486
Views
18
CrossRef citations to date
0
Altmetric
Review

The advancement of multidimensional QSAR for novel drug discovery - where are we headed?

, , , &
Pages 769-784 | Received 02 Apr 2017, Accepted 25 May 2017, Published online: 08 Jun 2017

References

  • Holohan C, Van Schaeybroeck S, Longley DB, et al. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–726.
  • Ruggiero MAL. Antibiotic resistance: implications for global health and novel intervention strategies. National Academies Press; 2010.
  • Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;529(7586):336–343.
  • Penchovsky R, Traykovska M. Designing drugs that overcome antibacterial resistance: where do we stand and what should we do? Expert Opin Drug Dis. 2015;10(6):631–650.
  • Kinch MS, Patridge E. An analysis of FDA-approved drugs for infectious disease: HIV/AIDS drugs. Drug Discov Today. 2014;19(10):1510–1513.
  • Patridge E, Gareiss P, Kinch MS, et al. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today. 2016;21(2):204–207.
  • Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303–336.
  • Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. 2013;1830(6):3670–3695.
  • Wright PM, Seiple IB, Myers AG. ChemInform abstract: the evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed Eng. 2014;45(46):8840–8869.
  • Kirschning A, Hahn F. Merging chemical synthesis and biosynthesis: a new chapter in the total synthesis of natural products and natural product libraries. Angew Chem Int Ed Eng. 2012;51(17):4012–4022.
  • Thirumurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical–biology applications. Chem Rev. 2013;113(7):4905–4979.
  • Huyck TK, Gradishar W, Manuguid F, et al. Eribulin mesylate. Nat Rev Drug Discov. 2011;10(3):173–174.
  • Cuevas C, Francesch A. Development of Yondelis® (trabectedin, ET-743). A Semisynthetic Process Solves the Supply Problem. Nat Prod Rep. 2009;26(3):322–337.
  • Hale KJ, Hummersone MG, Manaviazar S, et al. The chemistry and biology of the bryostatin antitumour macrolides. Nat Prod Rep. 2002;19(4):413–453.
  • Harvey AL, Edradaebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14(2):111–129.
  • Wezel GPV, Mcdowall KJ. ChemInform abstract: the regulation of the secondary metabolism of streptomyces: new links and experimental advances. Nat Prod Rep. 2011;28(7):1311–1333.
  • Wang T, Wu MB, Zhang RH, et al. Advances in computational structure-based drug design and application in drug discovery. Curr Top Med Chem. 2016;16(9):901–916.
  • Zhang S. Computer-aided drug discovery and development. Methods Mol Biol. 2011;716:23–38.
  • Desai NC, Kotadiya GM, Trivedi AR, et al. Synthesis, biological valuation, and QSAR studies of novel pyrazole bearing pyridyl oxadiazole analogues as potential antimicrobial agents. Med Chem Res. 2016;25(4):712–727.
  • Xu H, Zou J, Yu Q, et al. QSPR/QSAR models for prediction of the physicochemical properties and biological activity of polybrominated diphenyl ethers. Chemosphere. 2007;66(10):1998–2010.
  • Narang R, Narasimhan B, Sharma S, et al. Synthesis, antimycobacterial, antiviral, antimicrobial activities, and QSAR studies of nicotinic acid benzylidene hydrazide derivatives. Med Chem Res. 2012;21(8):1557–1576.
  • Moroy G, Martiny VY, Vayer P, et al. Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today. 2012;17(1–2):44–55.
  • Roncaglioni A, Toropov AA, Toropova AP, et al. In silico methods to predict drug toxicity. Curr Opin Pharmacol. 2013;13(5):802–806.
  • Hansch C, Maloney PP, Fujita T, et al. Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients. Nature. 1962;194(4824):178–180.
  • Hansch C, Fujita T. P-σ-π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc. 1964;86(86):5710.
