439
Views
2
CrossRef citations to date
0
Altmetric
Review

The development of biological therapies for neurological diseases: moving on from previous failures

&
Pages 283-293 | Received 14 Dec 2017, Accepted 01 Feb 2018, Published online: 07 Feb 2018

References

  • Ferro A, Boyce M. Biological therapies: a long way on from Jenner. Br J Clin Pharmacol. 2013 Aug;76(2):161–163. PubMed PMID: 23879267; PubMed Central PMCID: PMC3731591. DOI:10.1111/bcp.12202.
  • Morrissey KM, Yuraszeck TM, Li CC, et al. Immunotherapy and novel combinations in oncology: current landscape, challenges, and opportunities. Clin Transl Sci. 2016 Apr;9(2):89–104. PubMed PMID: 26924066; PubMed Central PMCID: PMC5351311. DOI:10.1111/cts.12391
  • Freskgard PO, Urich E. Antibody therapies in CNS diseases. Neuropharmacology. 2017 Jul 01;120:38–55. PubMed PMID: 26972827. DOI:10.1016/j.neuropharm.2016.03.014.
  • Mao AS, Mooney DJ. Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):14452–14459. PubMed PMID: 26598661; PubMed Central PMCID: PMC4664309. DOI:10.1073/pnas.1508520112.
  • Naldini L. Gene therapy returns to centre stage. Nature. 2015 Oct 15;526(7573):351–360. PubMed PMID: 26469046. DOI:10.1038/nature15818.
  • Choong CJ, Baba K, Mochizuki H. Gene therapy for neurological disorders. Expert Opin Biol Ther. 2016;162:143–159. PubMed PMID: 26642082. DOI:10.1517/14712598.2016.1114096.
  • Caselli RJ, Beach TG, Knopman DS, et al. Alzheimer disease: scientific breakthroughs and translational challenges. Mayo Clin Proc. 2017 Jun;92(6):978–994. PubMed PMID: 28578785; PubMed Central PMCID: PMC5536337. DOI:10.1016/j.mayocp.2017.02.011
  • Kumar A, Singh A, Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015 Apr;67(2):195–203. PubMed PMID: 25712639. DOI:10.1016/j.pharep.2014.09.004.
  • Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999 Jul 08;400(6740):173–177. PubMed PMID: 10408445.
  • Orgogozo JM, Gilman S, Dartigues JF, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology. 2003 Jul 08;61(1):46–54. PubMed PMID: 12847155.
  • Gilman S, Koller M, Black RS, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology. 2005 May 10;64(9):1553–1562. PubMed PMID: 15883316. DOI:10.1212/01.WNL.0000159740.16984.3C
  • Winblad B, Andreasen N, Minthon L, et al. Safety, tolerability, and antibody response of active Abeta immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol. 2012 Jul;11(7):597–604. PubMed PMID: 22677258. DOI:10.1016/S1474-4422(12)70140-0
  • Lannfelt L, Relkin NR, Siemers ER. Amyloid-ss-directed immunotherapy for Alzheimer’s disease. J Intern Med. 2014 Mar;275(3):284–295. PubMed PMID: 24605809; PubMed Central PMCID: PMC4238820. DOI:10.1111/joim.12168.
  • Godyn J, Jonczyk J, Panek D, et al. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep. 2016 Feb;68(1):127–138. PubMed PMID: 26721364. DOI:10.1016/j.pharep.2015.07.006
  • Salloway S, Sperling R, Brashear HR. Phase 3 trials of solanezumab and bapineuzumab for Alzheimer’s disease. N Engl J Med. 2014 Apr 10;370(15):1460. PubMed PMID: 24724181.
  • Doody RS, Farlow M, Aisen PS, et al. Phase 3 trials of solanezumab and bapineuzumab for Alzheimer’s disease. N Engl J Med. 2014 Apr 10;370(15):1460. PubMed PMID: 24716687. DOI:10.1056/NEJMc1402193
  • DeMattos RB, Bales KR, Cummins DJ, et al. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8850–8855. PubMed PMID: 11438712; PubMed Central PMCID: PMC37524. DOI:10.1073/pnas.151261398
  • Doody RS, Thomas RG, Farlow M, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014 Jan 23;370(4):311–321. PubMed PMID: 24450890. DOI:10.1056/NEJMoa1312889
  • Underwood E. NEUROSCIENCE. Alzheimer’s amyloid theory gets modest boost. Science. 2015 Jul 31;349(6247):464. PubMed PMID: 26228122. DOI:10.1126/science.349.6247.464.
