359
Views
44
CrossRef citations to date
0
Altmetric
Review

An overview of nanofiber-based antibacterial drug design

, , , &
Pages 391-406 | Received 30 Sep 2016, Accepted 31 Jan 2017, Published online: 15 Feb 2017

References

  • Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo). 2009;62:5–16.
  • Berendonk TU, Manaia CM, Merlin C, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13:310–317.
  • Bos J, Zhang Q, Vyawahare S, et al. Emergence of antibiotic resistance from multinucleated bacterial filaments. Proc Natl Acad Sci. 2015;112:178–183.
  • Chang -H-H, Cohen T, Grad YH, et al. Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiol Mol Biol Rev. 2015;79:101–116.
  • De Faria AF, Perreault F, Shaulsky E, et al. Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide–silver nanocomposites. ACS Appl Mater Interfaces. 2015;7:12751–12759.
  • Chmielewski R, Frank J. Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf. 2003;2:22–32.
  • Romero D, Kolter R., Will biofilm disassembly agents make it to market? Trends Microbiol. 2011;19:304–306.
  • Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science. 2011;333:712–717.
  • Bryers JD. Medical biofilms. Biotechnol Bioeng. 2008;100:1–18.
  • Marano S, Barker SA, Raimi-Abraham BT, et al. Development of micro-fibrous solid dispersions of poorly water-soluble drugs in sucrose using temperature-controlled centrifugal spinning. Eur J Pharm Biopharm. 2016;103(2016):84–94.
  • Helmlinger J, Sengstock C, Groß-Heitfeld C, et al. Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Adv. 2016;6:18490–18501.
  • Tang Q, Liu J, Shrestha LK, et al. Antibacterial effect of silver-incorporated flake-shell nanoparticles under dual-modality. ACS Appl Mater Interfaces. 2016;8:18922−18929.
  • Cui H, Li W, Li C, et al. Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofouling. 2016;32:215–225.
  • Worley BV Structure-activity characterization of nitric oxide-releasing dendrimers as dual-action antibacterial agents: THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL; 2016.
  • Chung BG, Kang L, Khademhosseini A. Micro-and nanoscale technologies for tissue engineering and drug discovery applications. Expert Opin Drug Discov. 2007;2:1653–1668.
  • Sari E, Tunc-Sarisozen Y, Mutlu H, et al. ICAM-1 targeted catalase encapsulated PLGA-b-PEG nanoparticles against vascular oxidative stress. J Microencapsul. 2015;32:687–698.
  • Ulubayram K, Calamak S, Shahbazi R, et al. Nanofibers based antibacterial drug design, delivery and applications. Curr Pharm Des. 2015;21:1930–1943.
  • Gopiraman M, Jatoi AW, Hiromichi S, et al. Silver coated anionic cellulose nanofiber composites for an efficient antimicrobial activity. Carbohydr Polym. 2016;149:51–59.
  • Abdel-Mohsen A, Jancar J, Massoud D, et al. Novel chitin/chitosan-glucan wound dressing: isolation, characterization, antibacterial activity and wound healing properties. Int J Pharm. 2016;510:86–99.
  • Lim TH, Lee SH, Yeo SY. Highly conductive polymer/metal/carbon nanotube composite fiber prepared by the melt-spinning process. Textile Res J. 2016;0040517516632481.
  • Poongodi G, Anandan P, Kumar RM, et al. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol–gel spin coating method. Spectrochimica Acta A: Mol Biomol Spectrosc. 2015;148:237–243.
  • Tran T, Hernandez M, Patel D, et al. Temperature and pH responsive microfibers for controllable and variable ibuprofen delivery. Adv Mater Sci Eng. 2015; Article ID 180187:6.
  • Molnar K, Nagy ZK. Corona-electrospinning: needleless method for high-throughput continuous nanofiber production. Eur Polym J. 2016;74:279–286.
  • Rieger KA, Birch NP, Schiffman JD. Designing electrospun nanofiber mats to promote wound healing–a review. J Mater Chem B. 2013;1:4531–4541.
  • Yu D-G, Li X-Y, Wang X, et al. Nanofibers fabricated using triaxial electrospinning as zero order drug delivery systems. ACS Appl Mater Interfaces. 2015;7:18891–18897.
