985
Views
5
CrossRef citations to date
0
Altmetric
Review

Hot-spot analysis for drug discovery targeting protein-protein interactions

&
Pages 327-338 | Received 04 Nov 2017, Accepted 17 Jan 2018, Published online: 29 Jan 2018

References

  • Gershell LJ, Atkins JH. A brief history of novel drug discovery technologies. Nat Rev Drug Discov. 2003;2:321–327.
  • Morrison C. Fresh from the biotech pipeline—2016. Nat Biotechnol. 2017;35:108–112.
  • Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2016;16:19–34.
  • Boezio B, Audouze K, Ducrot P, et al. Network-based approaches in pharmacology. Mol Inform. 2017;36:1–10.
  • Taboureau O, Baell JB, Fernández-Recio J, et al. Established and emerging trends in computational drug discovery in the structural genomics era. Chem Biol. 2012;19:29–41.
  • Zanzoni A, Soler-López M, Aloy P. A network medicine approach to human disease. FEBS Lett. 2009;583:1759–1765.
  • Levy ED, Boeri Erba E, Robinson CV, et al. Assembly reflects evolution of protein complexes. Nature. 2008;453:1262–1265.
  • Wu X, Hasan MA, Chen JY. Pathway and network analysis in proteomics. J Theor Biol. 2014;362:44–52.
  • Hartwell LH, Hopfield JJ, Leibler S, et al. From molecular to modular cell biology. Nature. 1999;402:C47–C52.
  • Pizzuti C, Rombo SE. Algorithms and tools for protein-protein interaction networks clustering, with a special focus on population-based stochastic methods. Bioinformatics. 2014;30:1343–1352.
  • Rolland T, Taşan M, Charloteaux B, et al. A proteome-scale map of the human interactome network. Cell. 2014;159:1212–1226.
  • Venkatesan K, Rual JF, Vazquez A, et al. An empirical framework for binary interactome mapping. Nat Methods. 2009;6:83–90.
  • Rual JF, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature. 2005;437:1173–1178.
  • Mosca R, Céol A, Aloy P. Interactome3D: adding structural details to protein networks. Nat Methods. 2012;10:47–53.
  • Dobson CM. Protein folding and misfolding. Nature. 2003;426:884–890.
  • Garcia-Seisdedos H, Empereur-Mot C, Elad N, et al. Proteins evolve on the edge of supramolecular self-assembly. Nature. 2017;548:244–247.
  • AlQuraishi M, Koytiger G, Jenney A, et al. A multiscale statistical mechanical framework integrates biophysical and genomic data to assemble cancer networks. Nat Genet. 2014;46:1363–1371.
  • Goh K-I, Cusick ME, Valle D, et al. The human disease network. Proc Natl Acad Sci. 2007;104:8685–8690.
  • Goh K-I, Choi I-G. Exploring the human diseasome: the human disease network. Brief Funct Genomics. 2012;11:533–542.
  • Holland DO, Shapiro BH, Xue P, et al. Protein-protein binding selectivity and network topology constrain global and local properties of interface binding networks. Sci Rep. 2017;7:5631.
  • Janjić V, Pržulj N. The core diseasome. Mol Biosyst. 2012;8:2614–2625.
  • Sahni N, Yi S, Taipale M, et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell. 2015;161:647–660.
  • David A, Sternberg MJE. The contribution of missense mutations in core and rim residues of protein-protein interfaces to human disease. J Mol Biol. 2015;427:2886–2898.
  • Kiel C, Beltrao P, Serrano L. Analyzing protein interaction networks using structural information. Annu Rev Biochem. 2008;77:415–441.
  • Fraser JS, Gross JD, Krogan NJ. From systems to structure: bridging networks and mechanism. Mol Cell. 2013;49:222–231.
  • Engin HB, Kreisberg JF, Carter H. Structure-based analysis reveals cancer missense mutations target protein interaction interfaces. PLoS One. 2016;11:e0152929.
  • Vázquez M, Valencia A, Pons T. Structure-PPi: a module for the annotation of cancer-related single-nucleotide variants at protein-protein interfaces. Bioinformatics. 2015;31:2397–2399.
  • Mosca R, Tenorio-Laranga J, Olivella R, et al. dSysMap: exploring the edgetic role of disease mutations. Nat Methods. 2015;12:167–168.
  • Levy ED. A simple definition of structural regions in proteins and its use in analyzing interface evolution. J Mol Biol. 2010;403:660–670.
  • Wells JA, McClendon CL. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature. 2007;450:1001–1009.
