495
Views
1
CrossRef citations to date
0
Altmetric
Review

Recent advances in automated protein design and its future challenges

, &
Pages 587-604 | Received 25 Oct 2017, Accepted 13 Apr 2018, Published online: 25 Apr 2018

References

  • Miklos GLG, Maleszka R. Protein functions and biological contexts. Proteomics. 2001;1:169–178.
  • Fife CM, McCarroll JA, Kavallaris M. Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol. 2014;171(24):5507-5523.
  • Bhabha G, Johnson GT, Schroeder CM, et al. How Dynein moves along microtubules. Trends Biochem Sci. 2016;41(1):94–105.
  • Hirokawa N, Noda Y, Tanaka Y, et al. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 2009;10(10):682–696.
  • Sanger F. The terminal peptides of insulin. Biochem J. 1949;45(5):563–574.
  • Kendrew JC, Bodo G, Dintzis HM, et al. A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature. 1958;181(4610):662–666.
  • Muirhead H, Perutz MF. Structure of haemoglobin: a three-dimensional Fourier synthesis of reduced human haemoglobin at 5.5 [angst] resolution. Nature. 1963;199(4894):633–638.
  • Zwanzig R, Szabo A, Bagchi B. Levinthal’s paradox. Proc Natl Acad Sci U S A. 1992;89(1):20–22.
  • Baker D, Sali A. Protein structure prediction and structural genomics. Science. 2001;294(5540):93.
  • Zhang Y. Progress and challenges in protein structure prediction. Curr Opin Struct Biol. 2008;18(3):342–348.
  • Richardson JS, Richardson DC. The de novo design of protein structures. Trends Biochem Sci. 1989;14:304–309.
  • Havranek JJ, Harbury PB. Automated design of specificity in molecular recognition. Nat Struct Biol. 2003;10(1):45–52.
  • He M, Taussig MJ. Ribosome display: cell-free protein display technology. Brief Funct Genomic Proteomic. 2002;1(2):204–212.
  • Lazar GA, Handel TM. Hydrophobic core packing and protein design. Curr Opin Chem Biol. 1998;2(6):675–679.
  • Woolfson DN. Core-directed protein design. Curr Opin Struct Biol. 2001;11(4):464–471.
  • Rawlings AE. Membrane proteins: always an insoluble problem? Biochem Soc Trans. 2016;44(3):790–795.
  • Perez-Aguilar JM, Saven JG. Computational design of membrane proteins. Structure. 2012;20(1):5–14.
  • Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5(12):993–996.
  • Yin H, Flynn AD. Drugging membrane protein interactions. Annu Rev Biomed Eng. 2016;18:51–76.
  • Carpenter EP, Beis K, Cameron AD, et al. Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol. 2008;18(5):581–586.
  • Sanders CR, Sonnichsen F. Solution NMR of membrane proteins: practice and challenges. Magn Reson Chem. 2006;44:S24–40.
  • Slovic AM, Kono H, Lear JD, et al. Computational design of water-soluble analogues of the potassium channel KcsA. Proc Natl Acad Sci U S A. 2004;101(7):1828–1833.
  • Ma D, Tillman TS, Tang P, et al. NMR studies of a channel protein without membranes: structure and dynamics of water-solubilized KcsA. Proc Natl Acad Sci U S A. 2008;105(43):16537–16542.
  • Perez-Aguilar JM, Xi J, Matsunaga F, et al. A computationally designed water-soluble variant of a G-protein-coupled receptor: the human mu opioid receptor. PLoS ONE. 2013;8(6):e66009.
  • Zhukovsky EA, Morse RJ, Maus MV. Bispecific antibodies and CARs: generalized immunotherapeutics harnessing T cell redirection. Curr Opin Immunol. 2016;40:24–35.
  • Liu Z, Gunasekaran K, Wang W, et al. Asymmetrical Fc engineering greatly enhances antibody-dependent cellular cytotoxicity (ADCC) effector function and stability of the modified antibodies. J Biol Chem. 2014;289(6):3571–3590.
  • Byrne H, Conroy PJ, Whisstock JC, et al. A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications. Trends Biotechnol. 2013;31(11):621–632.
  • Klein C, Sustmann C, Thomas M, et al. Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies. MAbs. 2012;4(6):653–663.
  • Ridgway JB, Presta LG, Carter P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 1996;9(7):617–621.
