215
Views
16
CrossRef citations to date
0
Altmetric
Review

Docking studies for melatonin receptors

, , &
Pages 241-248 | Received 13 Sep 2017, Accepted 15 Dec 2017, Published online: 22 Dec 2017

References

  • Mori W, Lerner AB. A microscopic bioassay for melatonin. Endocrinology. 1960;67:443–450.
  • Wright MR, Lerner AB. Action of thyroxine analogues on frog melanocytes. Nature. 1960;185:169–170.
  • Klein DC, Coon SL, Roseboom PH, et al. The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Horm Res. 1997;52:307–357.
  • Tosini G, Owino S, Guillaume JL, et al. Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease. Bioessays. 2014;36(8):778–787.
  • Wurtman RJ, Axelrod J, Phillips LS. Melatonin synthesis in the pineal gland: control by light. Science. 1963;142(3595):1071–1073.
  • Klein DC. Arylalkylamine N-acetyltransferase: “the Timezyme”. J Biol Chem. 2007;282(7):4233–4237.
  • Cazamea-Catalan D, Besseau L, Falcon J, et al. The timing of Timezyme diversification in vertebrates. PLoS One. 2014;9(12):e112380.
  • Rath MF, Coon SL, Amaral FG, et al. Melatonin synthesis: acetylserotonin O-methyltransferase (ASMT) is strongly expressed in a subpopulation of pinealocytes in the male rat pineal gland. Endocrinology. 2016;157(5):2028–2040.
  • Bubenik GA, Brown GM, Uhlir I, et al. Immunohistological localization of N-acetylindolealkylamines in pineal gland, retina and cerebellum. Brain Res. 1974;81(2):233–242.
  • Stefulj J, Hortner M, Ghosh M, et al. Gene expression of the key enzymes of melatonin synthesis in extrapineal tissues of the rat. J Pineal Res. 2001;30(4):243–247.
  • Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;n27(2):101–110.
  • Wess J. Mutational analysis of muscarinic acetylcholine receptors: structural basis of ligand/receptor/G protein interactions. Life Sci. 1993;53(19):1447–1463.
  • Navajas C, Kokkola T, Poso A, et al. A rhodopsin-based model for melatonin recognition at its G protein-coupled receptor. Eur J Pharmacol. 1996;304(1–3):173–183.
  • Reppert SM, Weaver DR, Ebisawa T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron. 1994;13(5):1177–1185.
  • Reppert SM, Weaver DR, Godson C. Melatonin receptors step into the light: cloning and classification of subtypes. Trends Pharmacol Sci. 1996;17(3):100–112.
  • Slaugenhaupt SA, Roca AL, Liebert CB, et al. Mapping of the gene for the Mel1a-melatonin receptor to human chromosome 4 (MTNR1A) and mouse chromosome 8 (Mtnr1a). Genomics. 1995;27(2):355–367.
  • Reppert SM, Godson C, Mahle CD, et al. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci USA. 1995;92(19):8734–8738.
  • Nosjean O, Ferro M, Coge F, et al. Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem. 2000;275(40):31311–31317.
  • Vella F, Ferry G, Delagrange P, et al. NRH:quinone reductase 2: an enzyme of surprises and mysteries. Biochem Pharmacol. 2005;71(1–2):1–12.
  • Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol. 2017;174(14):2409–2421.
  • Reppert SM. Melatonin receptors: molecular biology of a new family of G protein-coupled receptors. J Biol Rhythms. 1997;12(6):528–531.
  • von Gall C, Weaver DR, Kock M, et al. Melatonin limits transcriptional impact of phosphoCREB in the mouse SCN via the Mel1a receptor. Neuroreport. 2000;11(9):1803–1807.
  • Rivara S, Lorenzi S, Mor M, et al. Analysis of structure-activity relationships for MT2 selective antagonists by melatonin MT1 and MT2 receptor models. J Med Chem. 2005;48(12):4049–4060.
  • Vanecek J. Cellular mechanisms of melatonin action. Physiol Rev. 1998;78(3):687–721.
  • Brydon L, Barrett P, Morgan PJ, et al. Investigation of the human Mel 1a melatonin receptor using anti-receptor antibodies. Adv Exp Med Biol. 1999;460:215–220.
  • Petit L, Guardiola B, Delagrange P, et al. [Signaling by melatonin receptors]. Therapie. 1998;53(5):421–428.
  • Tslm ST, Wong JT, Wong YH. CGP 52608-induced cyst formation in dinoflagellates: possible involvement of a nuclear receptor for melatonin. J Pineal Res. 1996;21(2):101–107.
  • Shiu SY, Pang B, Tam CW, et al. Signal transduction of receptor-mediated antiproliferative action of melatonin on human prostate epithelial cells involves dual activation of Galpha(s) and Galpha(q) proteins. J Pineal Res. 2010;49(3):301–311.
