343
Views
17
CrossRef citations to date
0
Altmetric
Review

Leveraging allostery to improve G protein-coupled receptor (GPCR)-directed therapeutics: cannabinoid receptor 1 as discovery target

&
Pages 1223-1237 | Received 09 Aug 2016, Accepted 03 Oct 2016, Published online: 21 Oct 2016

References

  • Roth BL, Kroeze WK. Integrated approaches for genome-wide interrogation of the druggable non-olfactory G protein-coupled receptor superfamily. J Biol Chem. 2015;290:19471–19477. DOI:10.1074/jbc.R115.654764
  • Fredriksson R, Schioth HB. The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol. 2005;67:1414–1425. DOI:10.1124/mol.104.009001
  • Zhang X, Eggert US. Non-traditional roles of G protein-coupled receptors in basic cell biology. Mol Biosyst. 2013;9:586–595. DOI:10.1039/c2mb25429h
  • Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5:993–996. DOI:10.1038/nrd2199
  • Lagerström MC, Schiöth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov. 2008;7:339–357. DOI:10.1038/nrd2518
  • Bradley SJ, Tobin AB. Design of next-generation G protein-coupled receptor drugs: linking novel pharmacology and in vivo animal models. Annu Rev Pharmacol Toxicol. 2016;56:535–559. DOI:10.1146/annurev-pharmtox-011613-140012
  • Venkatakrishnan AJ, Deupi X, Lebon G, et al. Molecular signatures of G-protein-coupled receptors. Nature. 2013;494:185–194. DOI:10.1038/nature11896
  • Janero DR, Lindsley L, Vemuri VK, et al. Cannabinoid 1 G protein-coupled receptor (periphero-)neutral antagonists: emerging therapeutics for treating obesity-driven metabolic disease and reducing cardiovascular risk. Expert Opin Drug Discov. 2011;6:995–1025. DOI:10.1517/17460441.2011.608063
  • Jacobson KA. Structure-based approaches to ligands for G-protein-coupled adenosine and P2Y receptors, from small molecules to nanoconjugates. J Med Chem. 2013;56:3749–3767. DOI:10.1021/jm400422s
  • Guarnera E, Berezovsky IN. Allosteric sites: remote control in regulation of protein activity. Curr Opin Struct Biol. 2016;37:1–8. DOI:10.1016/j.sbi.2015.10.004 .
  • Gentry PR, Sexton PM, Christopoulos A. Novel allosteric modulators of G protein-coupled receptors. J Biol Chem. 2015;290:19478–19488. DOI:10.1074/jbc.R115.662759 .
  • Edelstein SJ, Le Novère N. Cooperativity of allosteric receptors. J Mol Biol. 2013;425:1424–1432. DOI:10.1016/j.jmb.2013.03.011
  • Christopoulos A. Advances in G protein-coupled receptor allostery: from function to structure. Mol Pharmacol. 2014;86:463–478. DOI:10.1124/mol.114.094342
  • Hertig S, Latorraca NR, Dror RO. Revealing atomic-level mechanisms of protein allostery with molecular dynamics simulations. PLoS Comput Biol. 2016;12:e1004746. published online 10 June 2016. DOI:10.1371/journal.pcbi.1004746
  • Guidolin D, Agnati LF, Marcoli M, et al. G-protein-coupled receptor type A heteromers as an emerging therapeutic target. Expert Opin Ther Targets. 2015;19:265–283. DOI:10.1517/14728222.2014.981155
  • Cavanaugh A, Huang Y, Breitwieser GE. Behind the curtain: cellular mechanisms for allosteric modulation of calcium-sensing receptors. Br J Pharmacol. 2012;165:1670–1677. DOI:10.1111/j.1476-5381.2011.01403.x
  • Conn PJ, Christopoulos A, Lindsley CW. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov. 2009;8:41–54. DOI:10.1038/nrd2760
  • Wenthur CJ, Gentry PR, Mathews TP, et al. Drugs for allosteric sites on receptors. Annu Rev Pharmacol Toxicol. 2014;54:165–184. DOI:10.1146/annurev-pharmtox-010611-134525
  • Wootten D, Christopoulos A, Sexton PM. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov. 2013;12:630–644. DOI:10.1038/nrd4052
  • Rankovic Z, Brust TF, Bohn LM. Biased agonism: an emerging paradigm in GPCR drug discovery. Bioorg Med Chem Lett. 2016;26:241–250. DOI:10.1016/j.bmcl.2015.12.024
  • Gao ZG, Jacobson KA. Allosteric modulation and functional selectivity of G protein-coupled receptors. Drug Discov Today Technol. 2013;10:e237–243. DOI:10.1016/j.ddtec.2012.08.004
  • Kenakin T. Allosteric drugs and seven transmembrane receptors. Curr Top Med Chem. 2013;13:5–13.