  • Abrigo M, Kingshott P, McArthur SL. Bacterial response to different surface chemistries fabricated by plasma polymerization on electrospun nanofibers. Biointerphases. 2015;10:04A301.
  • Saini S, Belgacem MN, Salon M-CB, et al. Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane. Cellulose. 2016;23:795–810.
  • Gilchrist SE, Lange D, Letchford K, et al. Fusidic acid and rifampicin co-loaded PLGA nanofibers for the prevention of orthopedic implant associated infections. J Control Release. 2013;170:64–73.
  • Sathish Kumar Y, Unnithan AR, Sen D, et al. Microgravity biosynthesized penicillin loaded electrospun polyurethane–dextran nanofibrous mats for biomedical applications. Colloids Surf A Physicochem Eng Asp. 2015;477:77–83.
  • Cai N, Li C, Han C, et al. Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application. Appl Surf Sci. 2016;369:492–500.
  • Ruckh TT, Oldinski RA, Carroll DA, et al. Antimicrobial effects of nanofiber poly(caprolactone) tissue scaffolds releasing rifampicin. J Mater Sci Mater Med. 2012;23:1411–1420.
  • Wang C, Tong SN, Tse YH, et al. Conventional electrospinning vs. emulsion electrospinning: a comparative study on the development of nanofibrous drug/biomolecule delivery vehicles. Switzerland: Trans Tech Publications; 2012.
  • Tauber S, Fuerst R, Davis K, et al. Drug delivery system and methods of use. Google Patents. 2013. Patent no: US 8,361,492 B2.
  • Jung WK, Koo HC, Kim KW, et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74:2171–2178.
  • Rieger KA, Cho HJ, Yeung HF, et al. Antimicrobial activity of silver ions released from zeolites immobilized on cellulose nanofiber mats. ACS Appl Mater Interfaces. 2016;8:3032–3040.
  • Calamak S, Aksoy EA, Erdogdu C, et al. Silver nanoparticle containing silk fibroin bionanotextiles. J Nanoparticle Res. 2015;17:1–9.
  • Liu Y, Liu Y, Liao N, et al. Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles. Int J Biol Macromol. 2015;79:638–643.
  • Calamak S, Aksoy EA, Ertas N, et al. Ag/silk fibroin nanofibers: effect of fibroin morphology on Ag+ release and antibacterial activity. Eur Polym J. 2015;67:99–112.
  • Hwang SH, Song J, Jung Y, et al. Electrospun ZnO/TiO2 composite nanofibers as a bactericidal agent. Chem Commun (Camb). 2011;47:9164–9166.
  • Das B, Mandal M, Upadhyay A, et al. N. Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed Mater. 2013;8:035003.
  • Gultekinoglu M, Sarisozen YT, Erdogdu C, et al. Designing of dynamic polyethyleneimine (PEI) brushes on polyurethane (PU) ureteral stents to prevent infections. Acta Biomater. 2015;21:44–54.
  • Gultekinoglu M, Oh YJ, Hinterdorfer P, et al. Nanoscale characteristics of antibacterial cationic polymeric brushes and single bacterium interactions probed by force microscopy. RSC Adv. 2016;6:17092–17099.
  • Özcan İ, Abacı Ö, Uztan AH, et al. Enhanced topical delivery of terbinafine hydrochloride with chitosan hydrogels. AAPS Pharmscitech. 2009;10:1024–1031.
  • Çalamak S, Erdoğdu C, Özalp M, et al. Silk fibroin based antibacterial bionanotextiles as wound dressing materials. Mater Sci Eng C. 2014;43:11–20.
  • Croisier F, Sibret P, Dupont-Gillain CC, et al. Chitosan-coated electrospun nanofibers with antibacterial activity. J Mater Chem B. 2015;3:3508–3517.
  • Seyam A-FM, Hudson SM, Ibrahim HM, et al. Healing performance of wound dressing from cyanoethyl chitosan electrospun fibres. Indian J Fibre Text. 2012;37:205.