  • Choi HJ, Kim YJ, Choi DK, et al. Engineering of immunoglobulin Fc heterodimers using yeast surface-displayed combinatorial Fc library screening. PLoS ONE. 2015;10(12):e0145349.
  • Lazar GA, Dang W, Karki S, et al. Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci U S A. 2006;103(11):4005–4010.
  • Samish I, MacDermaid CM, Perez-Aguilar JM, et al. Theoretical and computational protein design. Annu Rev Phys Chem. 2011;62:129–149.
  • Samish I. The Framework of computational protein design. Methods Mol Biol. 2017;1529:3–19.
  • Samish I. Achievements and challenges in computational protein design. Methods Mol Biol. 2017;1529:21–94.
  • Whitehead TA, Chevalier A, Song Y, et al. Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat Biotechnol. 2012;30(6):543–548.
  • Samish I. Computational protein design. New York, NY: Humana Press; 2017.
  • Paladino A, Marchetti F, Rinaldi S, et al. Protein design: from computer models to artificial intelligence. Wiley Interdiscip Rev: Comput Mol Sci. 2017;7(5):e1318.
  • Yu F, Cangelosi VM, Zastrow ML, et al. Protein design: toward functional metalloenzymes. Chem Rev. 2014;114(7):3495–3578.
  • Pantazes RJ, Grisewood MJ, Maranas CD. Recent advances in computational protein design. Curr Opin Struct Biol. 2011;21(4):467–472.
  • Hecht MH, Richardson JS, Richardson DC, et al. De novo design, expression, and characterization of felix: a four-helix bundle protein of native-like sequence. Science. 1989;249:884–891.
  • Dahiyat BI, Mayo SL. De novo protein design: fully automated sequence selection. Science. 1997;278:82–87.
  • Kuhlman B, Dantas G, Ireton GC, et al. Design of a novel globular protein fold with atomic-level accuracy. Science. 2003;302(5649):1364–1368.
  • Lipman NS, Jackson LR, Trudel LJ, et al. Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. Ilar J. 2005;46(3):258–268.
  • Godawat R, Brower K, Jain S, et al. Periodic counter-current chromatography – design and operational considerations for integrated and continuous purification of proteins. Biotechnol J. 2012;7(12):1496–1508.
  • Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017;6(9):576–588.
  • Gebauer M, Skerra A. Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol. 2009;13(3):245–255.
  • Valeur E, Gueret SM, Adihou H, et al. New modalities for challenging targets in drug discovery. Angew Chem Int Ed Engl. 2017;56(35):10294–10323.
  • Goodman CM, Choi S, Shandler S, et al. Foldamers as versatile frameworks for the design and evolution of function. Nat Chem Biol. 2007;3(5):252–262.
  • Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202.
  • Healy JM, Lewis SD, Kurz M, et al. Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res. 2004;21(12):2234–2246.
  • Wurch T, Pierre A, Depil S. Novel protein scaffolds as emerging therapeutic proteins: from discovery to clinical proof-of-concept. Trends Biotechnol. 2012;30(11):575–582.
  • Fleishman SJ, Corn JE, Strauch EM, et al. Hotspot-centric de novo design of protein binders. J Mol Biol. 2011;413(5):1047–1062.
  • Whitehead TA, Baker D, Fleishman SJ. Computational design of novel protein binders and experimental affinity maturation. Methods Enzymol. 2013;523:1–19.
  • Woldring DR, Holec PV, Stern LA, et al. A gradient of sitewise diversity promotes evolutionary fitness for binder discovery in a three-helix bundle protein Scaffold. Biochemistry. 2017;56(11):1656–1671.
  • Craik DJ, Fairlie DP, Liras S, et al. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81(1):136–147.
  • Bhardwaj G, Mulligan VK, Bahl CD, et al. Accurate de novo design of hyperstable constrained peptides. Nature. 2016;538(7625):329–335.
  • Soudry-Kochavi L, Naraykin N, Nassar T, et al. Improved oral absorption of exenatide using an original nanoencapsulation and microencapsulation approach. J Control Release. 2015;217:202–210.
  • Daniels DS, Schepartz A. Intrinsically cell-permeable miniature proteins based on a minimal cationic PPII motif. J Am Chem Soc. 2007;129(47):14578–14579.
  • Smythe ML. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering Oxford: Elsevier; 2017. p. 157–170. Orally delivered peptides for treatment of inflammatory bowel disease.