  • Barradas-Bautista D, Fernández-Recio J. Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations. PLoS One. 2017;12:e0183643.
  • Halakou F, Kilic ES, Cukuroglu E, et al. Enriching traditional protein-protein interaction networks with alternative conformations of proteins. Sci Rep. 2017;7:7180.
  • David A, Razali R, Wass MN, et al. Protein-protein interaction sites are hot spots for disease-associated nonsynonymous SNPs. Hum Mutat. 2012;33:359–363.
  • Wang X, Wei X, Thijssen B, et al. Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat Biotechnol. 2012;30:159–164.
  • Teng S, Madej T, Panchenko A, et al. Modeling effects of human single nucleotide polymorphisms on protein-protein interactions. Biophys J. 2009;96:2178–2188.
  • Moal IH, Fernández-Recio J. SKEMPI: a structural kinetic and energetic database of mutant protein interactions and its use in empirical models. Bioinformatics. 2012;28:2600–2607.
  • Kucukkal TG, Petukh M, Li L, et al. Structural and physico-chemical effects of disease and non-disease nsSNPs on proteins. Curr Opin Struct Biol. 2015;32:18–24.
  • Yates CM, Sternberg MJE. The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein-protein interactions. J Mol Biol. 2013;425:3949–3963.
  • Clackson T, Wells JA. A hot spot of binding energy in a hormone-receptor interface. Science. 1995;267:383–386.
  • Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol. 1998;280:1–9.
  • Fischer TB, Arunachalam KV, Bailey D, et al. The binding inteference database (BID): a compilation of amino acid hot spots in protein interfaces. Bioinformatics. 2003;19:1453–1454.
  • Cukuroglu E, Engin HB, Gursoy A, et al. Hot spots in protein-protein interfaces: towards drug discovery. Prog Biophys Mol Biol. 2014;116:165–173.
  • Engin HB, Guney E, Keskin O, et al. Integrating structure to protein-protein interaction networks that drive metastasis to brain and lung in breast cancer. PLoS One. 2013;8:e81035.
  • Li P, Banjade S, Cheng H-C, et al. Phase transitions in the assembly of multivalent signalling proteins. Nature. 2012;483:336–340.
  • Noree C, Sato BK, Broyer RM, et al. Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster. J Cell Biol. 2010;190:541–551.
  • Narayanaswamy R, Levy M, Tsechansky M, et al. Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Pnas. 2009;106:10147–10152.
  • Moal IH, Jiménez-Garcíay B, Fernández-Recio J. CCharPPI web server: computational characterization of protein-protein interactions from structure. Bioinformatics. 2015;31:123–125.
  • Morrow JK, Zhang S. Computational prediction of protein hot spot residues. Curr Pharm Des. 2012;18:1255–1265.
  • Fernández-Recio J. Prediction of protein binding sites and hot spots. Wiley Interdiscip Rev Comput Mol Sci. 2011;1:680–698.
  • Assi SA, Tanaka T, Rabbitts TH, et al. PCRPi: presaging critical residues in protein interfaces, a new computational tool to chart hot spots in protein interfaces. Nucleic Acids Res. 2010;38:e86.
  • Bradford JR, Westhead DR. Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics. 2005;21:1487–1494.
  • Lise S, Buchan D, Pontil M, et al. Predictions of hot spot residues at protein-protein interfaces using support vector machines. PLoS One. 2011;6:e16774.
  • Kortemme T, Baker D. A simple physical model for binding energy hot spots in protein-protein complexes. Proc Natl Acad Sci. 2002;99:14116–14121.
  • Schymkowitz J, Borg J, Stricher F, et al. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33:W382–388.
  • Koes DR, Camacho CJ. PocketQuery: protein-protein interaction inhibitor starting points from protein-protein interaction structure. Nucleic Acids Res. 2012;40:387–392.
  • Pavelka A, Chovancova E, Damborsky J. HotSpot wizard: a web server for identification of hot spots in protein engineering. Nucleic Acids Res. 2009;37:376–383.
  • Krüger DM, Garzón JI, Montes PC, et al. Predicting protein-protein interactions with DrugScorePPI: fully-flexible docking, scoring, and in silico alanine-scanning. J Cheminform. 2011;3(Suppl 1):P36.
  • Geppert T, Hoy B, Wessler S, et al. Context-based identification of protein-protein interfaces and “hot-spot” residues. Chem Biol. 2011;18:344–353.
  • Shingate P, Manoharan M, Sukhwal A, et al. ECMIS: computational approach for the identification of hotspots at protein-protein interfaces. BMC Bioinformatics. 2014;15:303.