  • Nickols HH, Conn PJ. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis. 2014;61:55–71. DOI:10.1016/j.nbd.2013.09.013
  • Lindsley CW, Emmitte KA, Hopkins CR, et al. Practical strategies and concepts in GPCR allosteric modulator discovery: recent advances with metabotropic glutamate receptors. Chem Rev. 2016;116:6707–6741. DOI:10.1021/acs.chemrev.5b00656 .
  • Miao Y, Nichols SE, McCammon JA. Mapping of allosteric druggable sites in activation-associated conformers of the M2 muscarinic receptor. Chem Biol Drug Des. 2014;83:237–246. DOI:10.1111/cbdd.12233
  • Horenstein NA, Papke RL, Kulkarni AR, et al. Critical molecular determinants of α7 nicotinic acetylcholine receptor allosteric activation: separation of direct allosteric activation and positive allosteric modulation. J Biol Chem. 2016;291:5049–5067. DOI:10.1074/jbc.M115.692392
  • Lu HC, Mackie K. An introduction to the endogenous cannabinoid system. Biol Psychiatry. 2016;79:516–525. DOI:10.1016/j.biopsych.2015.07.028
  • Hurst DP, Schmeisser M, Reggio PH. Endogenous lipid activated G protein-coupled receptors: emerging structural features from crystallography and molecular dynamics simulations. Chem Phys Lipids. 2013;169:46–56. DOI:10.1016/j.chemphyslip.2013.01.009
  • Stadel R, Ahn KH, Kendall DA. The cannabinoid type-1 receptor carboxyl-terminus, more than just a tail. J Neurochem. 2011;117:1–18. DOI:10.1111/j.1471-4159.2011.07186.x
  • Nebane NM, Kellie B, Song ZH. The effects of charge-neutralizing mutation D6.30N on the functions of CB1 and CB2 cannabinoid receptors. FEBS Lett. 2006;580:5392–5398. DOI:10.1016/j.febslet.2006.09.001
  • Ahn KH, Scott CE, Abrol R, et al. Computationally-predicted CB1 cannabinoid receptor mutants show distinct patterns of salt-bridges that correlate with their level of constitutive activity reflected in G protein coupling levels, thermal stability, and ligand binding. Proteins. 2013;81:1304–1317. DOI:10.1002/prot.24264
  • Baillie GL, Horswill JG, Anavi-Goffer S, et al. CB1 receptor allosteric modulators display both agonist and signaling pathway specificity. Mol Pharmacol. 2013;83:322–338. DOI:10.1124/mol.112.080879
  • Shore DM, Baillie GL, Hurst DH, et al. Allosteric modulation of a cannabinoid G protein-coupled receptor: binding site elucidation and relationship to G protein signaling. J Biol Chem. 2014;289:5828–5845. DOI:10.1074/jbc.M113.478495
  • Fay JF, Farrens DL. A key agonist-induced conformational change in the cannabinoid receptor CB1 is blocked by the allosteric ligand Org 27569. J Biol Chem. 2012;287:33873–33882. DOI:10.1074/jbc.M112.352328
  • Stornaiuolo M, Bruno A, Botta L, et al. Endogenous vs exogenous allosteric modulators in GPCRs: a dispute for shuttling CB1 among different membrane microenvironments. Sci Rep. 2015;5:15453. published online 20 October 2015. DOI:10.1038/srep15453
  • Laprairie RB, Kulkarni AR, Kulkarni PM, et al. Mapping cannabinoid 1 receptor allosteric site(s): critical molecular determinant and signaling profile of GAT100, a novel, potent, and irreversibly binding probe. ACS Chem Neurosci. 2016;7:776–798. DOI:10.1021/acschemneuro.6b00041 .
  • Zvonok N, Xu W, Williams J, et al. Mass spectrometry-based GPCR proteomics: comprehensive characterization of the human cannabinoid 1 receptor. J Proteome Res. 2010;9:1746–1753. DOI:10.1021/pr900870p
  • Hurst DP, Grossfield A, Lynch DL, et al. A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor. J Biol Chem. 2010;285:17954–17964. DOI:10.1074/jbc.M109.041590
  • Pertwee RG. Endocannabinoids and their pharmacological actions. Handb Exp Pharmacol. 2015;231:1–37. DOI:10.1007/978-3-319-20825-1_1 .