  • Ostrowitzki S, Deptula D, Thurfjell L, et al. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol. 2012 Feb;69(2):198–207. PubMed PMID: 21987394. DOI:10.1001/archneurol.2011.1538
  • Adolfsson O, Pihlgren M, Toni N, et al. An effector-reduced anti-beta-amyloid (Abeta) antibody with unique abeta binding properties promotes neuroprotection and glial engulfment of Abeta. J Neurosci. 2012 Jul 11;32(28):9677–9689. PubMed PMID: 22787053. DOI:10.1523/JNEUROSCI.4742-11.2012
  • Leyhe T, Andreasen N, Simeoni M, et al. Modulation of beta-amyloid by a single dose of GSK933776 in patients with mild Alzheimer’s disease: a phase I study. Alzheimers Res Ther. 2014;6(2):19. PubMed PMID: 24716469; PubMed Central PMCID: PMC4055052. DOI:10.1186/alzrt249
  • Nilsberth C, Westlind-Danielsson A, Eckman CB, et al. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat Neurosci. 2001 Sep;4(9):887–893. PubMed PMID: 11528419. DOI:10.1038/nn0901-887
  • Hyman BT, Marzloff K, Arriagada PV. The lack of accumulation of senile plaques or amyloid burden in Alzheimer’s disease suggests a dynamic balance between amyloid deposition and resolution. J Neuropathol Exp Neurol. 1993 Nov;52(6):594–600. PubMed PMID: 8229078.
  • Iqbal K, Liu F, Gong CX. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol. 2016 Jan;12(1):15–27. PubMed PMID: 26635213. DOI:10.1038/nrneurol.2015.225.
  • Schroeder SK, Joly-Amado A, Gordon MN, et al. Tau-directed immunotherapy: a promising strategy for treating Alzheimer’s disease and other tauopathies. J Neuroimmune Pharmacol. 2016 Mar;11(1):9–25. 10.1007/s11481-015-9637-6. PubMed PMID: 26538351; PubMed Central PMCID: PMC4746105.
  • Asuni AA, Boutajangout A, Quartermain D, et al. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci. 2007 Aug 22;27(34):9115–9129. PubMed PMID: 17715348. DOI:10.1523/JNEUROSCI.2361-07.2007
  • Theunis C, Crespo-Biel N, Gafner V, et al. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau.P301L mice that model tauopathy. PLoS One. 2013;8(8):e72301. PubMed PMID: 23977276; PubMed Central PMCID: PMC3747157. DOI:10.1371/journal.pone.0072301
  • Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017 Feb;16(2):123–134. PubMed PMID: 27955995. DOI:10.1016/S1474-4422(16)30331-3
  • Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer’s disease. Trends Mol Med. 2015 Jun;21(6):394–402. PubMed PMID: 25846560. DOI:10.1016/j.molmed.2015.03.003.
  • Heath PR, Shaw PJ. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve. 2002 Oct;26(4):438–458. PubMed PMID: 12362409. DOI:10.1002/mus.10186.
  • Mazzini L, Vescovi A, Cantello R, et al. Stem cells therapy for ALS. Expert Opin Biol Ther . 2016;16(2):187–199. PubMed PMID: 26558293. DOI:10.1517/14712598.2016.1116516.
  • Mazzini L, Fagioli F, Boccaletti R, et al. Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003 Sep;4(3):158–161. PubMed PMID: 13129802.
  • Blanquer M, Moraleda JM, Iniesta F, et al. Neurotrophic bone marrow cellular nests prevent spinal motoneuron degeneration in amyotrophic lateral sclerosis patients: a pilot safety study. Stem Cells. 2012 Jun;30(6):1277–1285. PubMed PMID: 22415951. DOI:10.1002/stem.1080
  • The BDNF Study Group (Phase III). A controlled trial of recombinant methionyl human BDNF in ALS: the BDNF Study Group (Phase III). Neurology. 1999 Apr 22;52(7):1427–1433. PubMed PMID: 10227630.