  • Barkan DT, Cheng XL, Celino H, et al. Clustering of disulfide-rich peptides provides scaffolds for hit discovery by phage display: application to interleukin-23. BMC Bioinform. 2016;17(1):481.
  • Tran TT, Kulis C, Long SM, et al. Defining scaffold geometries for interacting with proteins: geometrical classification of secondary structure linking regions. J Comput Aided Mol Des. 2010;24(11):917–934.
  • Long SM, Tran TT, Adams P, et al. Conformational searching using a population-based incremental learning algorithm. J Comput Chem. 2011;32(8):1541–1549.
  • Bolon DN, Mayo SL. Enzyme-like proteins by computational design. Proc Natl Acad Sci U S A. 2001;98(25):14274–14279.
  • Rothlisberger D, Khersonsky O, Wollacott AM, et al. Kemp elimination catalysts by computational enzyme design. Nature. 2008;453(7192):190–195.
  • Jiang L, Althoff EA, Clemente FR, et al. De novo computational design of retro-aldol enzymes. Science. 2008;319:1387–1391.
  • Siegel JB, Zanghellini A, Lovick HM, et al. Computational design of an enzyme catalyst for a stereoselective bimolecular diels-alder reaction. Science. 2010;329:309–313.
  • Reetz MT. What are the limitations of enzymes in synthetic organic chemistry? Chem Rec. 2016;16(6):2449–2459.
  • Wolf C, Siegel JB, Tinberg C, et al. Engineering of Kuma030: a gliadin peptidase that rapidly degrades immunogenic gliadin peptides in gastric conditions. J Am Chem Soc. 2015;137(40):13106–13113.
  • Gordon SR, Stanley EJ, Wolf S, et al. Computational design of an alpha-gliadin peptidase. J Am Chem Soc. 2012;134(50):20513–20520.
  • Senn HM, Thiel W. QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl. 2009;48(7):1198–1229.
  • Childers MC, Daggett V. Insights from molecular dynamics simulations for computational protein design. Mol Syst Des Eng. 2017;2(1):9–33.
  • Privett HK, Kiss G, Lee TM, et al. Iterative approach to computational enzyme design. Proc Natl Acad Sci U S A. 2012;109(10):3790–3795.
  • Tinberg CE, Khare SD, Dou J, et al. Computational design of ligand-binding proteins with high affinity and selectivity. Nature. 2013;501(7466):212–216.
  • Muyldermans S. Single domain camel antibodies: current status. Rev Mol Biotechnol. 2001;74:277–302.
  • Havranek JJ. Specificity in computational protein design. J Biol Chem. 2010;285(41):31095–31099.
  • Mandell DJ, Kortemme T. Computer-aided design of functional protein interactions. Nat Chem Biol. 2009;5(11):797–807.
  • Uversky VN. Intrinsic disorder, protein–protein interactions, and disease. Adv Protein Chem Struct Biol. 2017. 2018;110:85-121
  • Milroy LG, Grossmann TN, Hennig S, et al. Modulators of protein–protein interactions. Chem Rev. 2014;114(9):4695–4748.
  • Berg T. Inhibition of protein–protein interactions: new options for developing drugs against neglected tropical diseases. Angew Chem Int Ed Engl. 2017;56(40):12048-12050.
  • Brender JR, Zhang Y. Protein–protein interactions and genetic disease. In: eLS. John Wiley & Sons, Ltd: Chichester. doi: 10.1002/9780470015902.a0026856
  • Ivanov AA, Khuri FR, Fu H. Targeting protein–protein interactions as an anticancer strategy. Trends Pharmacol Sci. 2013;34(7):393–400.
  • Moal IH, Moretti R, Baker D, et al. Scoring functions for protein–protein interactions. Curr Opin Struct Biol. 2013;23(6):862–867.
  • Dagliyan O, Proctor EA, D’Auria KM, et al. Structural and dynamic determinants of protein–peptide recognition. Structure. 2011;19(12):1837–1845.
  • Karanicolas J, Kuhlman B. Computational design of affinity and specificity at protein–protein interfaces. Curr Opin Struct Biol. 2009;19(4):458–463.
  • Stranges PB, Kuhlman B. A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds. Protein Sci. 2013;22(1):74–82.
  • Khersonsky O, Fleishman SJ. Incorporating an allosteric regulatory site in an antibody through backbone design. Protein Sci. 2017;26(4):807–813.