  • Coneski PN, Fulmer PA, Giles SL, et al. Lyotropic self-assembly in electrospun biocidal polyurethane nanofibers regulates antimicrobial efficacy. Polymer. 2014;55:495–504.
  • Vasantha VA, Zainul Rahim SZ, Jayaraman S, et al. Antibacterial, electrospun nanofibers of novel poly(sulfobetaine) and poly(sulfabetaine)s. J Mater Chem B. 2016;4:2731–2738.
  • Li X, Cai T, Chung TS. Anti-fouling behavior of hyperbranched polyglycerol-grafted poly(ether sulfone) hollow fiber membranes for osmotic power generation. Environ Sci Technol. 2014;48:9898–9907.
  • Zupančič Š, Sinha-Ray S, Sinha-Ray S, et al. Controlled release of ciprofloxacin from core–shell nanofibers with monolithic or blended core. Mol Pharm. 2016;13:1393–1404.
  • Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30:592–599.
  • Ranjbar-Mohammadi M, Zamani M, Prabhakaran MP, et al. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration. Mater Sci Eng C Mater Biol Appl. 2016;58:521–531.
  • Zhang J, Misra RD. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater. 2007;3:838–850.
  • Shen X, Yu D, Zhu L. Electrospun diclofenac sodium loaded Eudragit(R) L 100-55 nanofibers for colon-targeted drug delivery. Int J Pharm. 2011;408:200–207.
  • Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev. 2009;61:1033–1042.
  • Wang C, Yan KW, Lin YD, et al. Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release. Macromolecules. 2010;43:6389–6397.
  • Bolgen N, Vargel I, Korkusuz P, et al. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J Biomed Mater Res B-Applied Biomater. 2007;81B:530–543.
  • Wang S, Zheng F, Huang Y, et al. Encapsulation of amoxicillin within laponite-doped poly(lactic-co-glycolic acid) nanofibers: preparation, characterization, and antibacterial activity. ACS Appl Mater Interfaces. 2012;4:6393–6401.
  • Mohammadi MR, Rabbani S, Bahrami SH, et al. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly (ε-caprolactone) electrospun nanofibers. Mater Sci Eng C. 2016;69:1183–1191.
  • Ahmed SM, Ahmed H, Tian C, et al. Whey protein concentrate doped electrospun poly (epsilon-caprolactone) fibers for antibiotic release improvement. Colloids Surf B Biointerfaces. 2016;143:371–381.
  • Qi H, Hu P, Xu J, et al. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules. 2006;7:2327–2330.
  • Xu X, Chen X, Ma P, et al. The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. Eur J Pharm Biopharm. 2008;70:165–170.
  • Zheng F, Wang S, Wen S, et al. Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials. 2013;34:1402–1412.
  • Moghe AK, Gupta BS. Co‐axial electrospinning for nanofiber structures: preparation and applications. Polymer Rev. 2008;48:353–377.
  • Qi R, Guo R, Shen M, et al. Electrospun poly(lactic-co-glycolic acid)/halloysite nanotube composite nanofibers for drug encapsulation and sustained release. J Mater Chem. 2010;20:10622–10629.
  • Zhang J-F, Yang D-Z, Xu F, et al. Electrospun core−shell structure nanofibers from homogeneous solution of poly(ethylene oxide)/chitosan. Macromolecules. 2009;42:5278–5284.
  • Sun ZC, Zussman E, Yarin AL, et al. Compound core-shell polymer nanofibers by co-electrospinning. Adv Mater. 2003;15:1929.
  • Zhuo HT, Hu JL, Chen SJ. Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials. Express Polym Lett. 2011;5:182–187.
  • Qi R, Guo R, Zheng F, et al. Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers. Colloids Surf B Biointerfaces. 2013;110:148–155.
  • Su Y, Su Q, Liu W, et al. Dual-drug encapsulation and release from core-shell nanofibers. J Biomater Sci Polym Ed. 2012;23:861–871.
  • Qian W, Yu DG, Li Y, et al. Dual drug release electrospun core-shell nanofibers with tunable dose in the second phase. Int J Mol Sci. 2014;15:774–786.
  • Yarin AL. Coaxial electrospinning and emulsion electrospinning of core-shell fibers. Polym Advan Technol. 2011;22:310–317.