  • Sorenson EJ, Windbank AJ, Mandrekar JN, et al. Subcutaneous IGF-1 is not beneficial in 2-year ALS trial. Neurology. 2008 Nov 25;71(22):1770–1775. PubMed PMID: 19029516; PubMed Central PMCID: PMC2617770. DOI:10.1212/01.wnl.0000335970.78664.36
  • Gothelf Y, Kaspi H, Abramov N, et al. miRNA profiling of NurOwn(R): mesenchymal stem cells secreting neurotrophic factors. Stem Cell Res Ther. 2017 Nov 7;8(1):249. 10.1186/s13287-017-0692-1. PubMed PMID: 29116031; PubMed Central PMCID: PMC5678806.
  • Smith RA, Miller TM, Yamanaka K, et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest. 2006 Aug;116(8):2290–2296. PubMed PMID: 16878173; PubMed Central PMCID: PMC1518790. DOI:10.1172/JCI25424
  • Teng FY, Tang BL. Nogo-A and Nogo-66 receptor in amyotrophic lateral sclerosis. J Cell Mol Med. 2008 Aug;12(4):1199–1204. PubMed PMID: 18419791; PubMed Central PMCID: PMC3865663. DOI:10.1111/j.1582-4934.2008.00351.x.
  • Bros-Facer V, Krull D, Taylor A, et al. Treatment with an antibody directed against Nogo-A delays disease progression in the SOD1G93A mouse model of Amyotrophic lateral sclerosis. Hum Mol Genet. 2014 Aug 15;23(16):4187–4200. PubMed PMID: 24667415. DOI:10.1093/hmg/ddu136
  • Meininger V, Pradat PF, Corse A, et al. Safety, pharmacokinetic, and functional effects of the nogo-a monoclonal antibody in amyotrophic lateral sclerosis: a randomized, first-in-human clinical trial. PLoS One. 2014;9(5):e97803. PubMed PMID: 24841795; PubMed Central PMCID: PMC4026380. DOI:10.1371/journal.pone.0097803
  • Meissner F, Molawi K, Zychlinsky A. Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis. Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13046–13050. PubMed PMID: 20616033; PubMed Central PMCID: PMC2919927. DOI:10.1073/pnas.1002396107.
  • Patin F, Baranek T, Vourc’h P, et al. Combined metabolomics and transcriptomics approaches to assess the IL-6 blockade as a therapeutic of ALS: deleterious alteration of lipid metabolism. Neurotherapeutics. 2016 Oct;13(4):905–917. 10.1007/s13311-016-0461-3. PubMed PMID: 27444617; PubMed Central PMCID: PMC5081117.
  • Maier A, Deigendesch N, Muller K, et al. Interleukin-1 antagonist anakinra in amyotrophic lateral sclerosis–a pilot study. PLoS One. 2015;10(10):e0139684. PubMed PMID: 26444282; PubMed Central PMCID: PMC4596620. DOI:10.1371/journal.pone.0139684
  • Mizwicki MT, Fiala M, Magpantay L, et al. Tocilizumab attenuates inflammation in ALS patients through inhibition of IL6 receptor signaling. Am J Neurodegener Dis. 2012;1(3):305–315. PubMed PMID: 23383400; PubMed Central PMCID: PMC3560466.
  • Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015 Aug 29;386(9996):896–912. PubMed PMID: 25904081. DOI:10.1016/S0140-6736(14)61393-3.
  • Schneeberger A, Mandler M, Mattner F, et al. Vaccination for Parkinson’s disease. Parkinsonism Relat Disord. 2012 Jan;18 Suppl 1:S11–3. PubMed PMID: 22166404. DOI:10.1016/S1353-8020(11)70006-2
  • Takahashi J. Stem cell therapy for Parkinson’s disease. Expert Rev Neurother. 2007 Jun;7(6):667–675. PubMed PMID: 17563250. DOI:10.1586/14737175.7.6.667.
  • Brundin P, Barker RA, Parmar M. Neural grafting in Parkinson’s disease problems and possibilities. Prog Brain Res. 2010;184:265–294. PubMed PMID: 20887880. DOI:10.1016/S0079-6123(10)84014-2
  • Joshi SN, Butler DC, Messer A. Fusion to a highly charged proteasomal retargeting sequence increases soluble cytoplasmic expression and efficacy of diverse anti-synuclein intrabodies. MAbs. 2012 Nov-Dec;4(6):686–693. PubMed PMID: 22929188; PubMed Central PMCID: PMC3502235. DOI:10.4161/mabs.21696.