  • Kastritis PL, Rodrigues JP, Folkers GE, et al. Proteins feel more than they see: fine-tuning of binding affinity by properties of the non-interacting surface. J Mol Biol. 2014;426(14):2632–2652.
  • Ghirlanda G. Design of membrane proteins: toward functional systems. Curr Opin Chem Biol. 2009;13(5–6):643–651.
  • Barth P, Senes A. Toward high-resolution computational design of the structure and function of helical membrane proteins. Nat Struct Mol Biol. 2016;23(6):475–480.
  • Feng X, Ambia J, Chen KM, et al. Computational design of ligand-binding membrane receptors with high selectivity. Nat Chem Biol. 2017;13(7):715–723.
  • Pierce NA, Winfree E. Protein design is NP-hard. Protein Eng. 2002;15:779–782.
  • Roy A, Yang J, Zhang Y. COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res. 2012;40(WebServer issue):W471–7.
  • Socolich M, Lockless SW, Russ WP, et al. Evolutionary information for specifying a protein fold. Nature. 2005;437(7058):512–518.
  • Morcos F, Pagnani A, Lunt B, et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc Natl Acad Sci U S A. 2011;108(49):E1293–301.
  • Rocklin GJ, Chidyausiku TM, Goreshnik I, et al. Global analysis of protein folding using massively parallel design, synthesis, and testing. Science. 2017;357:168–175.
  • Brender JR, Shultis D, Khattak NA, et al. An evolution-based approach to De Novo protein design. Methods Mol Biol. 2017;1529:243–264.
  • Mackenzie CO, Grigoryan G. Protein structural motifs in prediction and design. Curr Opin Struct Biol. 2017;44:161–167.
  • Burton DR, Weiss RA. A boost for HIV vaccine design. Science. 2010;329:770–773.
  • Huang PS, Boyken SE, Baker D. The coming of age of de novo protein design. Nature. 2016;537(7620):320–327.
  • Voet AR, Noguchi H, Addy C, et al. Computational design of a self-assembling symmetrical beta-propeller protein. Proc Natl Acad Sci U S A. 2014;111(42):15102–15107.
  • Durani S. Protein design with l- and d-α-amino acid structures as the alphabet. Acc Chem Res. 2008;41(10):1301–1308.
  • Mandell DJ, Kortemme T. Backbone flexibility in computational protein design. Curr Opin Biotechnol. 2009;20(4):420–428.
  • Davis IW, Arendall WB 3rd, Richardson DC, et al. The backrub motion: how protein backbone shrugs when a sidechain dances. Structure. 2006;14(2):265–274.
  • Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963;7(1):95–99.
  • Gainza P, Nisonoff HM, Donald BR. Algorithms for protein design. Curr Opin Struct Biol. 2016;39:16–26.
  • Gainza P, Roberts KE, Georgiev I, et al. OSPREY: protein design with ensembles, flexibility, and provable algorithms. Methods Enzymol. 2013;523:87–107.
  • Harbury PB, Plecs JJ, Tidor B, et al. High-resolution protein design with backbone freedom. Science. 1998;282:1462–1467.
  • Koga N, Tatsumi-Koga R, Liu G, et al. Principles for designing ideal protein structures. Nature. 2012;491(7423):222–227.
  • Lin Y-R, Koga N, Tatsumi-Koga R, et al. Control over overall shape and size in de novo designed proteins. Proc Natl Acad Sci U S A. 2015;112:E5478–85.
  • Janin J, Wodak S, Levitt M, et al. Conformation of amino acid side-chains in proteins. J Mol Biol. 1978;125:357–386.
  • Ponder JW, Richards FM. Tertiary templates for proteins: use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987;193:775–791.
  • Dunbrack RLJ, Karplus M. Backbone-dependent rotamer library for proteins application to side-chain prediction. J Mol Biol. 1993;230(2):543–574.
  • Jiang L, Kuhlman B, Kortemme T, et al. A “solvated rotamer” approach to modeling water-mediated hydrogen bonds at protein–protein interfaces. Proteins. 2005;58(4):893–904.
  • Schymkowitz JW, Rousseau F, Martins IC, et al. Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proc Natl Acad Sci U S A. 2005;102(29):10147–10152.
  • Shapovalov MV, Dunbrack RL Jr. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure. 2011;19(6):844–858.
