5,369
Views
5
CrossRef citations to date
0
Altmetric
Editorial

Advancing drug discovery via GPU-based deep learning

, , & ORCID Icon
Pages 579-582 | Received 13 Feb 2018, Accepted 12 Apr 2018, Published online: 18 Apr 2018

References

  • Korb O, Finn PW, Jones G. The cloud and other new computational methods to improve molecular modelling. Expert Opin Drug Discov. 2014;9:1121–1131.
  • Martínez-Rosell G, Giorgino T, Harvey MJ, et al. Drug discovery and molecular dynamics: methods, applications and perspective beyond the second timescale. Curr Top Med Chem. 2017;17:2617–2625.
  • Beberg AL, Ensign DL, Jayachandran G, et al. Folding@home: lessons from eight years of volunteer distributed computing. IEEE International Symposium on Parallel & Distributed Processing. 2009;1–8.
  • Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge, MA: MIT Press; 2016.
  • Theano Development Team. Theano: a Python framework for fast computation of mathematical expressions. arXiv e-prints 2016.
  • Abadi M, Barham P, Chen J, et al. TensorFlow: a system for large-scale machine learning. 12th USENIX Symp Oper Syst Des Implement. 2016. DOI:10.1038/nn.3331
  • Korotcov A, Tkachenko V, Russo DP, et al. Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Mol Pharm. 2017;14:4462–4475.
  • Mayr A, Klambauer G, Unterthiner T, et al. DeepTox: toxicity prediction using deep learning. Front Environ Sci. 2016;3:1–15.
  • Gupta A, Müller AT, Huisman BJH, et al. Generative recurrent networks for de novo drug design. Mol Inf. 2018;37:1700111.
  • Schütt KT, Arbabzadah F, Chmiela S, et al. Quantum-chemical insights from deep tensor neural networks. Nat Commun. 2017;8:13890.
  • Goh GB, Hodas NO, Vishnu A. Deep learning for computational chemistry. J Comput Chem. 2017;38:1291–1307.
  • Ma J, Sheridan RP, Liaw A, et al. Deep neural nets as a method for quantitative structure–activity relationships. J Chem Inf Model. 2015;55:263–274.
  • Olivecrona M, Blaschke T, Engkvist O, et al. Molecular de-novo design through deep reinforcement learning. J Cheminform. 2017;9:48.
  • Blaschke T, Olivecrona M, Engkvist O, et al. Application of generative autoencoder in de novo molecular design. Mol Inf. 2018;37:1700123.
  • Merk D, Friedrich L, Grisoni F, et al. De novo design of bioactive small molecules by artificial intelligence. Mol Inf. 2018;37:1700153.
  • Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol Inf. 2016;35:3–14.
  • Peltason L, Bajorath J. SAR index: quantifying the nature of structure-activity relationships. J Med Chem. 2007;50:5571–5578.
  • Nicolaou CA, Kannas C, Loizidou E. Multi-objective optimization methods in de novo drug design. Mini Rev Med Chem. 2012;12:979–987.
  • Schneider G, Fechner U. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov. 2005;4:649–663.
  • Simões RS, Maltarollo VG, Oliveira PR, et al. Transfer and multi-task learning in QSAR modeling: advances and challenges. Front Pharmacol. 2018;9:74.
  • Ekins S. The next era: deep learning in pharmaceutical research. Pharm Res. 2016;33:2594–2603.
  • Schneider G. Automating drug discovery. Nat Rev Drug Discov. 2018;17:97–113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.