  • Dearden JC. The history and development of quantitative structure-activity relationships (QSARs). Int J Quant Struct Property Relat. 2016;1(1):1–44.
  • Hormann RE, Smagghe G, Nakagawa Y. Multidimensional quantitative structure–activity relationships of diacylhydrazine toxicity to lepidopteran and coleopteran insect pests. QSAR Com Sci. 2008;27(9):1098–1112.
  • Olayide Adebimpe A, Charan Dash R, Mahmoud ESS. QSAR study on diketo acid and carboxamide derivatives as potent HIV- 1 integrase inhibitor. Lett Drug Des Discov. 2014;11(5):618–627.
  • Tosco P, Balle T. Open3DQSAR: a new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields. J Mol Model. 2011;17(1):201–208.
  • Katritzky AR, Dobchev DA, Tulp I, et al. QSAR study of mosquito repellents using Codessa Pro. Bioorg Med Chem Lett. 2006;16(8):2306–2311.
  • Gramatica P, Chirico N, Papa E, et al. QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem. 2013;34(24):2121–2132.
  • Mracec M, Borota A, Rad R, et al. QSAR analysis of a series of non-imidazolic derivatives acting on the histamine H3 receptor. Rev Roum Chim. 2007;52(52):829–835.
  • Cotterill JV, Chaudhry MQ, Matthews W, et al. In silico assessment of toxicity of heat-generated food contaminants. Food Chem Toxicol Int J Published Br Ind Biol Res Assoc. 2008;46(6):1905–1918.
  • Polanski J. Receptor dependent multidimensional QSAR for modeling drug–receptor interactions. Curr Med Chem. 2009;16(25):3243–3257.
  • Mervin LH, Afzal AM, Drakakis G, et al. Target prediction utilising negative bioactivity data covering large chemical space. J Cheminformatics. 2015;7(1):1–16.
  • Randić M. Generalized molecular descriptors. J Math Chem. 1991;7(1):155–168.
  • Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inform. 2010;29(6–7):476–488.
  • Weaver S, Gleeson MP. The importance of the domain of applicability in QSAR modeling. J Mol Graph Model. 2008;26(8):1315–1326.
  • Tollefsen KE, Scholz S, Cronin MT, et al. Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA). Regul Toxicol Pharmacol. 2014;70(3):629–640.
  • Sahigara F, Mansouri K, Ballabio D, et al. Comparison of different approaches to define the applicability domain of QSAR models. Molecules. 2012;17(5):4791–4810.
  • Jaworska J, Nikolovajeliazkova N, Aldenberg T. QSAR applicability domain estimation by projection of the training set descriptor space: a review. Altern Lab Anim. 2005;33(5):445–459.
  • Kuz’Min VE, Muratov EN, Artemenko AG, et al. The effect of nitroaromatics’ composition on their toxicity in vivo: novel, efficient non-additive 1D QSAR analysis. Chemosphere. 2008;72(9):1373–1380.
  • Free SM, Wilson JW. A mathematical contribution to structure-activity studies. J Med Chem. 1964;7(8):395–399.
  • Padmanabhan J, Parthasarathi R, Subramanian V, et al. QSPR models for polychlorinated biphenyls: N-Octanol/water partition coefficient. Bioorgan Med Chem. 2006;14(4):1021–1028.
  • Arcelli A, Porzi G, Rinaldi S, et al. Electrostatic interactions effect in the aminolysis of some β‐lactams in the presence of poly(ethyleneimine): structure‐reactivity. J Phys Org Chem. 2008;21(2):163–172.
  • Iii WJD. Molar refractivity as an independent variable in quantitative structure-activity studies. Eur J Med Chem. 1977;12(2):109–112.
  • Singh RK, Khan MA, Singh PP. Rating of sweetness by molar refractivity and ionization potential: QSAR study of sucrose and guanidine derivatives. South African J Chem. 2014;67(9):12–20.