  • Dong Z, Wolfer DP, Lipp HP, et al. Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther. 2005 Jan;11(1):80–88. PubMed PMID: 15585408. DOI:10.1016/j.ymthe.2004.09.007
  • Dargahi N, Katsara M, Tselios T, et al. Multiple sclerosis: immunopathology and treatment update. Brain Sci. 2017 Jul 07;7(7). PubMed PMID: 28686222; PubMed Central PMCID: PMC5532591.
  • Koch MW, Mostert JP, De Vries JJ, et al. Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology. 2007 Apr 03;68(14):1163; author reply 1163-4. PubMed PMID: 17404207. DOI:10.1212/01.wnl.0000261131.23708.1c
  • Sheremata WA, Minagar A, Alexander JS, et al. The role of alpha-4 integrin in the aetiology of multiple sclerosis: current knowledge and therapeutic implications. CNS Drugs. 2005;19(11):909–922. PubMed PMID: 16268663.
  • Miller DH, Khan OA, Sheremata WA, et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2003 Jan 02;348(1):15–23. PubMed PMID: 12510038. DOI:10.1056/NEJMoa020696
  • Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012 Nov 24;380(9856):1819–1828. PubMed PMID: 23122652. DOI:10.1016/S0140-6736(12)61769-3
  • Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012 Nov 24;380(9856):1829–1839. PubMed PMID: 23122650. DOI:10.1016/S0140-6736(12)61768-1
  • Collongues N, Michel L, De Seze J. Biotherapy in inflammatory diseases of the CNS: current knowledge and applications. Curr Treat Options Neurol. 2017 May;19(5):19. 10.1007/s11940-017-0456-3. PubMed PMID: 28417344.
  • Barth MJ, Mavis C, Czuczman MS, et al. Ofatumumab exhibits enhanced in vitro and in vivo activity compared to rituximab in preclinical models of mantle cell lymphoma. Clin Cancer Res. 2015 Oct 01;21(19):4391–4397. 10.1158/1078-0432.CCR-15-0056. PubMed PMID: 25964296; PubMed Central PMCID: PMC5685505.
  • Sorensen PS, Lisby S, Grove R, et al. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase 2 study. Neurology. 2014 Feb 18;82(7):573–581. PubMed PMID: 24453078. DOI:10.1212/WNL.0000000000000125
  • Burman J, Tolf A, Hagglund H, et al. Autologous haematopoietic stem cell transplantation for neurological diseases. J Neurol Neurosurg Psychiatry. 2017 Sep 02 PubMed PMID: 28866625. DOI:10.1136/jnnp-2017-316271.
  • Sormani MP, Muraro PA, Schiavetti I, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: A meta-analysis. Neurology. 2017 May 30;88(22):2115–2122. PubMed PMID: 28455383. DOI:10.1212/WNL.0000000000003987
  • Llufriu S, Sepulveda M, Blanco Y, et al. Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis. PLoS One. 2014;9(12):e113936. PubMed PMID: 25436769; PubMed Central PMCID: PMC4250058. DOI:10.1371/journal.pone.0113936
  • Yamout B, Hourani R, Salti H, et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol. 2010 Oct 08;227(1–2):185–189. PubMed PMID: 20728948. DOI:10.1016/j.jneuroim.2010.07.013
  • Lobell A, Weissert R, Storch MK, et al. Vaccination with DNA encoding an immunodominant myelin basic protein peptide targeted to Fc of immunoglobulin G suppresses experimental autoimmune encephalomyelitis. J Exp Med. 1998 May 04;187(9):1543–1548. PubMed PMID: 9565646; PubMed Central PMCID: PMC2212261.
  • Bar-Or A, Vollmer T, Antel J, et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch Neurol. 2007 Oct;64(10):1407–1415. PubMed PMID: 17698695. DOI:10.1001/archneur.64.10.nct70002
  • Garren H, Robinson WH, Krasulova E, et al. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Ann Neurol. 2008 May;63(5):611–620. PubMed PMID: 18481290. DOI:10.1002/ana.21370
  • Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999 Sep;22(9):391–397. PubMed PMID: 10441299.
  • Donnan GA, Davis SM. Stroke: expanded indications for stroke thrombolysis–what next? Nat Rev Neurol. 2012 Sep;8(9):482–483. PubMed PMID: 22847384. DOI:10.1038/nrneurol.2012.151.