  • Howlett AC, Blume LC, Dalton GD. CB(1) cannabinoid receptors and their associated proteins. Curr Med Chem. 2010;17:1382–13893.
  • Ohno-Shosaku T, Kano M. Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr Opin Neurobiol. 2014;29:1–8. DOI:10.1016/j.conb.2014.03.017
  • Ligresti A, De Petrocellis L, Di Marzo V. From phytocannabinoids to cannabinoid receptors and endocannabinoids: pleiotropic physiological and pathological roles through complex pharmacology. Physiol Rev. 2016;96:1593–1659. DOI:10.1152/physrev.00002.2016
  • Benyó Z, Ruisanchez É, Leszl-Ishiguro M, et al. Endocannabinoids in cerebrovascular regulation. Am J Physiol Heart Circ Physiol. 2016;310:H785–H801. DOI:10.1152/ajpheart.00571.2015
  • Cooper ME, Regnell SE. The hepatic cannabinoid 1 receptor as a modulator of hepatic energy state and food intake. Br J Clin Pharmacol. 2014;77:21–30. DOI:10.1111/bcp.12102
  • Battista N, Bari M, Maccarrone M. Endocannabinoids and reproductive events in health and disease. Handb Exp Pharmacol. 2015;231:341–365. DOI:10.1007/978-3-319-20825-1_12
  • Panagis G, Mackey B, Vlachou S. Cannabinoid regulation of brain reward processing with an emphasis on the role of CB1 receptors: a step back into the future. Front Psychiatry. 2014;5:92. DOI:10.3389/fpsyt.2014.00092
  • Iannotti FA, Di Marzo V, Petrosino S. Endocannabinoids and endocannabinoid-related mediators: targets, metabolism and role in neurological disorders. Prog Lipid Res. 2016;62:107–128. DOI:10.1016/j.plipres.2016.02.002
  • Maccarrone M, Bab I, Bíró T, et al. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol Sci. 2015;36:277–296. DOI:10.1016/j.tips.2015.02.008
  • Vasileiou I, Fotopoulou G, Matzourani M, et al. Evidence for the involvement of cannabinoid receptors’ polymorphisms in the pathophysiology of human diseases. Expert Opin Ther Targets. 2013;17:363–377. DOI:10.1517/14728222.2013.754426
  • Hill KP. Medical marijuana for treatment of chronic pain and other medical and psychiatric problems: a clinical review. JAMA. 2015;313:2474–2483. DOI:10.1001/jama.2015.6199
  • Whiting PF, Wolff RF, Deshpande S, et al. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA. 2015;313:2456–2473. DOI:10.1001/jama.2015.6358
  • Vemuri VK, Makriyannis A. Medicinal chemistry of cannabinoids. Clin Pharmacol Ther. 2015;97:553–558. DOI:10.1002/cpt.115
  • McPartland JM, Duncan M, Di Marzo V, et al. Are cannabidiol and Δ(9) -tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol. 2015;172:737–753. DOI:10.1111/bph.12944
  • Pertwee RG. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Philos Trans R Soc Lond B Biol Sci. 2012;367:3353–3363. DOI:10.1098/rstb.2011.0381
  • GW Pharmaceuticals provides update on orphan program in childhood epilepsy for Epidiolex®. [cited 2016 Oct 1]. Available from: http://www.gwpharm.com/GW%20Pharmaceuticals%20Provides%20Update%20on%20Orphan%20Program%20in%20Childhood%20Epilepsy%20for%20Epidiolex.aspx
  • Janero DR, Makriyannis A. Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis. Expert Opin Emerg Drugs. 2009;14:43–65. DOI:10.1517/14728210902736568
  • Davis MP. Oral nabilone capsules in the treatment of chemotherapy-induced nausea and vomiting and pain. Expert Opin Investig Drugs. 2008;17:85–95. DOI:10.1517/13543784.17.1.85
  • Krentz AJ, Fujioka K, Hompesch M. Evolution of pharmacological obesity treatments: focus on adverse side-effect profiles. Diabetes Obes Metab. 2016;18:558–570. DOI:10.1111/dom.12657
  • Tait RJ, Caldicott D, Mountain D, et al. A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin Toxicol. 2016;54:1–13. DOI:10.3109/15563650.2015.1110590
  • van Amsterdam J, Brunt T, van den Brink W. The adverse health effects of synthetic cannabinoids with emphasis on psychosis-like effects. J Psychopharmacol. 2015;29:254–263. DOI:10.1177/0269881114565142
  • Meye FJ, Ramakers GM, Adan RA. The vital role of constitutive GPCR activity in the mesolimbic dopamine system. Transl Psychiatry. 2014;4:e361. Published online 11 February 2014. DOI:10.1038/tp.2013.130
  • Kunos G, Osei-Hyiaman D, Bátkai S, et al. Should peripheral CB(1) cannabinoid receptors be selectively targeted for therapeutic gain? Trends Pharmacol Sci. 2009;30:1–7. DOI:10.1016/j.tips.2008.10.001
  • Janero DR. Cannabinoid-1 receptor (CB1R) blockers as medicines: beyond obesity and cardiometabolic disorders to substance abuse/drug addiction with CB1R neutral antagonists. Expert Opin Emerg Drugs. 2012;17:17–29. DOI:10.1517/14728214.2012.660916
  • Price MR, Baillie GL, Thomas A, et al. Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol. 2005;68:1484–1495. DOI:10.1124/mol.105.016162 .