  • Segura J, Fernandez-Fuentes N. PCRPi-DB: a database of computationally annotated hot spots in protein interfaces. Nucleic Acids Res. 2011;39:D755–D760.
  • Neuvirth H, Raz R, Schreiber G. ProMate: a structure based prediction program to identify the location of protein-protein binding sites. J Mol Biol. 2004;338:181–199.
  • Liang S, Zhang C, Liu S, et al. Protein binding site prediction using an empirical scoring function. Nucleic Acids Res. 2006;34:3698–3707.
  • Chen H, Zhou HX. Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data. Proteins. 2005;61:21–35.
  • Kuntz ID, Blaney JM, Oatley SJ, et al. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982;161:269–288.
  • Schneidman-Duhovny D, Inbar Y, Nussinov R, et al. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 2005;33:W363–367.
  • Gabb HA, Jackson RM, Sternberg MJE. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol. 1997;272:106–120.
  • Chen R, Li L, Weng Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins. 2003;52:80–87.
  • Redington PK. MOLFIT: a computer program for molecular superposition. Comput Chem. 1992;16:217–222.
  • Katchalski-Katzir E, Shariv I, Eisenstein M, et al. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A. 1992;89:2195–2199.
  • Fernández-Recio J, Totrov M, Abagyan R. Identification of protein-protein interaction sites from docking energy landscapes. J Mol Biol. 2004;335:843–865.
  • Dominguez C, Boelens R, Bonvin AMJJ. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc. 2003;125:1731–1737.
  • Lyskov S, Gray JJ. The RosettaDock server for local protein-protein docking. Nucleic Acids Res. 2008;36:W233–238.
  • Moal IH, Bates PA. SwarmDock and the use of normal modes in protein-protein docking. Int J Mol Sci. 2010;11:3623–3648.
  • Jiménez-García B, Roel-Touris J, Romero-Durana M, et al. LightDock: a new multi-scale approach to protein–protein docking. Bioinformatics. 2018;34:49-55.
  • Cheng TM, Blundell TL, Fernández-Recio J. pyDock: electrostatics and desolvation for effective scoring of rigid-body protein–protein docking. Proteins. 2007;68:503–515.
  • Pierce B, Weng Z. ZRANK: reranking protein docking predictions with an optimized energy function. Proteins. 2007;67:1078–1086.
  • Pons C, Talavera D, de La Cruz X, et al. Scoring by intermolecular pairwise propensities of exposed residues (SIPPER): a new efficient potential for protein-protein docking. J Chem Inf Model. 2011;51:370–377.
  • Andrusier N, Nussinov R, Wolfson HJ. FireDock: fast interaction refinement in molecular docking. Proteins. 2007;69:139–159.
  • Lensink MF, Wodak SJ. Docking and scoring protein interactions: CAPRI 2009. Proteins. 2010;78:3073–3084.
  • Grosdidier S, Fernández-Recio J. Identification of hot-spot residues in protein-protein interactions by computational docking. BMC Bioinformatics. 2008;9:447.
  • Vidal M, Cusick ME, Barabási A-L. Interactome networks and human disease. Cell. 2011;144:986–998.
  • Kiel C, Serrano L. Structure-energy-based predictions and network modelling of RASopathy and cancer missense mutations. Mol Syst Biol. 2014;10:727.
  • Makley LN, Gestwicki JE. Expanding the number of “Druggable” targets: non-enzymes and protein-protein interactions. Chem Biol Drug Des. 2014;81:22–32.
  • Higueruelo AP, Schreyer A, Bickerton GRJ, et al. Atomic interactions and profile of small molecules disrupting protein-protein interfaces: the TIMBAL database. Chem Biol Drug Des. 2009;74:457–467.
  • Basse MJ, Betzi S, Bourgeas R, et al. 2P2Idb: a structural database dedicated to orthosteric modulation of protein–protein interactions. Nucleic Acids Res. 2013;41:D824–D827.
  • Labbé CM, Laconde G, Kuenemann MA, et al. IPPI-DB: A manually curated and interactive database of small non-peptide inhibitors of protein-protein interactions. Drug Discov Today. 2013;18:958–968.
  • Labbé CM, Kuenemann MA, Zarzycka B, et al. IPPI-DB: an online database of modulators of protein-protein interactions. Nucleic Acids Res. 2016;44:D542–D547.
  • Zhang MQ, Wilkinson B. Drug discovery beyond the “rule-of-five”. Curr Opin Biotechnol. 2007;18:478–488.
  • Scott DE, Bayly AR, Abell C, et al. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat Rev Drug Discov. 2016;15:533–550.