  • Chen J, Chen G, Li J, et al. Melatonin attenuates inflammatory response-induced brain edema in early brain injury following a subarachnoid hemorrhage: a possible role for the regulation of pro-inflammatory cytokines. J Pineal Res. 2014;57(3):340–347.
  • Mody SM, Ho MK, Joshi SA, et al. Incorporation of Galpha(z)-specific sequence at the carboxyl terminus increases the promiscuity of galpha(16) toward G(i)-coupled receptors. Mol Pharmacol. 2000;57(1):13–23.
  • Lai FP, Mody SM, Yung LY, et al. Molecular determinants for the differential coupling of Galpha(16) to the melatonin MT1, MT2 and Xenopus Mel1c receptors. J Neurochem. 2002;80(5):736–745.
  • New DC, Tsim ST, Wong YH. G protein-linked effector and second messenger systems involved in melatonin signal transduction. Neurosignals. 2003;12(2):59–70.
  • Ahmed R, Mahavadi S, Al-Shboul O, et al. Characterization of signaling pathways coupled to melatonin receptors in gastrointestinal smooth muscle. Regul Pept. 2013;184:96–103.
  • Lee SJ, Jung YH, Oh SY, et al. Melatonin enhances the human mesenchymal stem cells motility via melatonin receptor 2 coupling with Galphaq in skin wound healing. J Pineal Res. 2014;57(4):393–407.
  • Pala D, Lodola A, Bedini A, et al. Homology models of melatonin receptors: challenges and recent advances. Int J Mol Sci. 2013;14(4):8093–8121.
  • Pala D, Beuming T, Sherman W, et al. Structure-based virtual screening of MT2 melatonin receptor: influence of template choice and structural refinement. J Chem Inf Model. 2013;53(4):821–835.
  • Romera JA, Sánchez-Murcia PA, Alvarez-Builla J, et al. Bases moleculares de la selectividad de ligandos por receptores de melatonina. Dianas. 2013;2:1–8.
  • Grol CJ, Jansen JM. The high affinity melatonin binding site probed with conformationally restricted ligands–II. Homology modeling of the receptor. Bioorg Med Chem. 1996;4(8):1333–1339.
  • Chugunov AO, Farce A, Chavatte P, et al. Differences in binding sites of two melatonin receptors help to explain their selectivity to some melatonin analogs: a molecular modeling study. J Biomol Struct Dyn. 2006;24(2):91–107.
  • Chugunov AO, Chavatte P. Bioinformatics of genome regulation and structure II. In: Nikolay KRH, editors. Lucia.Novosibirsk, Russia. no Milanesi, editor; 2006.
  • Halip LRC, Borota A, Bora A. Insight the binding site of human melatonin MTR1A receptor. Rev Roum Chim. 2015;60(2-3):213–218.
  • Farce A, Chugunov AO, Loge C, et al. Homology modeling of MT1 and MT2 receptors. Eur J Med Chem. 2008;43(9):1926–1944.
  • Ebisawa T, Karne S, Lerner MR, et al. Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proc Natl Acad Sci U S A. 1994;91(13):6133–6137.
  • Marot C, Chavatte P, Morin-Allory L, et al. Pharmacophoric search and 3D-QSAR comparative molecular field analysis studies on agonists of melatonin sheep receptors. J Med Chem. 1998;41(23):4453–4465.
  • Rivara S, Mor M, Silva C, et al. Three-dimensional quantitative structure-activity relationship studies on selected MT1 and MT2 melatonin receptor ligands: requirements for subtype selectivity and intrinsic activity modulation. J Med Chem. 2003;46(8):1429–1439.
  • Rivara S, Diamantini G, Di Giacomo B, et al. Reassessing the melatonin pharmacophore–enantiomeric resolution, pharmacological activity, structure analysis, and molecular modeling of a constrained chiral melatonin analogue. Bioorg Med Chem. 2006;14(10):3383–3391.
  • Mazna P, Obsilova V, Jelinkova I, et al. Molecular modeling of human MT2 melatonin receptor: the role of Val204, Leu272 and Tyr298 in ligand binding. J Neurochem. 2004;91(4):836–842.
  • Mazna P, Berka K, Jelinkova I, et al. Ligand binding to the human MT2 melatonin receptor: the role of residues in transmembrane domains 3, 6, and 7. Biochem Biophys Res Commun. 2005;332(3):726–734.
  • Jacobson KA, Costanzi S. New insights for drug design from the X-ray crystallographic structures of G-protein-coupled receptors. Mol Pharmacol. 2012;82(3):361–371.
