720
Views
20
CrossRef citations to date
0
Altmetric
Review

Novel models for Parkinson’s disease and their impact on future drug discovery

, & ORCID Icon
Pages 229-239 | Received 08 Nov 2017, Accepted 12 Jan 2018, Published online: 24 Jan 2018

References

  • Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. 2016;15:1257–1272.
  • Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68:384–386.
  • Bach J-P, Ziegler U, Deuschl G, et al. Projected numbers of people with movement disorders in the years 2030 and 2050. Mov Disord. 2011;26:2286–2290.
  • Verstraeten A, Theuns J, Van Broeckhoven C. Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet. 2015;31:140–149.
  • L V K, Lang AE. Parkinson’s disease. Lancet. 2015;386:896–912.
  • Blesa J, Trigo-Damas I, Dileone M, et al. Compensatory mechanisms in Parkinson’s disease: circuits adaptations and role in disease modification. Exp Neurol. 2017;298(Pt B):148-161.
  • Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci. 2017;18:435–450.
  • LeWitt PA, Fahn S. Levodopa therapy for Parkinson disease: table. Neurology. 2016;86:S3–S12.
  • Blesa J, Przedborski S. Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front Neuroanat. 2014;8:155.
  • Falkenburger BH, Saridaki T, Dinter E. Cellular models for Parkinson’s disease. J Neurochem. 2016;139:121–130.
  • Torrent R, De Angelis Rigotti F, Dell’Era P, et al. Using iPS cells toward the understanding of Parkinson’s disease. J Clin Med. 2015;4:548–566.
  • Lázaro DF, Pavlou MAS, Outeiro TF. Cellular models as tools for the study of the role of alpha-synuclein in Parkinson’s disease. Exp Neurol. 2017;298(Pt B):162-171.
  • Flierl A, Oliveira LMA, Falomir-Lockhart LJ, et al. Higher vulnerability and stress sensitivity of neuronal precursor cells carrying an alpha-synuclein gene triplication. Lewis P, editor. PLoS One. 2014;9:e112413.
  • Soldner F, Stelzer Y, Shivalila CS, et al. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature. 2016;533:95–99.
  • Chung CY, Khurana V, Auluck PK, et al. Identification and rescue of -synuclein toxicity in Parkinson patient-derived neurons. Sci (80-). 2013;342:983–987.
  • Aflaki E, Borger DK, Moaven N, et al. A new glucocerebrosidase chaperone reduces – synuclein and glycolipid levels in iPSC-derived dopaminergic neurons from patients with gaucher disease and parkinsonism. J Neurosci. 2016;36:7441–7452.
  • Ryan SD, Dolatabadi N, Chan SF, et al. Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription. Cell. 2013;155:1351–1364.
  • Tardiff DF, Jui NT, Khurana V, et al. Yeast reveal a “Druggable” Rsp5/Nedd4 network that ameliorates – synuclein toxicity in neurons. Sci (80-). 2013;342:979–983.
  • Fruhmann G, Seynnaeve D, Zheng J, et al. Yeast buddies helping to unravel the complexity of neurodegenerative disorders. Mech Ageing Dev. 2017;161:288–305.
  • Volpicelli-Daley LA, Luk KC, Patel TP, et al. Exogenous α-synuclein fibrils induce lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 2011;72:57–71.
  • Karimi M, Bahrami S, Mirshekari H, et al. Microfluidic systems for stem cell-based neural tissue engineering. Lab Chip. 2016;16:2551–2571.
  • Wichmann T, Bergman H, DeLong MR. Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research. J Neural Transm. 2017.
  • Vermilyea SC, Emborg ME. The role of nonhuman primate models in the development of cell-based therapies for Parkinson’s disease. J Neural Transm. 2017;1–20.  doi: 10.1007/s00702-017-1708-9. [Epub ahead of print].
  • Van Kampen JM, Baranowski DC, Robertson HA, et al. The progressive BSSG rat model of Parkinson’s: recapitulating multiple key features of the human disease. PLoS One. 2015;10:e0139694.
  • Segura-Aguilar J. Aminochrome as preclinical model for Parkinson’s disease. Oncotarget. 2017;8.
  • Koprich JB, Kalia LV, Brotchie JM. Animal models of α-synucleinopathy for Parkinson disease drug development. Nat Rev Neurosci. 2017;18:515–529.
  • Dehay B, Bourdenx M, Gorry P, et al. Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol. 2015;14:855–866.
  • Braak H, Del Tredici K, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.