  • Yu CY, Ng G, Liao P. Therapeutic antibodies in stroke. Transl Stroke Res. 2013 Oct;4(5):477–483. PubMed PMID: 24098313; PubMed Central PMCID: PMC3787786. DOI:10.1007/s12975-013-0281-2.
  • Fu Y, Liu Q, Anrather J, et al. Immune interventions in stroke. Nat Rev Neurol. 2015 Sep;11(9):524–535. PubMed PMID: 26303850; PubMed Central PMCID: PMC4851339. DOI:10.1038/nrneurol.2015.144
  • Zhang J, Chopp M. Cell-based therapy for ischemic stroke. Expert Opin Biol Ther. 2013 Sep;13(9):1229–1240. PubMed PMID: 23738646; PubMed Central PMCID: PMC4005720. DOI:10.1517/14712598.2013.804507.
  • Moniche F, Gonzalez A, Gonzalez-Marcos JR, et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke. 2012 Aug;43(8):2242–2244. PubMed PMID: 22764211. DOI:10.1161/STROKEAHA.112.659409
  • Hess DC, Sila CA, Furlan AJ, et al. A double-blind placebo-controlled clinical evaluation of MultiStem for the treatment of ischemic stroke. Int J Stroke. 2014 Apr;9(3):381–386. PubMed PMID: 23692637. DOI:10.1111/ijs.12065
  • Shyu KG, Chang H, Lin CC. Serum levels of intercellular adhesion molecule-1 and E-selectin in patients with acute ischaemic stroke. J Neurol. 1997 Feb;244(2):90–93. PubMed PMID: 9120502.
  • Huang J, Choudhri TF, Winfree CJ, et al. Postischemic cerebrovascular E-selectin expression mediates tissue injury in murine stroke. Stroke. 2000 Dec;31(12):3047–3053. PubMed PMID: 11108771.
  • Takeda H, Spatz M, Ruetzler C, et al. Induction of mucosal tolerance to E-selectin prevents ischemic and hemorrhagic stroke in spontaneously hypertensive genetically stroke-prone rats. Stroke. 2002 Sep;33(9):2156–2163. PubMed PMID: 12215580.
  • Bowes MP, Zivin JA, Rothlein R. Monoclonal antibody to the ICAM-1 adhesion site reduces neurological damage in a rabbit cerebral embolism stroke model. Exp Neurol. 1993 Feb;119(2):215–219. PubMed PMID: 8094342. DOI:10.1006/exnr.1993.1023.
  • Zhang RL, Chopp M, Li Y, et al. Anti-ICAM-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat. Neurology. 1994 Sep;44(9):1747–1751. PubMed PMID: 7936308.
  • Enlimomab acute stroke trial Investigators. Use of anti-ICAM-1 therapy in ischemic stroke: results of the enlimomab acute stroke trial. Neurology. 2001 Oct 23;57(8):1428–1434. PubMed PMID: 11673584.
  • Qosa H, Mohamed LA, Alqahtani S, et al. Transporters as Drug Targets in Neurological Diseases. Clin Pharmacol Ther. 2016 Nov;100(5):441–453. PubMed PMID: 27447939; PubMed Central PMCID: PMC5056151.
  • Daneman R. The blood-brain barrier in health and disease. Ann Neurol. 2012 Nov;72(5):648–672. PubMed PMID: 23280789. DOI:10.1002/ana.23648.
  • Jedlitschky G, Grube M, Mosyagin I, et al. Targeting CNS transporters for treatment of neurodegenerative diseases. Curr Pharm Des. 2014;20(10):1523–1533. PubMed PMID: 23789959.
  • Rapposelli S, Digiacomo M, Balsamo A. P-gp transporter and its role in neurodegenerative diseases. Curr Top Med Chem. 2009;9(2): 209–217. PubMed PMID: 19200006.
  • Pardridge WM. Delivery of biologics across the blood-brain barrier with molecular trojan horse technology. BioDrugs: Clin Immunother Biopharm Gene Ther. 2017 Dec;31(6):503–519. 10.1007/s40259-017-0248-z. PubMed PMID: 29067674.