  • Spadoni G, Bedini A, Diamantini G, et al. Synthesis, enantiomeric resolution, and structure-activity relationship study of a series of 10,11-dihydro-5H-dibenzo[a,d]cycloheptene MT2 receptor antagonists. ChemMedChem. 2007;2(12):1741–1749.
  • Spadoni G, Bedini A, Lucarini S, et al. Highly potent and selective MT2 melatonin receptor full agonists from conformational analysis of 1-benzyl-2-acylaminomethyl-tetrahydroquinolines. J Med Chem. 2015;58(18):7512–7525.
  • Wan N, Zhang FF, Ju J, et al. Investigational selective melatoninergic ligands for receptor subtype MT2. Mini Rev Med Chem. 2013;13(10):1462–1474.
  • Conway S, Drew JE, Mowat ES, et al. Chimeric melatonin mt1 and melatonin-related receptors. Identification of domains and residues participating in ligand binding and receptor activation of the melatonin mt1 receptor. J Biol Chem. 2000;275(27):20602–20609.
  • Conway S, Canning SJ, Barrett P, et al. The roles of valine 208 and histidine 211 in ligand binding and receptor function of the ovine Mel1a beta melatonin receptor. Biochem Biophys Res Commun. 1997;239:418–423.
  • Kokkola T, Watson MA, White J, et al. Mutagenesis of human Mel1a melatonin receptor expressed in yeast reveals domains important for receptor function. Biochem Biophys Res Commun. 1998;249:531–536.
  • Gubitz AK, Reppert SM. Chimeric and point-mutated receptors reveal that a single glycine residue in transmembrane domain 6 is critical for high affinity melatonin binding. Endocrinology. 2000;141(3):1236–1244.
  • Kokkola T, Foord SM, Watson MA, et al. Important amino acids for the function of the human MT1 melatonin receptor. Biochem Pharmacol. 2003;65:1463–1471.
  • Almaula N, Ebersole BJ, Ballesteros JA, et al. Contribution of a helix 5 locus to selectivity of hallucinogenic and nonhallucinogenic ligands for the human 5-hydroxytryptamine2A and 5-hydroxytryptamine2C receptors: direct and indirect effects on ligand affinity mediated by the same locus. Mol Pharmacol. 1996;50:34–42.
  • Wetzel JM, Salon JA, Tamm JA, et al. Modeling and mutagenesis of the human alpha 1a-adrenoceptor: orientation and function of transmembrane helix V sidechains. Recept Channels. 1996;4:165–177.
  • Conway S, Mowat ES, Drew JE, et al. Serine residues 110 and 114 are required for agonist binding but not antagonist binding to the melatonin MT1 receptor. Biochem Biophys Res Commun. 2001;282:1229–1236.
  • Zuscik MJ, Porter JE, Gaivin R, et al. Identification of a conserved switch residue responsible for selective constitutive activation of the β2-adrenergic receptor. J Biol Chem. 1998;273:3401–3407.
  • Kam KWL, New DC, Wong YH. Constitutive activation of the opioid receptor-like (ORL1) receptor by mutation of Asn133 to tryptophan in the third transmembrane region. J Neurochem. 2002;83:1461–1470.
  • Braden MR, Nichols DE. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol Pharmacol. 2007;72:1200–1209.
  • Pollock NJ, Manelli AM, Hutchins CW, et al. Serine mutations in transmembrane V of the dopamine D1 receptor affect ligand interactions and receptor activation. J Biol Chem. 1992;267:17780–17786.
  • Gerdin MJ, Mseeh F, Dubocovich ML. Mutagenesis studies of the human MT2 melatonin receptor. Biochem Pharmacol. 2003;66:315–320.
  • Zlotos DP, Jockers R, Cecon E, et al. MT1 and MT2 melatonin receptors: ligands, models, oligomers, and therapeutic potential. J Med Chem. 2014;57(8):3161–3185.
  • Campos Costa I, Nogueira Carvalho H, Fernandes L. Aging, circadian rhythms and depressive disorders: a review. Am J Neurodegener Dis. 2013;29:228–246.
  • Reiter RJ, Tan DX, Galano A. Melatonin: exceeding expectations. Physiology (Bethesda). 2014;29(5):325–333.
  • Pintor J, Peláez T, Hoyle CH, et al. Ocular hypotensive effects of melatonin receptor agonists in the rabbit: further evidence for an MT3 receptor. Br J Pharmacol. 2003;138(5):831–836.
  • Proietti S, Cucina A, Reiter RJ, et al. Molecular mechanisms of melatonin’s inhibitory actions on breast cancer. Cell Mol Life Sci. 2013;70:2139–2157.
  • Mao L, Dauchy RT, Blask DE, et al. Circadian gating of epithelial-to-mesenchymal transition in breast cancer cells via melatonin-regulation of GSK3. Mol Endocrinol. 2012;26:1808–1820.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.