  • Shi DQ, Peng LD, Zhang HW, et al. Heuristic molecular lipophilicity potential (HMLP): lipophilicity and hydrophilicity of amino acid side chains. J Comput Chem. 2006;27(6):685–692.
  • Tetko IV. Computing chemistry on the web. Drug Discov Today. 2005;10(22):1497–1500.
  • Tetko IV, Gasteiger J, Todeschini R, et al. Virtual computational chemistry laboratory–design and description. J Comput Aid Mol Des. 2005;19(6):453–463.
  • Patel HM, Noolvi MN, Sharma P, et al. Quantitative structure–activity relationship (QSAR) studies as strategic approach in drug discovery. Med Chem Res. 2014;23(12):1–17.
  • Saha S. 2D QSAR approach to develop newer generation molecules active aganist ERBB2 receptor kinase as potential anticancer agent. Int J Pharm Chem. 2015;5:134–148.
  • Panda SS, Liaqat S, Girgis AS, et al. Novel antibacterial active quinolone-fluoroquinolone conjugates and 2D-QSAR studies. Bioorg Med Chem Lett. 2015;25(18):3816–3821.
  • Girgis AS, Ismail NS, George RF, et al. Rational design, synthesis and 2D-QSAR studies of antiproliferative tropane-based compounds. Rsc Adv. 2016;6(104):101911–101923.
  • George RF, Saleh DO. Synthesis, vasorelaxant activity and 2D-QSAR study of some novel pyridazine derivatives. Eur J Med Chem. 2016;108:663–673.
  • Roy K, Das RN. A review on principles, theory and practices of 2D-QSAR. Curr Drug Metab. 2014;15(4):346–379.
  • Ramkumar K, Serrao E, Odde S, et al. HIV-1 integrase inhibitors: 2007-2008 update. Med Res Rev. 2010;30(6):890–954.
  • Zakariazadeh M, Barzegar A, Soltani S, et al. Developing 2D-QSAR models for naphthyridine derivatives against HIV-1 integrase activity. Med Chem Res. 2015;24(6):2485–2504.
  • Mauri A, Consonni V, Pavan M, et al. DRAGON software: an easy approach to molecular descriptor calculations. Match. 2006;56(2):237–248.
  • Girgis AS, Panda SS, Aziz MN, et al. Rational design, synthesis, and 2D-QSAR study of anti-oncological alkaloids against hepatoma and cervical carcinoma. Rsc Adv. 2015;5(36):28554–28569.
  • Puzyn T, Leszczynski J, Cronin MT. Recent advances in QSAR studies. Springer Netherlands, Berlin, Germany; 2010. 327–366.
  • Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc. 1988;110(18):5959–5967.
  • Gasteiger J. 4.3. Comparative Molecular Field Analysis (CoMFA). Handbook of Chemoinformatics: from Data to Knowledge. 2008;4:1555–1574.
  • García I, Fall Y, Gómez G. QSAR, docking, and CoMFA studies of GSK3 inhibitors. Curr Pharm Design. 2010;16(24):2666–2675.
  • Pérez-Villanueva J, Medina-Franco JL, Caulfield TR, et al. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) of some benzimidazole derivatives with trichomonicidal activity. Eur J Med Chem. 2011;46(8):3499–3508.
  • Kubinyi H. 3D QSAR in drug design: theory, methods and applications. Leiden, The Kingdom of Netherlands:Kluwer Academic Publisher. 2000(1).
  • Klebe G, Abraham U, Mietzner T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem. 1994;37(24):4130–4146.
  • Kearsley SK, Smith GM. An alternative method for the alignment of molecular structures: maximizing electrostatic and steric overlap. Tetrahedron Computer Methodology. 1990;3(6):615–633.
  • Klebe G. Comparative molecular similarity indices analysis: coMSIA. Perspect Drug Discov. 1998;12(14):87–104.
  • Reynolds CA, Wade RC, Goodford PJ. Identifying targets for bioreductive agents: using GRID to predict selective binding regions of proteins. J Mol Graph. 1989;7(2):103–108.