  • Barar J, Rafi MA, Pourseif MM, et al. Blood-brain barrier transport machineries and targeted therapy of brain diseases. BioImpacts: BI. 2016;6(4):225–248. PubMed PMID: 28265539; PubMed Central PMCID: PMC5326671. DOI:10.15171/bi.2016.30
  • Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613–631. PubMed PMID: 25340933; PubMed Central PMCID: PMC5051266. DOI:10.1146/annurev-pharmtox-010814-124852
  • Zhou QH, Fu A, Boado RJ, et al. Receptor-mediated abeta amyloid antibody targeting to Alzheimer’s disease mouse brain. Mol Pharm. 2011 Feb 07;8(1):280–285. PubMed PMID: 21141969; PubMed Central PMCID: PMC3034812. DOI:10.1021/mp1003515
  • Boado RJ, Zhou QH, Lu JZ, et al. Pharmacokinetics and brain uptake of a genetically engineered bifunctional fusion antibody targeting the mouse transferrin receptor. Mol Pharm. 2010 Feb 01;7(1):237–244. PubMed PMID: 19921848; PubMed Central PMCID: PMC2858389. DOI:10.1021/mp900235k
  • Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014 Jan 8;81(1):49–60. PubMed PMID: 24411731. DOI:10.1016/j.neuron.2013.10.061
  • Sumbria RK, Zhou QH, Hui EK, et al. Pharmacokinetics and brain uptake of an IgG-TNF decoy receptor fusion protein following intravenous, intraperitoneal, and subcutaneous administration in mice. Mol Pharm. 2013 Apr 01;10(4):1425–1431. PubMed PMID: 23410508; PubMed Central PMCID: PMC3615110. DOI:10.1021/mp400004a
  • Zhou QH, Sumbria R, Hui EK, et al. Neuroprotection with a brain-penetrating biologic tumor necrosis factor inhibitor. J Pharmacol Exp Ther. 2011 Nov;339(2):618–623. PubMed PMID: 21831964; PubMed Central PMCID: PMC3199996. DOI:10.1124/jpet.111.185876
  • Pardridge WM, Kang YS, Buciak JL, et al. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharm Res. 1995 Jun;12(6):807–816. PubMed PMID: 7667183.
  • Boado RJ, Lu JZ, Hui EK, et al. IgG-single chain Fv fusion protein therapeutic for Alzheimer’s disease: expression in CHO cells and pharmacokinetics and brain delivery in the rhesus monkey. Biotechnol Bioeng. 2010 Feb 15;105(3):627–635. PubMed PMID: 19816967; PubMed Central PMCID: PMC2838425. DOI:10.1002/bit.22576
  • Siegal T, Rubinstein R, Bokstein F, et al. In vivo assessment of the window of barrier opening after osmotic blood-brain barrier disruption in humans. J Neurosurg. 2000 Apr;92(4):599–605. PubMed PMID: 10761648. DOI:10.3171/jns.2000.92.4.0599
  • Alyautdin R, Khalin I, Nafeeza MI, et al. Nanoscale drug delivery systems and the blood-brain barrier. Int J Nanomedicine. 2014;9:795–811. PubMed PMID: 24550672; PubMed Central PMCID: PMC3926460. DOI:10.2147/IJN.S52236
  • Burgess A, Shah K, Hough O, et al. Focused ultrasound-mediated drug delivery through the blood-brain barrier. Expert Rev Neurother. 2015 May;15(5):477–491. PubMed PMID: 25936845; PubMed Central PMCID: PMC4702264. DOI:10.1586/14737175.2015.1028369
  • Zhao L, Ren TH, Wang DD. Clinical pharmacology considerations in biologics development. Acta Pharmacol Sin. 2012 Nov;33(11):1339–1347. PubMed PMID: 23001474; PubMed Central PMCID: PMC4011353. DOI:10.1038/aps.2012.51.
  • Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004 Nov;93(11):2645–2668. PubMed PMID: 15389672. DOI:10.1002/jps.20178.
  • Schellekens H. Immunogenicity of therapeutic proteins: clinical implications and future prospects. Clin Ther. 2002 Nov;24(11):1720-40; discussion 1719. PubMed PMID: 12501870.
  • Attarwala H. TGN1412: from discovery to disaster. J Young Pharm. 2010 Jul;2(3):332–336. PubMed PMID: 21042496; PubMed Central PMCID: PMC2964774. DOI:10.4103/0975-1483.66810.
  • Lis K, Kuzawinska O, Balkowiec-Iskra E. Tumor necrosis factor inhibitors - state of knowledge. Arch Med Sci. 2014 Dec 22;10(6):1175–1185. PubMed PMID: 25624856; PubMed Central PMCID: PMC4296073. DOI:10.5114/aoms.2014.47827.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.