  • Ross RA. Allosterism and cannabinoid CB(1) receptors: the shape of things to come. Trends Pharmacol Sci. 2007;28:567–572. DOI:10.1016/j.tips.2007.10.006
  • Horswill JG, Bali U, Shaaban S, et al. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats. Br J Pharmacol. 2007;152:805–814. DOI:10.1038/sj.bjp.0707347
  • Ahn KH, Mahmoud MM, Kendall DA. Allosteric modulator ORG27569 induces CB1 cannabinoid receptor high affinity agonist binding state, receptor internalization, and Gi protein-independent ERK1/2 kinase activation. J Biol Chem. 2012;287:12070–12082. DOI:10.1074/jbc.M111.316463
  • Wang X, Horswill JG, Whalley BJ, et al. Effects of the allosteric antagonist 1-(4-chlorophenyl)-3-[3-(6-pyrrolidin-1-ylpyridin-2-yl)phenyl]urea (PSNCBAM-1) on CB1 receptor modulation in the cerebellum. Mol Pharmacol. 2011;79:758–767. DOI:10.1124/mol.110.068197
  • Khurana L, Ali HI, Olszewska T, et al. Optimization of chemical functionalities of indole-2-carboxamides to improve allosteric parameters for the cannabinoid receptor 1 (CB1). J Med Chem. 2014;57:3040–3052. DOI:10.1021/jm5000112
  • German N, Decker AM, Gilmour BP, et al. Diarylureas as allosteric modulators of the cannabinoid CB1 receptor: structure-activity relationship studies on 1-(4-chlorophenyl)-3-{3-[6-(pyrrolidin-1-yl)pyridin-2-yl]phenyl}urea (PSNCBAM-1). J Med Chem. 2014;57:7758–7769. DOI:10.1021/jm501042u
  • Nguyen T, German N, Decker AM, et al. Structure-activity relationships of substituted 1H-indole-2-carboxamides as CB1 receptor allosteric modulators. Bioorg Med Chem. 2015;23:2195–2203. DOI:10.1016/j.bmc.2015.02.058
  • Picone RP, Kendall DA. From the bench, toward the clinic: therapeutic opportunities for cannabinoid receptor modulation. Mol Endocrinol. 2015;29:801–813. DOI:10.1210/me.2015-1062
  • Navarro HA, Howard JL, Pollard GT, et al. Positive allosteric modulation of the human cannabinoid (CB) receptor by RTI-371, a selective inhibitor of the dopamine transporter. Br J Pharmacol. 2009;156:1178–1184. DOI:10.1111/j.1476-5381.2009.00124.x
  • Priestley RS, Nickolls SA, Alexander SP, et al. A potential role for cannabinoid receptors in the therapeutic action of fenofibrate. FASEB J. 2015;29:1446–1455. DOI:10.1096/fj.14-263053
  • Pamplona FA, Ferreira J, Menezes de Lima O Jr, et al. Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor. Proc Natl Acad Sci USA. 2012;109:21134–21139. DOI:10.1073/pnas.1202906109
  • Vallée M, Vitiello S, Bellocchio L, et al. Pregnenolone can protect the brain from cannabis intoxication. Science. 2014;343:94–98. DOI:10.1126/science.1243985
  • Laprairie RB, Bagher AM, Kelly ME, et al. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol. 2015;172:4790–4805. DOI:10.1111/bph.13250
  • Khajehali E, Malone DT, Glass M, et al. Biased agonism and biased allosteric modulation at the CB1 cannabinoid receptor. Mol Pharmacol. 2015;88:368–379. DOI:10.1124/mol.115.099192
  • Bauer M, Chicca A, Tamborrini M, et al. Identification and quantification of a new family of peptide endocannabinoids (pepcans) showing negative allosteric modulation at CB1 receptors. J Biol Chem. 2012;287:36944–36967. DOI:10.1074/jbc.M112.382481
  • Hofer SC, Ralvenius WT, Gachet MS, et al. Localization and production of peptide endocannabinoids in the rodent CNS and adrenal medulla. Neuropharmacology. 2015;98:78–89. DOI:10.1016/j.neuropharm.2015.03.021
  • Iliff HA, Lynch DL, Kotsikorou E, et al. Parameterization of Org27569: an allosteric modulator of the cannabinoid CB1 G protein-coupled receptor. J Comput Chem. 2011;32:2119–2126. DOI:10.1002/jcc.21794
