http://seer.cancer.gov/csr/1975_2013/ based on November 2015 SEER data submission, posted to the SEER web site.
  • Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015 Sep 17;373(12):1136–1152.
  • Hallek M. Chronic lymphocytic leukemia: 2015 Update on diagnosis, risk stratification, and treatment. Am J Hematol. 2015 May;90(5):446–460. DOI:10.1002/ajh.23979.
  • Woyach JA, Johnson AJ. Targeted therapies in CLL: mechanisms of resistance and strategies for management. Blood. 2015 Jul 23;126(4):471–477.
  • Jin G, Wong ST. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today. 2014 May;19(5):637–644. DOI:10.1016/j.drudis.2013.11.005.
  • Kitchen DB, Decornez H, Furr JR, et al. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004 Nov;3(11):935–949. DOI:10.1038/nrd1549.
  • Meng XY, Zhang HX, Mezei M, et al. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011 Jun;7(2):146–157.
  • Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242.
  • Guha R, Nguyen DT, Southall N, et al. Dealing with the data deluge: handling the multitude of chemical biology data sources. Curr Protoc Chem Biol. 2012 Sep;4:193–209. DOI:10.1002/9780470559277.ch110262.
  • Banavath HN, Sharma OP, Kumar MS, et al. Identification of novel tyrosine kinase inhibitors for drug resistant T315I mutant BCR-ABL: a virtual screening and molecular dynamics simulations study. Sci Rep. 2014;4:6948. DOI:10.1038/srep06948.
  • Von Grotthuss M, Koczyk G, Pas J, et al. Ligand.Info small-molecule Meta-Database. Comb Chem High Throughput Screen. 2004 Dec;7(8):757–761.
  • Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014 Jan;42(Database issue):D1091–D1097. DOI:10.1093/nar/gkt1068.
  • Kim S, Thiessen PA, Bolton EE, et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016 Jan 4;44(D1):D1202–D12013.
  • Cavasotto CN, Phatak SS. Homology modeling in drug discovery: current trends and applications. Drug Discov Today. 2009 Jul;14(13–14):676–683. DOI:10.1016/j.drudis.2009.04.006.
  • Mishra RK, Wei C, Hresko RC, et al. In silico Modeling-based Identification of Glucose Transporter 4 (GLUT4)-selective inhibitors for cancer therapy. J Biol Chem. 2015 Jun 5;290(23):14441–14453. DOI:10.1074/jbc.M114.628826
  • Irwin JJ, Sterling T, Mysinger MM, et al. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model. 2012 Jul 23;52(7):1757–1768.
  • Liao Z, Gu L, Vergalli J, et al. Structure-based screen identifies a potent small molecule inhibitor of Stat5a/b with therapeutic potential for prostate cancer and chronic myeloid leukemia. Mol Cancer Ther. 2015 Aug;14(8):1777–1793. DOI:10.1158/1535-7163.MCT-14-0883.
  • Monga M, Sausville EA. Developmental therapeutics program at the NCI: molecular target and drug discovery process. Leukemia. 2002 Apr;16(4):520–526. DOI:10.1038/sj.leu.2402464.
  • ChemNavigator. Available from: http://www.chemnavigator.com/.
  • Ke YY, Singh VK, Coumar MS, et al. Homology modeling of DFG-in FMS-like tyrosine kinase 3 (FLT3) and structure-based virtual screening for inhibitor identification. Sci Rep. 2015;5:11702. DOI:10.1038/srep11702.
  • Chen S, Li L, Chen Y, et al. Identification of Novel Disruptor of Telomeric Silencing 1-like (DOT1L) Inhibitors through structure-based virtual screening and biological assays. J Chem Inf Model. 2016 Mar 28;56(3):527–534.
  • Kumar H, Raj U, Srivastava S, et al. Identification of dual natural inhibitors for chronic myeloid leukemia by virtual screening, molecular dynamics simulation and ADMET analysis. Interdiscip Sci. 2015 Aug 22;8(3):241–252.
  • Acharya C, Coop A, Polli JE, et al. Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr Comput Aided Drug Des. 2011 Mar;7(1):10–22.
  • Arthur DE, Uzairu A, Mamza P, et al. Quantitative structure–activity relationship study on potent anticancer compounds against MOLT-4 and P388 leukemia cell lines. J Adv Res. 2016;7(5):823–837. DOI:10.1016/j.jare.2016.03.010.
  • Katritzky AR, Girgis AS, Slavov S, et al. QSAR modeling, synthesis and bioassay of diverse leukemia RPMI-8226 cell line active agents. Eur J Med Chem. 2010 Nov;45(11):5183–5199. DOI:10.1016/j.ejmech.2010.08.033.
  • Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006 Sep 29;313(5795):1929–1935. DOI:10.1126/science.1132939.
  • Yang W, Soares J, Greninger P, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013 Jan;41(Database issue):D955–D961. DOI:10.1093/nar/gks1111.
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545–15550.
  • Cheng C, Yan X, Sun F, et al. Inferring activity changes of transcription factors by binding association with sorted expression profiles. BMC Bioinformatics. 2007;8:452. DOI:10.1186/1471-2105-8-452.
  • Inaba H, Pui CH. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol. 2010 Nov;11(11):1096–1106. DOI:10.1016/S1470-2045(10)70114-5.
  • Wei G, Twomey D, Lamb J, et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell. 2006 Oct;10(4):331–342. DOI:10.1016/j.ccr.2006.09.006.
  • Hassane DC, Guzman ML, Corbett C, et al. Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data. Blood. 2008 Jun 15;111(12):5654–5662. DOI:10.1182/blood-2007-11-126003.