  • Brundin P, Melki R. Prying into the prion hypothesis for Parkinson’s disease. J Neurosci. 2017;37:9808–9818.
  • Chesselet M-F, Richter F, Zhu C, et al. A progressive mouse model of Parkinson’s disease: the Thy1-aSyn (“Line 61”) mice. Neurotherapeutics. 2012;9:297–314.
  • Van der Perren A, Van Den Haute C, Viral Vector-Basedmodels of Parkinson’s disease. Curr Top Behav Neurosci. 2015;22:271–301.
  • Shahaduzzaman M, Nash K, Hudson C, et al. Anti-human α-synuclein N-terminal peptide antibody protects against dopaminergic cell death and ameliorates behavioral deficits in an AAV-α-synuclein rat model of Parkinson’s disease. PLoS One. 2015;10:e0116841.
  • Rocha EM, Smith GA, Park E, et al. Glucocerebrosidase gene therapy prevents α-synucleinopathy of midbrain dopamine neurons. Neurobiol Dis. 2015;82:495–503.
  • He Q, Koprich JB, Wang Y, et al. Treatment with trehalose prevents behavioral and neurochemical deficits produced in an AAV α-synuclein rat model of Parkinson’s disease. Mol Neurobiol. 2016;53:2258–2268.
  • Qin H, Buckley JA, Li X, et al. Inhibition of the JAK/STAT pathway protects against α-synuclein-induced neuroinflammation and dopaminergic neurodegeneration. J Neurosci. 2016;36:5144–5159.
  • Van der Perren A, Macchi F, Toelen J, et al. FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an α-synuclein-based rat model for Parkinson’s disease. Neurobiol Aging. 2015;36:1559–1568.
  • Niu Y, Guo X, Chen Y, et al. Early Parkinson’s disease symptoms in -synuclein transgenic monkeys. Hum Mol Genet. 2015;24:2308–2317.
  • Yang W, Wang G, Wang C-E, et al. Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain. J Neurosci. 2015;35:8345–8358.
  • Koprich JB, Johnston TH, Reyes G, et al. Towards a non-human primate model of alpha-synucleinopathy for development of therapeutics for Parkinson’s disease: optimization of AAV1/2 delivery parameters to drive sustained expression of alpha synuclein and dopaminergic degeneration in macaque. Tansey MG, editor. PLoS One. 2016;11:e0167235.
  • Eslamboli A, Romero-Ramos M, Burger C, et al. Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain. Brain. 2007;130:799–815.
  • Luk KC, Kehm V, Carroll J, et al. Pathological-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Sci (80-). 2012;338:949–953.
  • Recasens A, Dehay B, Bové J, et al. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. 2014;75:351–362.
  • Shimozawa A, Ono M, Takahara D, et al. Propagation of pathological α-synuclein in marmoset brain. Acta Neuropathol Commun. 2017;5:12.
  • Recasens A, Ulusoy A, Kahle PJ, et al. In vivo models of alpha-synuclein transmission and propagation. Cell Tissue Res. 2017.
  • Hinkle KM, Yue M, Behrouz B, et al. LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors. Mol Neurodegener. 2012;7:25.
  • Herzig MC, Kolly C, Persohn E, et al. LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum Mol Genet. 2011;20:4209–4223.
  • Ramonet D, Daher JPL, Lin BM, et al. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One. 2011;6:e18568.
  • Shaikh KT, Yang A, Youshin E, et al. Transgenic LRRK2 (R1441G) rats-a model for Parkinson disease? PeerJ. 2015;3:e945.
  • Goldberg MS, Fleming SM, Palacino JJ, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem. 2003;278:43628–43635.
  • von Coelln R, Dawson VL, Dawson TM. Parkin-associated Parkinson’s disease. Cell Tissue Res. 2004;318:175–184.
  • Kitada T, Pisani A, Karouani M, et al. Impaired dopamine release and synaptic plasticity in the striatum of parkin-/- mice. J Neurochem. 2009;110:613–621.
  • Lu X-H, Fleming SM, Meurers B, et al. Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase k-resistant -synuclein. J Neurosci. 2009;29:1962–1976.
  • A-S VR, Lobbestael E, Van der Perren A, et al. Long-term overexpression of human wild-type and T240R mutant Parkin in rat substantia nigra induces progressive dopaminergic neurodegeneration. J Neuropathol Exp Neurol. 2014;73:159–174.
  • Goldberg MS, Pisani A, Haburcak M, et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron. 2005;45:489–496.