  • Straiker A, Mitjavila J, Yin D, et al. Aiming for allosterism: evaluation of allosteric modulators of CB1 in a neuronal model. Pharmacol Res. 2015;99:370–376. DOI:10.1016/j.phrs.2015.07.017
  • Ding Y, Qiu Y, Jing L, et al. Behavioral effects of the cannabinoid CB1 receptor allosteric modulator ORG27569 in rats. Pharmacol Res Perspect. 2014;2:e00069. published online 24 August 2014. DOI:10.1002/prp2.69
  • Gamage TF, Ignatowska-Jankowska BM, Wiley JL, et al. In-vivo pharmacological evaluation of the CB1-receptor allosteric modulator Org-27569. Behav Pharmacol. 2014;25:182–185. DOI:10.1097/FBP.0000000000000027
  • Jing L, Qiu Y, Zhang Y, et al. Effects of the cannabinoid CB₁ receptor allosteric modulator ORG 27569 on reinstatement of cocaine- and methamphetamine-seeking behavior in rats. Drug Alcohol Depend. 2014;143:251–256. DOI:10.1016/j.drugalcdep.2014.08.004
  • Ignatowska-Jankowska BM, Baillie GL, Kinsey S, et al. A cannabinoid CB1 receptor-positive allosteric modulator reduces neuropathic pain in the mouse with no psychoactive effects. Neuropsychopharmacology. 2015;40:2948–2959. DOI:10.1038/npp.2015.148
  • Jazayeri A, Dias JM, Marshall FH. From G protein-coupled receptor structure resolution to rational drug design. J Biol Chem. 2015;290:19489–19495. DOI:10.1074/jbc.R115.668251 .
  • Topiol S. X-ray structural information of GPCRs in drug design: what are the limitations and where do we go? Expert Opin Drug Discov. 2013;8:607–620. DOI:10.1517/17460441.2013.783815
  • Merk A, Bartesaghi A, Banerjee S, et al. Breaking Cryo-EM resolution barriers to facilitate drug discovery. Cell. 2016;165:1698–1707. DOI:10.1016/j.cell.2016.05.040
  • Kenakin T. Analytical pharmacology and allosterism: the importance of quantifying drug parameters in drug discovery. Drug Discov Today Technol. 2013;10:e229–235. DOI:10.1016/j.ddtec.2012.07.006
  • Bennett KA, Doré AS, Christopher JA, et al. Structures of mGluRs shed light on the challenges of drug development of allosteric modulators. Curr Opin Pharmacol. 2015;20:1–7. DOI:10.1016/j.coph.2014.09.022
  • Zhu S, Paoletti P. Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Curr Opin Pharmacol. 2015;20:14–23. DOI:10.1016/j.coph.2014.10.009
  • Munk C, Harpsøe K, Hauser AS, et al. Integrating structural and mutagenesis data to elucidate GPCR ligand binding. Curr Opin Pharmacol. 2016;30:51–58. DOI:10.1016/j.coph.2016.07.003
  • Ehlert FJ. Functional studies cast light on receptor states. Trends Pharmacol Sci. 2015;36:596–604. DOI:10.1016/j.tips.2015.05.008
  • Changeux JP, Christopoulos A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Cell. 2016;166:1084–1102. DOI:10.1016/j.cell.2016.08.015
  • Martí-Solano M, Schmidt D, Kolb P, et al. Drugging specific conformational states of GPCRs: challenges and opportunities for computational chemistry. Drug Discov Today. 2016;21:625–631. DOI:10.1016/j.drudis.2016.01.009
  • Shonberg J, Kling RC, Gmeiner P, et al. GPCR crystal structures: medicinal chemistry in the pocket. Bioorg Med Chem. 2015;23:3880–3906. DOI:10.1016/j.bmc.2014.12.034
  • Fenalti G, Giguere PM, Katritch V, et al. Molecular control of delta-opioid receptor signalling. Nature. 2014;506:191–196. DOI:10.1038/nature12944
  • Huang W, Manglik A, Venkatakrishnan AJ, et al. Structural insights into µ-opioid receptor activation. Nature. 2015;524:315–321. DOI:10.1038/nature14886