  • Madhavan T. A review of 3D-QSAR in drug design. J Chosun Nat Sci. 2012;5(1):1–5.
  • Cruciani G, Watson KA. Comparative molecular field analysis using GRID Force-Field and GOLPE variable selection methods in a study of inhibitors of glycogen phosphorylase b. J Med Chem. 1994;37(16):2589–2601.
  • Cruciani G, Crivori P, Carrupt PA, et al. Molecular fields in quantitative structure–permeation relationships: the VolSurf approach. J Mol Struc Theochem. 2000;503(1–2):17–30.
  • Pastor M, Cruciani G, Clementi S. Smart region definition: a new way to improve the predictive ability and interpretability of three-dimensional quantitative structure-activity relationships. J Med Chem. 1997;40(10):1455–1464.
  • And HG, Klebe G. DrugScore meets CoMFA: adaptation of fields for molecular comparison (AFMoC) or how to tailor Knowledge-Based Pair-Potentials to a particular protein. J Med Chem. 2002;45(19):4153–4170.
  • Silber K, Heidler P, Kurz T, et al. AFMoC enhances predictivity of 3D QSAR: a case study with DOXP-reductoisomerase. J Med Chem. 2005;48(10):3547–3563.
  • Hillebrecht A, Supuran CT, Klebe G. Integrated approach using protein and ligand information to analyze selectivity- and affinity-determining features of carbonic anhydrase isozymes. Chemmedchem. 2006;1(8):839–853.
  • Polański J, Rafał Gieleciak A, Ba̧K A. The comparative molecular surface analysis (COMSA) − a nongrid 3D QSAR method by a coupled neural network and PLS system: predicting pKa values of benzoic and alkanoic acids. ChemInform. 2002;42(22):184–191.
  • Gieleciak R, Polanski J. Modeling robust QSAR. 2. Iterative variable elimination schemes for CoMSA: application for modeling benzoic acid pKa values. J Chem Inf Model. 2007;47(2):547–556.
  • Magdziarz T, Lozowicka B, Gieleciak R, et al. 3D QSAR study of hypolipidemic asarones by comparative molecular surface analysis. Bioorgan Med Chem. 2006;14(5):1630–1643.
  • Jójárt B, Martinek TA, The MÁ. 3D structure of the binding pocket of the human oxytocin receptor for benzoxazine antagonists, determined by molecular docking, scoring functions and 3D-QSAR methods. J Comput Aid Mol Des. 2005;19(5):341–356.
  • Wold S, Sjöström M. Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab. 2008;58(2):109–130.
  • Ghasemi JB, Shiri F. Molecular docking and 3D-QSAR studies of falcipain inhibitors using CoMFA, CoMSIA, and Open3DQSAR. Med Chem Res. 2012;21(10):2788–2806.
  • Liton MAK, Bhowmick AC, Ali MA. 3D-QSAR MIFs studies on 3,5-substituted-1,4,2-dioxazoles derivatives using open3DQSAR tools. Universal J Chem. 2013;1(2):71–76.
  • Halder AK, Amin SA, Jha T, et al. Insight into the structural requirements of pyrimidine-based phosphodiesterase 10A (PDE10A) inhibitors by multiple validated 3D QSAR approaches. SAR QSAR Environ Res. 2017;28(3):253–273.
  • Amin SA, Bhargava S, Adhikari N, et al. Exploring pyrazolo[3,4-d]pyrimidine phosphodiesterase 1 (PDE1) inhibitors: a predictive approach combining comparative validated multiple molecular modeling techniques. J Biomol Struct Dyn. 2017;1–19. doi:10.1080/07391102.2017.1288659.
  • Ekins S, Bravi G, Binkley S, et al. Three and four dimensional-quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2D6 inhibitors. Pharmacogenetics. 1999;9(4):477–489.
  • Andrade CH, Pasqualoto KF, Ferreira EI, et al. 4D-QSAR: perspectives in drug design. Molecules. 2010;15(5):3281–3294.