  • Brutscher B, Felli IC, Gil-Caballero S, et al. NMR methods for the study of instrinsically disordered proteins structure, dynamics, and interactions: general overview and practical guidelines. In: Felli IC, Pierattelli Reds. Intrinsically disordered proteins studied by NMRspectroscopy. Cham: Springer International Publishing; 2015. p. 49–122.
  • Schneider M, Fu XR, Keating AE. X-ray vs. NMR structures as templates for computational protein design. Proteins: Struct Funct Bioinform. 2009;77(1):97–110.
  • Bai XC, McMullan G, Scheres SH. How cryo-EM is revolutionizing structural biology. Trends Biochem Sci. 2015;40(1):49–57.
  • Wang RY, Kudryashev M, Li X, et al. De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat Methods. 2015;12(4):335–338.
  • Towse CL, Rysavy SJ, Vulovic IM, et al. New dynamic rotamer libraries: data-driven analysis of side-chain conformational propensities. Structure. 2016;24(1):187–199.
  • Scouras AD, Daggett V. The dynameomics rotamer library: amino acid side chain conformations and dynamics from comprehensive molecular dynamics simulations in water. Protein Sci. 2011;20(2):341–352.
  • Schymkowitz J, Borg J, Stricher F, et al. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33(WebServer issue):W382–8.
  • Gainza P, Roberts KE, Donald BR. Protein design using continuous rotamers. PLoS Comput Biol. 2012;8(1):e1002335.
  • Delaforge E, Milles S, Huang JR, et al. Investigating the role of large-scale domain dynamics in protein–protein interactions. Front Mol Biosci. 2016;3:54.
  • Christensen AS, Kubar T, Cui Q, et al. Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chem Rev. 2016;116(9):5301–5337.
  • Kmiecik S, Gront D, Kolinski M, et al. Coarse-grained protein models and their applications. Chem Rev. 2016;116(14):7898–7936.
  • Tozzini V. Coarse-grained models for proteins. Curr Opin Struct Biol. 2005;15(2):144–150.
  • Leaver-Fay A, Tyka M, Lewis SM, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487:545–574.
  • Leaver-Fay A, O’Meara MJ, Tyka M, et al. Scientific benchmarks for guiding macromolecular energy function improvement. Methods Enzymol. 2013;523:109–143.
  • Dyson HJ, Wright PE. Unfolded proteins and protein folding studied by NMR. Chem Rev. 2004;104:3607–3622.
  • Petrov D, Zagrovic B. Are current atomistic force fields accurate enough to study proteins in crowded environments? PLoS Comput Biol. 2014;10(5):e1003638.
  • Traore S, Roberts KE, Allouche D, et al. Fast search algorithms for computational protein design. J Comput Chem. 2016;37(12):1048–1058.
  • Voigt CA, Gordon DB, Mayo SL. Trading accuracy for speed: a quantitative comparison of search algorithms in protein sequence design. J Mol Biol. 2000;299(3):789–803.
  • Karplus M, Lavery R. Significance of molecular dynamics simulations for life sciences. Isr J Chem. 2014;54(8–9):1042–1051.
  • Pokala N, Handel TM. Energy functions for protein design: adjustment with protein–protein complex affinities, models for the unfolded state, and negative design of solubility and specificity. J Mol Biol. 2005;347(1):203–227.
  • Kellogg EH, Leaver-Fay A, Baker D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins: Structure Funct Bioinform. 2011;79(3):830–838.
  • Boas FE, Harbury PB. Potential energy functions for protein design. Curr Opin Struct Biol. 2007;17(2):199–204.
  • Lazaridis T, Karplus M. Effective energy function for proteins in solution. Proteins. 1999;35:133–152.
  • Villa F, Mignon D, Polydorides S, et al. Comparing pairwise-additive and many-body generalized Born models for acid/base calculations and protein design. J Comput Chem. 2017;38(28):2396–2410.
  • Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449–461.
  • Chen F, Liu H, Sun H, et al. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and re-rank binding poses generated by protein–protein docking. Phys Chem Chem Phys. 2016;18(32):22129–22139.
  • Street AG, Mayo SL. Pairwise calculation of protein solvent-accessible surface areas. Fold Des. 1998;3(4):253–258.
  • Li L, Li C, Zhang Z, et al. On the dielectric “constant” of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J Chem Theory Comput. 2013;9(4):2126–2136.