  • Wang SG, Jiang X, Chen PC, et al. Preparation of coaxial-electrospun poly[bis(p-methylphenoxy)]phosphazene nanofiber membrane for enzyme immobilization. Int J Mol Sci. 2012;13:14136–14148.
  • Loscertales IG, Barrero A, Guerrero I, et al. Micro/nano encapsulation via electrified coaxial liquid jets. Science. 2002;295:1695–1698.
  • Su Y, Su Q, Liu W, et al. Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering. Acta Biomater. 2012;8:763–771.
  • Yu DG, Zhou J, Chatterton NP, et al. Polyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process. Int J Nanomedicine. 2012;7:5725–5732. Epub 2012/11/21
  • Yu D-G, Li X-Y, Wang X, et al. Zero-order drug release cellulose acetate nanofibers prepared using coaxial electrospinning. Cellulose. 2013;20:379–389.
  • Yu D-G, Williams GR, Wang X, et al. Dual drug release nanocomposites prepared using a combination of electrospraying and electrospinning. RSC Adv. 2013;3:4652–4658.
  • Xie J, Mao H, Yu D-G, et al. Stable coated polyvinylpyrrolidone nanofibers prepared using modified coaxial electrospinning. Fiber Polym. 2014;15:78–83.
  • Sohrabi A, Shaibani PM, Etayash H, et al. Sustained drug release and antibacterial activity of ampicillin incorporated poly(methyl methacrylate)–nylon6 core/shell nanofibers. Polymer. 2013;54:2699–2705.
  • Gupta P, Wilkes GL. Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach. Polymer. 2003;44:6353–6359.
  • Pehlivan SB, Yavuz B, Çalamak S, et al. Preparation and in vitro/in vivo evaluation of cyclosporin A‐loaded nanodecorated ocular implants for subconjunctival application. J Pharm Sci. 2015;104:1709–1720.
  • Yavuz B, Bozdağ Pehlivan S, Kaffashi A, et al. In vivo tissue distribution and efficacy studies for cyclosporin A loaded nano-decorated subconjunctival implants. Drug Deliv. 2016;23:3279-3284.
  • Weng L, Xie J. Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives. Curr Pharm Des. 2015;21:1944–1959.
  • Yang C, Yu D-G, Pan D, et al. Electrospun pH-sensitive core–shell polymer nanocomposites fabricated using a tri-axial process. Acta Biomater. 2016;35:77–86.
  • Demirci S, Celebioglu A, Aytac Z, et al. pH-responsive nanofibers with controlled drug release properties. Polym Chem. 2014;5:2050–2056.
  • Azarbayjani AF, Venugopal JR, Ramakrishna S, et al. Smart polymeric nanofibers for topical delivery of levothyroxine. J Pharm Pharm Sci. 2010;13:400–410.
  • Elashnikov R, Lyutakov O, Ulbrich P, et al. Light-activated polymethylmethacrylate nanofibers with antibacterial activity. Mater Sci Eng C. 2016;64:229–235.
  • Nakielski P, Kowalczyk T, Kowalewski TA. Modeling drug release from materials based on electrospun nanofibers. Rotterdam; 2013.
  • Shaikh HK, Kshirsagar R, Patil S. Mathematical models for drug release characterization: a review. Wjpps. 2015;4:324–338.
  • El-Naggar ME, El-Rafie M, El-Sheikh M, et al. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles. Int J Biol Macromol. 2015;81:718–729.
  • Barzegar-Jalali M, Adibkia K, Valizadeh H, et al. Kinetic analysis of drug release from nanoparticles. J Pharm Pharm Sci. 2008;11:167–177.
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–951.
  • Mazza M, Notman R, Anwar J, et al. Nanofiber-based delivery of therapeutic peptides to the brain. ACS Nano. 2013;7:1016–1026.
  • Kamble RN, Gaikwad S, Maske A, et al. Fabrication of electrospun nanofibres of BCS II drug for enhanced dissolution and permeation across skin. J Adv Res. 2016;7:483–489.
  • Sebe I, Szabó P, Kállai-Szabó B, et al. Incorporating small molecules or biologics into nanofibers for optimized drug release: a review. Int J Pharm. 2015;494:516–530.