  • Andrade CH. 3D-Pharmacophore mapping of thymidine-based inhibitors of TMPK as potential antituberculosis agents. J Comput Aid Mol Des. 2010;24(2):157–172.
  • Hopfinger AJ, Shen W, Tokarski JS, et al. Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J Am Chem Soc. 1997;119(43):10509–10524.
  • Pan D, Tseng Y, Hopfinger AJ. Quantitative structure-based design: formalism and application of receptor-dependent RD-4D-QSAR analysis to a set of glucose analogue inhibitors of glycogen phosphorylase. ChemInform. 2003;43(51):1591–1607.
  • Damale MG, Harke SN, Kalam Khan FA, et al. Recent advances in multidimensional QSAR (4D-6D): a critical review. Mini Rev Med Chem. 2014;14(1):35–55.
  • Martins JP, Barbosa EG, Pasqualoto KF, et al. LQTA-QSAR: A new 4D-QSAR methodology. J Chem Inf Model. 2009;49(6):1428–1436.
  • Ghasemi JB, Safavisohi R, Barbosa EG. 4D-LQTA-QSAR and docking study on potent gram-negative specific LpxC inhibitors: A comparison to CoMFA modeling. Mol Divers. 2011;16(1):203–213.
  • Martins JP, Barbosa EG, Pasqualoto KFM, et al. LQTA-QSAR: A new 4D-QSAR methodology. J Chem Inf Model. 2009;49(6):1428–1436.
  • Kanhed AM, Dash RC, Parmar NN, et al. Benzo[e]pyrimido[5,4-b][1,4]diazepin-6(11H)-one derivatives as Aurora a kinase inhibitors: LQTA-QSAR analysis and detailed systematic validation of the developed model. Mol Divers. 2015;19(4):965–974.
  • De Melo EB, Ferreira MMC. Four-dimensional structure-activity relationship model to predict HIV-1 integrase strand transfer inhibition using LQTA-QSAR methodology. J Chem Inf Model. 2012;52(7):1722–1732.
  • Barbosa EG, Pasqualoto KFM, Ferreira MMC. The receptor-dependent LQTA-QSAR: application to a set of trypanothione reductase inhibitors. J Comput Aid Mol Des. 2012;26(9):1055–1065.
  • Kohonen BT. Self-organizing maps. 3rd edn. Springer, Berlin, Germany. 2001;8174:153–160.
  • Kohonen T, Oja E, Simula O, et al. Engineering applications of the self-organizing map. P IEEE. 1996; 84(10):1358–1384.
  • Guha R, Serra JR, Jurs PC. Generation of QSAR sets with a self-organizing map. J Mol Graph Model. 2004;23(1):1–14.
  • Bak A, Polanski J. Modeling robust QSAR 3: SOM-4D-QSAR with iterative variable elimination IVE-PLS: application to steroid, azo dye, and benzoic acid series. ChemInform. 2007;47(40):1469–1480.
  • Polański J. The non-grid technique for modeling 3D QSAR using self-organizing neural network (SOM) and PLS analysis: application to steroids and colchicinoids. SAR QSAR Environ Res. 2001;11(3–4):245–261.
  • Bak A, Wyszomirski M, Magdziarz T, et al. Structure-based modeling of dye-fiber affinity with SOM-4D-QSAR paradigm: application to set of anthraquinone derivatives. Comb Chem High T Scr. 2014;17(6):485–502.
  • Teilum K, Olsen JG, Kragelund BB. Functional aspects of protein flexibility. Cell Mol Life Sci. 2009;66(14):2231–2247.
  • Lill MA. Efficient incorporation of protein flexibility and dynamics into molecular docking simulations. Biochemistry. 2011;50(28):6157–6169.
  • Diehl C, Engström O, Delaine T, et al. Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3. J Am Chem Soc. 2016;132(41):14577–14589.