  • Grochowski P, Trylska J. Continuum molecular electrostatics, salt effects, and counterion binding–a review of the Poisson-Boltzmann theory and its modifications. Biopolymers. 2008;89(2):93–113.
  • Onufriev A, Case DA, Bashford D. Effective Born radii in the generalized Born approximation: the importance of being perfect. J Comput Chem. 2002;23(14):1297–1304.
  • Pokala N, Handel TM. Energy functions for protein design I: efficient and accurate continuum electrostatics and solvation. Protein Sci. 2004;13(4):925–936.
  • Gaillard T, Simonson T. Pairwise decomposition of an MMGBSA energy function for computational protein design. J Comput Chem. 2014;35(18):1371–1387.
  • Lazaridis T, Karplus M. Effective energy function for proteins in solution. Proteins. 1999;35(2):133–152.
  • Gordon DB, Marshall SA, Mayo SL. Energy functions for protein design. Curr Opin Struct Biol. 1999;9(4):509–513.
  • Mitra P, Shultis D, Brender JR, et al. An evolution-based approach to de novo protein design and case study on Mycobacterium tuberculosis. PLoS Comput Biol. 2013;9(10):e1003298.
  • Hubbard RE, Kamran Haider M. Hydrogen bonds in proteins: role and strength. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester. doi: 10.1002/9780470015902.a0003011.pub2
  • Kortemme T, Morozov AV, Baker D. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein–protein complexes. J Mol Biol. 2003;326(4):1239–1259.
  • O’Meara MJ, Leaver-Fay A, Tyka MD, et al. Combined covalent-electrostatic model of hydrogen bonding improves structure prediction with Rosetta. J Chem Theory Comput. 2015;11(2):609–622.
  • Liu J, Wang R. Classification of current scoring functions. J Chem Inf Model. 2015;55(3):475–482.
  • Simonson T, Gaillard T, Mignon D, et al. Computational protein design: the proteus software and selected applications. J Comput Chem. 2013;34(28):2472–2484.
  • Bowler BE. Residual structure in unfolded proteins. Curr Opin Struct Biol. 2012;22(1):4–13.
  • Hackel M, Konno T, Hinz HJ. A new alternative method to quantify residual structure in ‘unfolded’ proteins. Biochim Biophys Acta Protein Struct Mol Enzymol. 2000;1479(1–2):155–165.
  • Ain QU, Aleksandrova A, Roessler FD, et al. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip Rev Comput Mol Sci. 2015;5(6):405–424.
  • Botu V, Batra R, Chapman J, et al. Machine learning force fields: construction validation, and outlook. . J Phys Chem C. 2017;121(1):511–522.
  • Holley LH, Karplus M. Protein secondary structure prediction with a neural network. Proc Natl Acad Sci U S A. 1989;86:152–156.
  • Barik A, Nithin C, Karampudi NB, et al. Probing binding hot spots at protein–RNA recognition sites. Nucleic Acids Res. 2016;44(2):e9.
  • Brender JR, Zhang Y. Predicting the effect of mutations on protein–protein binding interactions through structure-based interface profiles. PLoS Comput Biol. 2015;11(10):e1004494.
  • Zhao N, Han JG, Shyu CR, et al. Determining effects of non-synonymous SNPs on protein–protein interactions using supervised and semi-supervised learning. PLoS Comput Biol. 2014;10(5):e1003592.
  • Shen J, Zhang J, Luo X, et al. Predicting protein–protein interactions based only on sequences information. Proc Natl Acad Sci U S A. 2007;104(11):4337–4341.
  • Mitra P, Shultis D, Zhang Y. EvoDesign: de novo protein design based on structural and evolutionary profiles. Nucleic Acids Res. 2013;41(Web Server issue):W273–80.
  • Lenselink EB, Jespers W, van Vlijmen HW, et al. Interacting with GPCRs: using interaction fingerprints for virtual screening. J Chem Inf Model. 2016;56(10):2053–2060.
  • Pires DE, Blundell TL, Ascher DB. mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance. Sci Rep. 2016;6:29575.
  • Da C, Kireev D. Structural protein–ligand interaction fingerprints (SPLIF) for structure-based virtual screening: method and benchmark study. J Chem Inf Model. 2014;54(9):2555–2561.
  • Mackerell AD Jr. Empirical force fields for biological macromolecules: overview and issues. J Comput Chem. 2004;25(13):1584–1604.