  • Aron L, Klein P, Pham TT, et al. Pro-survival role for Parkinson’s associated gene DJ-1 revealed in trophically impaired dopaminergic neurons. Davies A, editor. PLoS Biol. 2010;8:e1000349.
  • Rousseaux MWC, Marcogliese PC, Qu D, et al. Progressive dopaminergic cell loss with unilateral-to-bilateral progression in a genetic model of Parkinson disease. Proc Natl Acad Sci U S A. 2012;109:15918–15923.
  • Gispert S, Ricciardi F, Kurz A, et al. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One. 2009;4:e5777.
  • Akundi RS, Huang Z, Eason J, et al. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS One. 2011;6:e16038.
  • Schultheis PJ, Fleming SM, Clippinger AK, et al. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits. Hum Mol Genet. 2013;22:2067–2082.
  • Kett LR, Stiller B, Bernath MM, et al. α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. J Neurosci. 2015;35:5724–5742.
  • Wang K, Tang X, Liu Y, et al. Efficient generation of orthologous point mutations in pigs via CRISPR-assisted SSODN-mediated homology-directed repair. Mol Ther Nucleic Acids. 2016;5:e396.
  • Zhou X, Xin J, Fan N, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci. 2015;72:1175–1184.
  • Nishiyama J, Mikuni T, Yasuda R. Virus-mediated genome editing via homology-directed repair in mitotic and postmitotic cells in mammalian brain. Neuron. 2017;96:755–768.e5.
  • Mikkelsen M, Møller A, Jensen LH, et al. MPTP-induced Parkinsonism in minipigs: a behavioral, biochemical, and histological study. Neurotoxicol Teratol. 1999;21:169–175.
  • Vanhauwaert R, Verstreken P. Flies with Parkinson’s disease. Exp Neurol. 2015;274:42–51.
  • Martinez BA, Caldwell KA, Caldwell GAC. Elegans as a model system to accelerate discovery for Parkinson disease. Curr Opin Genet Dev. 2017;44:102–109.
  • Braungart E, Gerlach M, Riederer P, et al. Caenorhabditis elegans MPP+ model of Parkinson’s disease for high-throughput drug screenings. Neurodegener Dis. 2004;1:175–183.
  • Dhungel N, Eleuteri S, Li L, et al. Parkinson’s disease genes VPS35 and EIF4G1 interact genetically and converge on α-synuclein. Neuron. 2015;85:76–87.
  • van Ham TJ, Thijssen KL, Breitling R, et al. C. Elegans model identifies genetic modifiers of α-synuclein inclusion formation during aging. Kim SK, editor. PLoS Genet. 2008;4:e1000027.
  • Kuwahara T, Tonegawa R, Ito G, et al. Phosphorylation of α-synuclein protein at Ser-129 reduces neuronal dysfunction by lowering its membrane binding property in Caenorhabditis elegans. J Biol Chem. 2012;287:7098–7109.
  • Hamamichi S, Rivas RN, Knight AL, et al. Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci. 2008;105:728–733.
  • Nass R, Hahn MK, Jessen T, et al. A genetic screen in Caenorhabditis elegans for dopamine neuron insensitivity to 6-hydroxydopamine identifies dopamine transporter mutants impacting transporter biosynthesis and trafficking. J Neurochem. 2005;94:774–785.
  • Cao S, Gelwix CC, Caldwell KA, et al. Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J Neurosci. 2005;25:3801–3812.
  • Tyson T, Senchuk M, Cooper JF, et al. Novel animal model defines genetic contributions for neuron-to-neuron transfer of α-synuclein. Sci Rep. 2017;7:7506.
  • Gonzales DL, Badhiwala KN, Vercosa DG, et al. Scalable electrophysiology in intact small animals with nanoscale suspended electrode arrays. Nat Nanotechnol. 2017;12:684–691.
  • Feany MB, Bender WWA. Drosophila model of Parkinson’s disease. Nature. 2000;404:394–398.
  • Molina-Mateo D, Fuenzalida-Uribe N, Hidalgo S, et al. Characterization of a presymptomatic stage in a Drosophila Parkinson’s disease model: unveiling dopaminergic compensatory mechanisms. Biochim Biophys Acta Mol Basis Dis. 2017;1863:2882–2890.
  • Sanz FJ, Solana-Manrique C, Muñoz-Soriano V, et al. Identification of potential therapeutic compounds for Parkinson’s disease using Drosophila and human cell models. 2017;108:683–691.
  • Faust K, Gehrke S, Yang Y, et al. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson’s disease. BMC Neurosci. 2009;10:109.