  • Dobbins SE, Lesk VI, Sternberg MJE. Insights into protein flexibility: the relationship between normal modes and conformational change upon protein-protein docking. Proc Natl Acad Sci. 2008;105(30):10390–10395.
  • Okazaki K, Takada S. Dynamic energy landscape view of coupled binding and protein conformational change: induced-fit versus population-shift mechanisms. P Natl Acad Sci. 2008;105(32):11182–11187.
  • Greives N, Zhou HX. Both protein dynamics and ligand concentration can shift the binding mechanism between conformational selection and induced fit. P Natl Acad Sci. 2014;111(28):10197–10202.
  • Vedani A, Dobler M. 5D-QSAR: the key for simulating induced fit? J Med Chem. 2002;45(11):2139–2149.
  • Oberdorf C, Schmidt TJ, Wünsch B. 5D-QSAR for spirocyclic sigma1 receptor ligands by Quasar receptor surface modeling. Eur J Med Chem. 2010;45(7):3116–3124.
  • Vedani A, Descloux AV, Spreafico M, et al. Predicting the toxic potential of drugs and chemicals in silico: a model for the peroxisome proliferator-activated receptor γ (PPAR γ). Toxicol Lett. 2007;173(1):17–23.
  • Vedani A, Dobler M, Dollinger H, et al. Novel ligands for the chemokine receptor-3 (CCR3): a receptor-modeling study based on 5D-QSAR. J Med Chem. 2005;48(5):1515–1527.
  • Vedani A, Max Dobler A, Lill MA. Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor. J Med Chem. 2005;48(11):3700–3703.
  • Tong W, Lowis DR, Perkins R, et al. ChemInform abstract: evaluation of quantitative structure—activity relationship methods for Large-Scale prediction of chemicals binding to the estrogen receptor. ChemInform. 1998;29(45):669–677.
  • Lowis DR. HQSAR: a new, highly predictive QSAR technique. Tripos Technical Notes. 1997;1(5):17–33.
  • Hurst JR, Heritage TW. Molecular hologram QSAR. Acs Symposium. 1999;719:212–225.
  • Huang H, Ou W, Zhao J, et al. A comparative study of quantitative structure–activity relationship methods based on gallic acid derivatives. SAR QSAR Environ Res. 2004;15(2):83–99.
  • Salum LB, Andricopulo AD. Fragment-based QSAR: perspectives in drug design. Mol Divers. 2009;13(3):277–285.
  • Moda TL, Andricopulo AD. Consensus hologram QSAR modeling for the prediction of human intestinal absorption. Bioorg Med Chem Lett. 2012;22(8):2889–2893.
  • Cheng Y, Zhou M, Tung CH, et al. Studies on two types of PTP1B inhibitors for the treatment of type 2 diabetes: hologram QSAR for OBA and BBB analogues. Bioorg Med Chem Lett. 2010;20(11):3329–3337.
  • Moda TL, Montanari CA, Andricopulo AD. Hologram QSAR model for the prediction of human oral bioavailability. Bioorgan Med Chem. 2007;15(15):7738–7745.
  • Kumar R, Långström B, Darreh-Shori T. Novel ligands of choline acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization. Sci Rep. 2016;6:31247–31260.
  • Ajmani S, Jadhav K, Kulkarni SA. Group-based QSAR (G-QSAR): mitigating interpretation challenges in QSAR. QSAR Comb Sci. 2010;28(1):36–51.
  • Virupaksha B, Alpana G, Prashant K, et al. Analysis of naphthoquinone derivatives as topoisomerase I inhibitors using fragment based QSAR. J Cheminformatics. 2013;5(1):1–1.
  • Ajmani S, Kulkarni SA. Application of GQSAR for scaffold hopping and lead optimization in multitarget inhibitors. Mol Inform. 2012;31(6–7):473–490.