  • Shin WH, Christoffer CW, Kihara D. In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Methods. 2017;131:22–32.
  • Vellani V, Giacomoni C. Gabapentin inhibits protein kinase C epsilon translocation in cultured sensory neurons with additive effects when coapplied with paracetamol (acetaminophen). Sci World J. 2017;2017:3595903.
  • Pérot S, Regad L, Reynès C, et al. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction. PLoS One. 2013;8:e63730.
  • Eyrisch S, Helms V. Transient pockets on protein surfaces involved in protein-protein interaction. J Med Chem. 2007;50:3457–3464.
  • Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009;10:168.
  • Brady GP Jr, Stouten PFW. Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des. 2000;14:383–401.
  • Laurie ATR, Jackson RM. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics. 2005;21:1908–1916.
  • Degac J, Winter U, Helms V. Graph-based clustering of predicted ligand-binding pockets on protein surfaces. J Chem Inf Model. 2015;55:1944–1952.
  • Li H, Liu A, Zhao Z, et al. Fragment-based drug design and drug repositioning using multiple ligand simultaneous docking (MLSD): identifying celecoxib and template compounds as novel inhibitors of signal transducer and activator of transcription 3 (STAT3). J Med Chem. 2011;54:5592–5596.
  • Fuller JC, Burgoyne NJ, Jackson RM. Predicting druggable binding sites at the protein-protein interface. Drug Discov Today. 2009;14:155–161.
  • Arkin MR, Tang Y, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing towards the reality. Chem Biol. 2014;21:1102–1114.
  • Johnson DK, Karanicolas J. Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface. PLoS Comput Biol. 2013;9:e1002951.
  • Kozakov D, Hall DR, Chuang G-Y, et al. Structural conservation of druggable hot spots in protein-protein interfaces. Proc Natl Acad Sci. 2011;108:13528–13533.
  • Jubb H, Blundell TL, Ascher DB. Flexibility and small pockets at protein-protein interfaces: new insights into druggability. Prog Biophys Mol Biol. 2015;119:2–9.
  • London N, Raveh B, Schueler-Furman O. Druggable protein-protein interactions – from hot spots to hot segments. Curr Opin Chem Biol. 2013;17:952–959.
  • Guo W, Wisniewski JA, Ji H. Hot spot-based design of small-molecule inhibitors for protein-protein interactions. Bioorganic Med Chem Lett. 2014;24:2546–2554.
  • Metz A, Pfleger C, Kopitz H, et al. Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface. J Chem Inf Model. 2012;52:120–133.
  • Geppert T, Bauer S, Hiss JA, et al. Immunosuppressive small molecule discovered by structure-based virtual screening for inhibitors of protein-protein interactions. Angew Chem Int Ed. 2012;51:258–261.
  • Winter A, Higueruelo AP, Marsh M, et al. Biophysical and computational fragment-based approaches to targeting protein–protein interactions: applications in structure-guided drug discovery. Q Rev Biophys. 2012;4:1–44.
  • Bai F, Morcos F, Cheng RR, et al. Elucidating the druggable interface of protein-protein interactions using fragment docking and coevolutionary analysis. Proc Natl Acad Sci U S A. 2016;113:E8051–E8058.
  • Li H, Kasam V, Tautermann CS, et al. Computational method to identify druggable binding sites that target protein-protein interactions. J Chem Inf Model. 2014;54:1391–1400.
  • Andrei SA, Sijbesma E, Hann M, et al. Stabilization of protein-protein interactions in drug discovery. Expert Opin Drug Discov. 2017;12:925–940.
  • Cimermancic P, Weinkam P, Rettenmaier TJ, et al. CryptoSite: expanding the druggable proteome by characterization and prediction of cryptic binding sites. J Mol Biol. 2016;428:709–719.
  • Schmidtke P, Bidon-Chanal A, Luque FJ, et al. MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics. 2011;27:3276–3285.
  • Petrek M, Otyepka M, Banás P, et al. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics. 2006;7:316.
  • Stockwell BR, Schreiber SL. TGF-β-signaling with small molecule FKBP12 antagonists that bind myristoylated FKBP12-TGF-β type I receptor fusion proteins. Chem Biol. 1998;5:385–395.
  • Sunaga N, Kaira K, Tomizawa Y, et al. Clinicopathological and prognostic significance of interleukin-8 expression and its relationship to KRAS mutation in lung adenocarcinoma. Br J Cancer. 2014;110:2047–2053.
  • Wilson CGM, Arkin MR. Small-molecule inhibitors of IL-2/IL-2R: lessons learned and applied. Curr Top Microbiol Immunol. 2011;348:25–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.