  • Auluck PK, Chan HYE, Trojanowski JQ, et al. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science. 2002;295:865–868.
  • Auluck PK, Meulener MC, Bonini NM. Mechanisms of suppression of {alpha}-synuclein neurotoxicity by geldanamycin in Drosophila. J Biol Chem. 2005;280:2873–2878.
  • Klein P, Muller-Rischart AK, Motori E, et al. Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants. Embo J. 2014;33:341–355.
  • Tain LS, Mortiboys H, Tao RN, et al. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat Neurosci. 2009;12:1129–1135.
  • Valenzano DR, Benayoun BA, Singh PP, et al. The African turquoise killifish genome provides insights into evolution and genetic architecture of lifespan. Cell. 2015;163:1539–1554.
  • Smith P, Willemsen D, Popkes M, et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. Elife. 2017;6. doi: 10.7554/eLife.27014.
  • Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167:1469–1480.e12.
  • Rink E, Wullimann MF. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res. 2001;889:316–330.
  • Rink E, Wullimann MF. Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res. 2004;1011:206–220.
  • Matsui H, Takahashi R. Parkinson’s disease pathogenesis from the viewpoint of small fish models. J Neural Transm. 2018;125(1):25-33.
  • Matsui H, Taniguchi Y, Inoue H, et al. A chemical neurotoxin, MPTP induces Parkinson’s disease like phenotype, movement disorders and persistent loss of dopamine neurons in medaka fish. Neurosci Res (N Y). 2009;65:263–271.
  • Matsui H, Taniguchi Y, Inoue H, et al. Loss of PINK1 in medaka fish (Oryzias latipes) causes late-onset decrease in spontaneous movement. Neurosci Res (N Y). 2010;66:151–161.
  • Jay M, De Faveri F, McDearmid JR. Firing Dynamics and modulatory actions of supraspinal dopaminergic neurons during zebrafish locomotor behavior. Curr Biol. 2015;25:435–444.
  • Zhang Y, Nguyen DT, Olzomer EM, et al. Rescue of pink1 deficiency by stress-dependent activation of autophagy. Cell Chem Biol. 2017;24:471–480.e4.
  • Pagonabarraga J, Kulisevsky J, Strafella AP, et al. Apathy in Parkinson’s disease: clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol. 2015;14:518–531.
  • Aarsland D, Creese B, Politis M, et al. Cognitive decline in Parkinson disease. Nat Rev Neurol. 2017;13:217–231.
  • Titova N, Ah V S, Chaudhuri KR, et al. Nonmotor symptoms in experimental models of Parkinson’s disease. Int Rev Neurobiol. 2017;133:63–89.
  • McDowell K, Chesselet M-F. Animal models of the non-motor features of Parkinson’s disease. Neurobiol Dis. 2012;46:597–606.
  • Jellinger KA. Neuropathobiology of non-motor symptoms in Parkinson disease. J Neural Transm. 2015;122:1429–1440.
  • Breuer ME, Groenink L, Oosting RS, et al. Antidepressant effects of pramipexole, a dopamine D3/D2 receptor agonist, and 7-OH-DPAT, a dopamine D3 receptor agonist, in olfactory bulbectomized rats. Eur J Pharmacol. 2009;616:134–140.
  • Baumann A, Moreira CG, Morawska MM, et al. Preliminary evidence of apathetic-like behavior in aged vesicular monoamine transporter 2 deficient mice. Front Hum Neurosci. 2016;10:587.
  • Oertel WH. Recent advances in treating Parkinson’s disease. F1000Research. 2017;6:260.
  • Marques TM, van Rumund A, Kuiperij HB, et al. Biomarkers in cerebrospinal fluid for synucleinopathies, tauopathies, and other neurodegenerative disorders. Handb Clin Neurol. 2017;146:99–113.
  • Tuite P. Brain magnetic resonance imaging (MRI) as a potential biomarker for Parkinson’s disease (PD). Brain Sci. 2017;7:68.
  • Leinenga G, Langton C, Nisbet R, et al. Ultrasound treatment of neurological diseases – current and emerging applications. Nat Rev Neurol. 2016;12:161–174.
  • Nisbet RM, Van der Jeugd A, Leinenga G, et al. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain. 2017;140:1220–1230.
  • Leinenga G, Götz J. Scanning ultrasound removes amyloid- and restores memory in an Alzheimer’s disease mouse model. Sci Transl Med. 2015;7:278ra33–278ra33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.