  • Vats C, J K D, Goyal S, et al. Computational design of novel flavonoid analogues as potential AChE inhibitors: analysis using group-based QSAR, molecular docking and molecular dynamics simulations. Struct Chem. 2015;26(2):467–476.
  • Lakshmi N, Sivakumar P, Muralidharan D, et al. Expeditious synthesis, antibacterial activity evaluation and GQSAR studies of 3-bisoxindoles, 2-oxindolyl-2-hydroxyindan-1,3-diones and 2-oxindolyl-2-hydroxyacenaphthylen-1-ones. Rsc Adv. 2012;3(2):496–507.
  • Sinha S, Tyagi C, Goyal S, et al. Fragment based G-QSAR and molecular dynamics based mechanistic simulations into hydroxamic-based HDAC inhibitors against spinocerebellar ataxia. J Biomol Struct Dyn. 2015;34(10):1–39.
  • Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer. 2006;6(10):789–802.
  • Freitas MP, Sd B, Martins JA. MIA-QSAR: a simple 2D image-based approach for quantitative structure–activity relationship analysis. J Mol Struct. 2005;738(1–3):149–154 .
  • Cormanich RA, Goodarzi M, Freitas MP. Improvement of multivariate image analysis applied to quantitative structure-activity relationship (QSAR) analysis by using wavelet-principal component analysis ranking variable selection and least-squares support vector machine regression: QSAR study of checkpoint kinase WEE1 inhibitors. Chem Biol Drug Des. 2009;73(2):244–252.
  • Goodarzi M, Freitas MP. On the use of PLS and N-PLS in MIA-QSAR: azole antifungals. Chemometr Intell Lab. 2009;96(1):59–62.
  • Bitencourt M, Freitas MP, Rittner R. The MIA-QSAR method for the prediction of bioactivities of possible acetylcholinesterase inhibitors. Arch Pharm. 2012;345(9):723–728.
  • Nunes CA, Freitas MP. Introducing new dimensions in MIA-QSAR: a case for chemokine receptor inhibitors. Eur J Med Chem. 2013;62(7):297–300.
  • Barigye SJ, Freitas MPD. Ten years of the MIA-QSAR strategy. Int J QSPR. 2016;1(1):64–77 .
  • Freitas MP, Cunha EFFD, Ramalho TC, et al. Multimode methods applied on MIA descriptors in QSAR. Curr Comput Aided Drug Des. 2008;4(4):273–282.
  • Wang T, Wu MB, Lin JP, et al. Quantitative structure–activity relationship: promising advances in drug discovery platforms. Expert Opin Drug Dis. 2015;10(12):1–18.
  • Pinheiro J, Bitencourt MCE, Ramalho T, et al. Novel anti-HIV cyclotriazadisulfonamide derivatives as modeled by ligand- and receptor-based approaches. Bioorgan Med Chem. 2008;16(4):1683–1690.
  • Freitas MP. Multivariate image analysis applied to QSAR: evaluation to a series of potential anxiolytic agents. Chemometr Intell Lab. 2008;91(2):173–176.
  • Barigye SJ, Freitas MP. Is molecular alignment an indispensable requirement in the MIA-QSAR method? J Comput Chem. 2015;36(23):1748–1755.
  • Labute P. Binary QSAR: a new method for the determination of quantitative structure activity relationships. Pac Symp Biocomput. 1999;16:444–455.
  • Gupta S. Information rich descriptors for predicting P-Glycoprotein substrates and nonsubstrates: a binary-QSAR approach. Chem Biol. 2012;2(3):140–156.
  • Speck-Planche A, Kleandrova VV, Luan F, et al. Unified multi-target approach for the rational in silico design of anti-bladder cancer agents. Anticancer Agents Med Chem. 2013;13(5):791–800.
  • Speck-Planche A, Kleandrova VV, Luan F, et al. Rational drug design for anti-cancer chemotherapy: multi-target QSAR models for the in silico discovery of anti-colorectal cancer agents. Bioorg Med Chem. 2012;20(15):4848–4855.