  • Kruse AC, Ring AM, Manglik A, et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature. 2013;504:101–106. DOI:10.1038/nature12735
  • Thal DM, Sun B, Feng D, et al. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature. 2016;531:335–340. DOI:10.1038/nature17188
  • Wootten D, Reynolds CA, Koole C, et al. A hydrogen-bonded polar network in the core of the glucagon-like peptide-1 receptor is a fulcrum for biased agonism: lessons from class B crystal structures. Mol Pharmacol. 2016;89(3):335–347. DOI:10.1124/mol.115.101246
  • Wu H, Wang C, Gregory KJ, et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science. 2014;344:58–64. DOI:10.1126/science.1249489
  • Doré AS, Okrasa K, Patel JC, et al. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature. 2014;511:557–562. DOI:10.1038/nature13396
  • Bartuzi D, Kaczor AA, Matosiuk D. Activation and allosteric modulation of human μ opioid receptor in molecular dynamics. J Chem Inf Model. 2015;55:2421–2434. DOI:10.1021/acs.jcim.5b00280
  • Feng Z, Hu G, Ma S, et al. Computational advances for the sevelopment of allosteric modulators and bitopic ligands in G protein-coupled receptors. Aaps J. 2015;17:1080–1095. DOI:10.1208/s12248-015-9776-y
  • Shang Y, Yeatman HR, Provasi D, et al. Proposed mode of binding and action of positive allosteric modulators at opioid receptors. ACS Chem Biol. 2016;11:1220–1229. DOI:10.1021/acschembio.5b00712
  • Deganutti G, Cuzzolin A, Ciancetta A, et al. Understanding allosteric interactions in G protein-coupled receptors using supervised molecular dynamics: A prototype study analysing the human A3 adenosine receptor positive allosteric modulator LUF6000. Bioorg Med Chem. 2015;23:4065–4071. DOI:10.1016/j.bmc.2015.03.039
  • Isogai S, Deupi X, Opitz C, et al. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature. 2016;530:237–241. DOI:10.1038/nature16577
  • Sounier R, Mas C, Steyaert J, et al. Propagation of conformational changes during μ-opioid receptor activation. Nature. 2015;524:375–378. DOI:10.1038/nature14680
  • Chan WY, McKinzie DL, Bose S, et al. Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci USA. 2008;105:10978–10983. DOI:10.1073/pnas.0800567105
  • Valant C, Felder CC, Sexton PM, et al. Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Mol Pharmacol. 2012;81:41–52. DOI:10.1124/mol.111.074872
  • Khatri A, Burger PB, Swanger SA, et al. Structural determinants and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator. Mol Pharmacol. 2014;86:548–560. DOI:10.1124/mol.114.094516
  • Farinha A, Lavreysen H, Peeters L, et al. Molecular determinants of positive allosteric modulation of the human metabotropic glutamate receptor 2. Br J Pharmacol. 2015;172:2383–2396. DOI:10.1111/bph.13065
  • Dror RO, Green HF, Valant C, et al. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature. 2013;503:295–299. DOI:10.1038/nature12595
  • Rovira X, Malhaire F, Scholler P, et al. Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors. FASEB J. 2015;29:116–130. DOI:10.1096/fj.14-257287
  • Jang JW, Cho NC, Min SJ, et al. Novel scaffold identification of mGlu1 receptor negative allosteric modulators using a hierarchical virtual screening approach. Chem Biol Drug Des. 2016;87:239–256. DOI:10.1111/cbdd.12654
  • Zhang D, Zhao Q, Wu B. Structural studies of G protein-coupled receptors. Mol Cells. 2015;38:836–842. DOI:10.14348/molcells.2015.0263
  • McAllister SD, Rizvi G, Anavi-Goffer S, et al. An aromatic microdomain at the cannabinoid CB(1) receptor constitutes an agonist/inverse agonist binding region. J Med Chem. 2003;46:5139–5152. DOI:10.1021/jm0302647