  • Hassane DC, Sen S, Minhajuddin M, et al. Chemical genomic screening reveals synergism between parthenolide and inhibitors of the PI-3 kinase and mTOR pathways. Blood. 2010 Dec 23;116(26):5983–5990.
  • Marstrand TT, Borup R, Willer A, et al. A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia. Leukemia. 2010 Jul;24(7):1265–1275. DOI:10.1038/leu.2010.95.
  • Degos L, Wang ZY. All trans retinoic acid in acute promyelocytic leukemia. Oncogene. 2001 Oct 29;20(49):7140–7145.
  • Huang ME, Ye YC, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988 Aug;72(2):567–572.
  • Wang ZY, Chen Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood. 2008 Mar 1;111(5):2505–2515.
  • Shigemizu D, Hu Z, Hung JH, et al. Using functional signatures to identify repositioned drugs for breast, myelogenous leukemia and prostate cancer. PLoS Comput Biol. 2012 Feb;8(2:e1002347. DOI:10.1371/journal.pcbi.1002347.
  • Ung MH, Sun CH, Weng CW, et al. Integrated Drug Expression Analysis for leukemia: an integrated in silico and in vivo approach to drug discovery. Pharmacogenomics J. 2016 Mar 15; DOI:10.1038/tpj.2016.18
  • Ung MH, Varn FS, Cheng C, et al. Expression analysis-integration of gene expression and clinical data for the identification of therapeutic candidates. CPT Pharmacometrics Syst Pharmacol. 2015 Jul;4(7):415–425. DOI:10.1002/psp4.51.
  • Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004 Feb;5(2):101–113. DOI:10.1038/nrg1272.
  • Zhu X, Gerstein M, Snyder M. Getting connected: analysis and principles of biological networks. Genes Dev. 2007 May 1;21(9):1010–1024.
  • Mitra K, Carvunis AR, Ramesh SK, et al. Integrative approaches for finding modular structure in biological networks. Nat Rev Genet. 2013 Oct;14(10):719–732. DOI:10.1038/nrg3552.
  • Penrod NM, Cowper-Sal-lari R, Moore JH. Systems genetics for drug target discovery. Trends Pharmacol Sci. 2011 Oct;32(10):623–630. DOI:10.1016/j.tips.2011.07.002.
  • Hewett M, Oliver DE, Rubin DL, et al. PharmGKB: the pharmacogenetics knowledge base. Nucleic Acids Res. 2002 Jan 1;30(1):163–165.
  • Griffith M, Griffith OL, Coffman AC, et al. DGIdb: mining the druggable genome. Nat Methods. 2013 Dec;10(12):1209–1210. DOI:10.1038/nmeth.2689.
  • Knight JA, Skol AD, Shinde A, et al. Genome-wide association study to identify novel loci associated with therapy-related myeloid leukemia susceptibility. Blood. 2009 May 28;113(22):5575–5582.
  • Kim DH, Lee ST, Won HH, et al. A genome-wide association study identifies novel loci associated with susceptibility to chronic myeloid leukemia. Blood. 2011 Jun 23;117(25):6906–6911.
  • Perez-Andreu V, Roberts KG, Xu H, et al. A genome-wide association study of susceptibility to acute lymphoblastic leukemia in adolescents and young adults. Blood. 2015 Jan 22;125(4):680–686.
  • Liu C, Yang W, Devidas M, et al. Clinical and genetic risk factors for acute pancreatitis in patients with acute lymphoblastic leukemia. J Clin Oncol. 2016 Jun 20;34(18):2133–2140.
  • Speedy HE, Di Bernardo MC, Sava GP, et al. A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nat Genet. 2014 Jan;46(1):56–60. DOI:10.1038/ng.2843.
  • Berndt SI, Skibola CF, Joseph V, et al. Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat Genet. 2013 Aug;45(8):868–876. DOI:10.1038/ng.2652.
  • Cao C, Moult J. GWAS and drug targets. BMC Genomics. 2014;15(Suppl 4):S5. DOI:10.1186/1471-2164-15-S4-S5.
  • Paulsson K, Lilljebjörn H, Biloglav A, et al. The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat Genet. 2015 Jun;47(6):672–676. DOI:10.1038/ng.3301.
  • Quesada V, Ramsay AJ, Rodríguez D, et al. The genomic landscape of chronic lymphocytic leukemia: clinical implications. BMC Med. 2013;11:124. DOI:10.1186/1741-7015-11-124.
  • Mullighan CG. Genome sequencing of lymphoid malignancies. Blood. 2013 Dec 5;122(24):3899–3907.
  • Cheng F, Zhao J, Fooksa M, et al. A network-based drug repositioning infrastructure for precision cancer medicine through targeting significantly mutated genes in the human cancer genomes. J Am Med Inform Assoc. 2016 Mar 28;23:681–691. DOI:10.1093/jamia/ocw007.
  • Ung M, Liu CC, Cheng C. Integrative analysis of cancer genes in a functional interactome. Sci Rep. 2016;6:29228. DOI:10.1038/srep29228.
  • Menche J, Sharma A, Kitsak M, et al. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science. 2015 Feb 20;347(6224):1257601.
  • Rossin EJ, Lage K, Raychaudhuri S, et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 2011;7(1):e1001273. DOI:10.1371/journal.pgen.1002138.
  • Leiserson MD, Blokh D, Sharan R, et al. Simultaneous identification of multiple driver pathways in cancer. PLoS Comput Biol. 2013;9(5):e1003054. DOI:10.1371/journal.pcbi.1003054.
  • Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013 Oct 17;502(7471):333–339.
  • Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19(1A):A68–A77. DOI:10.5114/wo.2014.47136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.