  • Zanni R, Gálvez-Llompart M, Gálvez J, et al. QSAR multi-target in drug discovery: a review. Curr Comput Aided Drug Des. 2014;10(2):129.
  • Marzaro G, Chilin A, Guiotto A, et al. Using the TOPS-MODE approach to fit multi-target QSAR models for tyrosine kinases inhibitors. Eur J Med Chem. 2011;46(6):2185–2192.
  • Qi L, Han Z, Lin L, et al. Multi-target QSAR modelling in the analysis and design of HIV-HCV co-inhibitors: an in-silico study. BMC Bioinformatics. 2011;12(1):294–313.
  • Alonso N, Caamaño O, Romero-Duran FJ, et al. Model for high-throughput screening of multitarget drugs in chemical neurosciences: synthesis, assay, and theoretic study of rasagiline carbamates. Acs Chem Neurosci. 2013;4(10):1393–1403.
  • Speck-Planche A. Multitasking models for quantitative structure-biological effect relationships: current status and future perspectives to speed up drug discovery. Expert Opin Drug Dis. 2015;10(3):245–256.
  • Speck-Planche A, Cordeiro MN. Simultaneous virtual prediction of anti-Escherichia coli activities and ADMET profiles: a chemoinformatic complementary approach for high-throughput screening. Acs Comb Sci. 2014;16(2):78–84.
  • Speck-Planche A, Kleandrova VV, Luan F, et al. Chemoinformatics in anti-cancer chemotherapy: multi-target QSAR model for the in silico discovery of anti-breast cancer agents. Eur J Pharm Sci. 2012;47(1):273–279.
  • Prado-Prado FJ, García I, García-Mera X, et al. Entropy multi-target QSAR model for prediction of antiviral drug complex networks. Chemometr Intell Lab. 2011;107(2):227–233.
  • Pissurlenkar RRS, Khedkar VM, Iyer RP, et al. Ensemble QSAR: A QSAR method based on conformational ensembles and metric descriptors. J Comput Chem. 2011;32(10):2204–2218.
  • Hallenbeck. Recent advances in QSAR studies. Aust Nurses J. 2010;1(11):31–32.
  • Cherkasov A, Muratov EN, Fourches D, et al. QSAR modeling: where have you been? Where are you going to? J Med Chem. 2014;57(12):4977.
  • Roy K, Kar S, Das RN. A primer on QSAR/QSPR modeling. Berlin, Germany:Springer International Publishing; 2015.
  • Pan Y, Li T, Cheng J, et al. Nano-QSAR modeling for predicting the cytotoxicity of metal oxide nanoparticles using novel descriptors. Rsc Adv. 2016;6(31):25766–25775.
  • Du QS, Huang RB, Chou KC. Recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design. Curr Protein Pept Sci. 2008;9(3):248–260.
  • Du QS, Wei YT, Pang ZW, et al. Predicting the affinity of epitope-peptides with class I MHC molecule HLA-A*0201: an application of amino acid-based peptide prediction. Protein Eng Des Sel. 2007;20(9):417–423.
  • Ravichandran Veerasamy HRAJ. Validation of QSAR models-strategies and importance. Int J Drug Des Discov. 2011;3(2):511–519.
  • Baumann D, Baumann K. Reliable estimation of prediction errors for QSAR models under model uncertainty using double cross-validation. J Cheminformatics. 2014;6(1):1–19.
  • Pratim RP, Paul S, Mitra I, et al. On two novel parameters for validation of predictive QSAR models. Molecules. 2009;14(5):1660–1701.
  • Chen Q, Wu L, Liu W, et al. Enhanced QSAR model performance by integrating structural and gene expression information. Molecules. 2013;18(9):10789–10801.
  • Wang W, Kim MT, Sedykh A, et al. Developing enhanced blood–brain barrier permeability models: integrating external Bio-Assay data in QSAR modeling. Pharm Res-Dordr. 2015;32(9):1–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.