  • Gregory KJ, Velagaleti R, Thal DM, et al. Clickable photoaffinity ligands for metabotropic glutamate receptor 5 based on select acetylenic negative allosteric modulators. ACS Chem Biol. 2016;11:1870–1879. DOI:10.1021/acschembio.6b00026
  • Bueno AB, Showalter AD, Wainscott DB, et al. Positive allosteric modulation of the glucagon-like peptide-1 receptor by diverse electrophiles. J Biol Chem. 2016;291:10700–10715. DOI:10.1074/jbc.M115.696039
  • Huber T, Sakmar TP. Chemical biology methods for investigating G protein-coupled receptor signaling. Chem Biol. 2014;21:1224–1237. DOI:10.1016/j.chembiol.2014.08.009
  • Weichert D, Gmeiner P. Covalent molecular probes for class A G protein-coupled receptors: advances and applications. ACS Chem Biol. 2015;10:1376–1386. DOI:10.1021/acschembio.5b00070
  • Janero DR, Yaddanapudi S, Zvonok N, et al. Molecular-interaction and signaling profiles of AM3677, a novel covalent agonist selective for the cannabinoid 1 receptor. ACS Chem Neurosci. 2015;6:1400–1410. DOI:10.1021/acschemneuro.5b00090
  • Szymanski DW, Papanastasiou M, Melchior K, et al. Mass spectrometry-based proteomics of human cannabinoid receptor 2: covalent cysteine 6.47(257)-ligand interaction affording megagonist receptor activation. J Proteome Res. 2011;10:4789–4798. DOI:10.1021/pr2005583
  • Pei Y, Mercier RW, Anday JK, et al. Ligand-binding architecture of human CB2 cannabinoid receptor: evidence for receptor subtype-specific binding motif and modeling GPCR activation. Chem Biol. 2008;15:1207–1219. DOI:10.1016/j.chembiol.2008.10.011
  • Fay JF, Farrens DL. Structural dynamics and energetics underlying allosteric inactivation of the cannabinoid receptor CB1. Proc Natl Acad Sci USA. 2015;112:8469–8474. DOI:10.1073/pnas.1500895112
  • Kulkarni PM, Kulkarni AR, Korde A, et al. Novel electrophilic and photoaffinity covalent probes for mapping the cannabinoid 1 receptor allosteric site(s). J Med Chem. 2016;59:44–60. DOI:10.1021/acs.jmedchem.5b01303
  • Doorn JA, Petersen DR. Covalent modification of amino acid nucleophiles by the lipid peroxidation products 4-hydroxy-2- nonenal and 4-oxo-2-nonenal. Chem Res Toxicol. 2002;15:1445−1450. DOI:10.1021/tx025590o
  • Tahtaoui C, Balestre MN, Klotz P, et al. Identification of the binding sites of the SR49059 nonpeptide antagonist into the V1a vasopressin receptor using sulfydryl-reactive ligands and cysteine mutants as chemical sensors. J Biol Chem. 2003;278:40010–40019. DOI:10.1074/jbc.M301128200
  • Wu X, Zhou QH, Xu K. Are isothiocyanates potential anti-cancer drugs? Acta Pharmacol Sin. 2009;30:501−512. DOI:10.1038/aps.2009.50
  • Qiao CJ, Ali HI, Ahn KH, et al. Synthesis and biological evaluation of indole-2-carboxamides bearing photoactivatable functionalities as novel allosteric modulators for the cannabinoid CB1 receptor. Eur J Med Chem. 2016;121:517–529. DOI:10.1016/j.ejmech.2016.05.044
  • Andersson H, D’Antona AM, Kendall DA, et al. Membrane assembly of the cannabinoid receptor 1: impact of a long N-terminal tail. Mol Pharmacol. 2003;64:570–577. DOI:10.1124/mol.64.3.570
  • Fay JF, Farrens DL. The membrane proximal region of the cannabinoid receptor CB1 N-terminus can allosterically modulate ligand affinity. Biochemistry. 2013;52:8286–8294. DOI:10.1021/bi400842k
  • Garland SL. Are GPCRs still a source of new targets? J Biomol Screen. 2013;18:947–966. DOI:10.1177/1087057113498418