  • Selzer T, AlbecK S, Schreiber G. Rational design of faster associating and tighter binding protein complexes. Nat Struct Biol. 2000;7:537–541.
  • Liu Y, Kuhlman B. RosettaDesign server for protein design. Nucleic Acids Res. 2006;34(Web Server issue):W235–8.
  • Desmet J, Maeyer MD, Hazes B, et al. The dead-end elimination theorem and its use in protein side-chain positioning. Nature. 1992;356(6369):539–542.
  • Goldstein RF. Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophys J. 1994;66:1335–1440.
  • Zhu Y. Mixed-Integer linear programming algorithm for a computational protein design problem. Ind Eng Chem Res. 2007;46:839–845.
  • Saraf MC, Moore GL, Goodey NM, et al. IPRO: an iterative computational protein library redesign and optimization procedure. Biophys J. 2006;90(11):4167–4180.
  • Gordon DB, Mayo SL. Branch-and-Terminate: a combinatorial optimization algorithm for protein design. Structure. 1999;7:1089–1098.
  • Koehl P, Delarue M. Appplication of a self-consistent mean field theory to predict protein side-chains conformations and estimate their conformational theory. J Mol Biol. 1994;239:249–275.
  • Desmet J, Spriet J, Lasters I. Fast and accurate side-chain topology and energy refinement (FASTER) as a new method for protein structure optimization. Proteins. 2002;48(1):31–43.
  • Leach AR, Lemon AP. Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm. Proteins. 1998;33:227–239.
  • Allen BD, Mayo SL. Dramatic performance enhancements for the FASTER optimization algorithm. J Comput Chem. 2006;27(10):1071–1075.
  • Tian Y, Huang X, Zhu1 Y. Computational design of enzyme–ligand binding using a combined energy function and deterministic sequence optimization algorithm. J Mol Model. 2015;21.
  • Yang X, Saven JG. Computational methods for protein design and protein sequence variability: biased Monte Carlo and replica exchange. Chem Phys Lett. 2005;401(1–3):205–210.
  • Druart K, Bigot J, Audit E, et al. A hybrid monte carlo scheme for multibackbone protein design. J Chem Theory Comput. 2016;12(12):6035–6048.
  • Mignon D, Simonson T. Comparing three stochastic search algorithms for computational protein design: Monte Carlo, replica exchange Monte Carlo, and a multistart, steepest-descent heuristic. J Comput Chem. 2016;37(19):1781–1793.
  • Saven JG. Combinatorial protein design. Curr Opin Struct Biol. 2002;12(4):453–458.
  • Jones DT. De novo protein design using pairwise potentials and a genetic algorithm. Protein Sci. 1994;3:567–574.
  • Shah DK. Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics. J Pharmacokinet Pharmacodyn. 2015;42(5):553–571.
  • Tobin PH, Richards DH, Callender RA, et al. Protein engineering: a new frontier for biological therapeutics. Curr Drug Metab. 2014;15(7):743–756.
  • Jacak R, Leaver-Fay A, Kuhlman B. Computational protein design with explicit consideration of surface hydrophobic patches. Proteins. 2012;80(3):825–838.
  • Sormanni P, Aprile FA, Vendruscolo M. The CamSol method of rational design of protein mutants with enhanced solubility. J Mol Biol. 2015;427(2):478–490.
  • Broom A, Jacobi Z, Trainor K, et al. Computational tools help improve protein stability but with a solubility tradeoff. J Biol Chem. 2017;292(35):14349–14361.
  • Parker AS, Choi Y, Griswold KE, et al. Structure-guided deimmunization of therapeutic proteins. J Comput Biol. 2013;20(2):152–165.
  • Parker AS, Zheng W, Griswold KE, et al. Optimization algorithms for functional deimmunization of therapeutic proteins. BMC Bioinform. 2010;11:180.
  • King C, Garza EN, Mazor R, et al. Removing T-cell epitopes with computational protein design. Proc Natl Acad Sci U S A. 2014;111(23):8577–8582.
  • Sharabi O, Dekel A, Shifman JM. Triathlon for energy functions: who is the winner for design of protein–protein interactions? Proteins: Struct Funct Bioinform. 2011;79(5):1487–1498.
  • Chevalier A, Silva DA, Rocklin GJ, et al. Massively parallel de novo protein design for targeted therapeutics. Nature. 2017;550(7674):74–79.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.