  • Andrady AL. Science and technology of polymer nanofibers. Hoboken, New Jersey: John Wiley & Sons; 2008.
  • Goonoo N, Bhaw-Luximon A, Jhurry D. Drug loading and release from electrospun biodegradable nanofibers. J Biomed Nanotechnol. 2014;10:2173–2199.
  • Kim K, Luu YK, Chang C, et al. Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release. 2004;98:47–56.
  • Rezaei A, Nasirpour A, Tavanai H, et al. A study on the release kinetics and mechanisms of vanillin incorporated in almond gum/polyvinyl alcohol composite nanofibers in different aqueous food simulants and simulated saliva. Flavour Fragr J. 2016;31:442–447.
  • Vemula VR, Lagishetty V, Lingala S. Solubility enhancement techniques. Ijpsrr. 2010;5:41–51.
  • Chou S-F, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Control Release. 2015;220:584–591.
  • Yu D, Wang X, Li X, et al. Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomater. 2013;9:5665–5672.
  • Laha A, Yadav S, Majumdar S, et al. In-vitro release study of hydrophobic drug using electrospun cross-linked gelatin nanofibers. Biochem Eng J. 2016;105:481–488.
  • Gholipour-Kanani A, Bahrami SH, Joghataie MT, et al. Tissue engineered poly (caprolactone)-chitosan-poly (vinyl alcohol) nanofibrous scaffolds for burn and cutting wound healing. IET Nanobiotechnol. 2014;8:123–131.
  • Feng S, Nie L, Zou P, et al. Effects of drug and polymer molecular weight on drug release from PLGA‐mPEG microspheres. J Appl Polym Sci. 2015;132:6:41431(1-8).
  • Wang J, Vermerris W. Antimicrobial nanomaterials derived from natural products – a review. Materials. 2016;9:255.
  • Rathinamoorthy R. Nanofiber for drug delivery system – principle and application. Pak Text J. 2012;61:45–48.
  • Paaver U, Laidmäe I, Santos HA, et al. Development of a novel electrospun nanofibrous delivery system for poorly water-soluble β-sitosterol. Asian J Pharm Sci. 2016;11:500–506.
  • Sultanova Z, Kaleli G, Kabay G, et al. Controlled release of a hydrophilic drug from coaxially electrospun polycaprolactone nanofibers. Int J Pharm. 2016;505:133–138.
  • Wen H-F, Yang C, Yu D-G, et al. Electrospun zein nanoribbons for treatment of lead-contained wastewater. Chem Eng J. 2016;290:263–272.
  • Yu D-G, Yang C, Jin M, et al. Medicated Janus fibers fabricated using a Teflon-coated side-by-side spinneret. Colloids Surf B Biointerfaces. 2016;138:110–116.
  • Taneri F, Ozcan I, Guneri T. In vitro and in vivo evaluation of oral tablet formulations prepared with ketoconazole and hydroxypropyl-β-cyclodextrin. Drug Delivery. 2010;17:152–157.
  • Ozcan I, Segura-Sanchez F, Bouchemal K, et al. Pegylation of poly (γ-benzyl-L-glutamate) nanoparticles is efficient for avoiding mononuclear phagocyte system capture in rats. Int J Nanomed. 2010;5:1103–1111.
  • Aytac Z, Dogan SY, Tekinay T, et al. Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers. Colloids Surf B Biointerfaces. 2014;120:125–131.
  • Zhang Q, Li X, Ren Z, et al. Synthesis of CaTiO3 nanofibers with controllable drug‐release kinetics. Eur J Inorg Chem. 2015;2015:4532–4538.
  • Hrib J, Sirc J, Hobzova R, et al. Nanofibers for drug delivery – incorporation and release of model molecules, influence of molecular weight and polymer structure. Beilstein J Nanotechnol. 2015;6:1939–1945.
  • Samprasit W, Rojanarata T, Akkaramongkolporn P, et al. Fabrication and in vitro/in vivo performance of mucoadhesive electrospun nanofiber mats containing α-mangostin. AAPS Pharmscitech. 2015;16:1140–1152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.