  • Kinch MS. 2015 in review: FDA approval of new drugs. Drug Discov Today. 2016;21:1046–1050. DOI:10.1016/j.drudis.2016.04.008
  • Jacobson KA. New paradigms in GPCR drug discovery. Biochem Pharmacol. 2015;98:541–555. DOI:10.1016/j.bcp.2015.08.085
  • Miao Y, McCammon JA. G-protein coupled receptors: advances in simulation and drug discovery. Curr Opin Struct Biol. 2016;41:83–89. DOI:10.1016/j.sbi.2016.06.008
  • Desai AJ, Henke BR, Miller LJ. Elimination of a cholecystokinin receptor agonist ‘trigger’ in an effort to develop positive allosteric modulators without intrinsic agonist activity. Bioorg Med Chem Lett. 2015;25:1849–1855. DOI:10.1016/j.bmcl.2015.03.051
  • Noetzel MJ, Rook JM, Vinson PN, et al. Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function. Mol Pharmacol. 2012;81:120–133. DOI:10.1124/mol.111.075184
  • Parmentier-Batteur S, Hutson PH, Menzel K, et al. Mechanism based neurotoxicity of mGlu5 positive allosteric modulators–development challenges for a promising novel antipsychotic target. Neuropharmacology. 2014;82:161–173. DOI:10.1016/j.neuropharm.2012.12.003
  • Bridges TM, Rook JM, Noetzel MJ, et al. Biotransformation of a novel positive allosteric modulator of metabotropic glutamate receptor subtype 5 contributes to seizure-like adverse events in rats involving a receptor agonism-dependent mechanism. Drug Metab Dispos. 2013;41:1703–1714. DOI:10.1124/dmd.113.052084
  • Bagdas D, Wilkerson JL, Kulkarni A, et al. The α7 nicotinic receptor dual allosteric agonist and positive allosteric modulator GAT107 reverses nociception in mouse models of inflammatory and neuropathic pain. Br J Pharmacol. 2016;173:2506–2520. DOI:10.1111/bph.13528
  • Mah R, Thomas JR, Shafer CM. Drug discovery considerations in the development of covalent drugs. Bioorg Med Chem Lett. 2014;24:33–39. DOI:10.1016/j.bmcl.2013.10.003
  • Nussinov R, Tsai CJ. The design of covalent allosteric drugs. Annu Rev Pharmacol Toxicol. 2015;55:249–267. DOI:10.1146/annurev-pharmtox-010814-124401
  • Schreiber SL, Kotz JD, Li M, et al. Advancing biological understanding and therapeutics discovery with small-molecule probes. Cell. 2015;161:1252–1265. DOI:10.1016/j.cell.2015.05.023
  • Langmead CJ. Determining allosteric modulator mechanism of action: integration of radioligand binding and functional assay data. Methods Mol Biol. 2011;746:195–209. DOI:10.1007/978-1-61779-126-0_10
  • Rocheville M, Martin J, Jerman J, et al. Mining the potential of label-free biosensors for seven-transmembrane receptor drug discovery. Prog Mol Biol Transl Sci. 2013;115:123–142. DOI:10.1016/B978-0-12-394587-7.00003-8
  • Janero DR. The future of drug discovery: enabling technologies for enhancing lead characterization and profiling therapeutic potential. Expert Opin Drug Discov. 2014;9:847–858.
  • Aristotelous T, Hopkins AL, Navratilova I. Surface plasmon resonance analysis of seven-transmembrane receptors. Methods Enzymol. 2015;556:499–525. DOI:10.1016/bs.mie.2015.01.016
  • García C, Palomo-Garo C, Gómez-Gálvez Y, et al. Cannabinoid-dopamine interactions in the physiology and physiopathology of the basal ganglia. Br J Pharmacol. 2016;173:2069–2079. DOI:10.1111/bph.13215
  • Cawston EE, Connor M, Di Marzo V, et al. Distinct temporal fingerprint for cyclic adenosine monophosphate (cAMP) signaling of indole-2-carboxamides as allosteric modulators of the cannabinoid receptors. J Med Chem. 2015;58:5979–5988. DOI:10.1021/acs.jmedchem.5b00579

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.