1,018
Views
8
CrossRef citations to date
0
Altmetric
Review

Enabling drug discovery and development through single-cell imaging

, , , , , & show all
Pages 115-125 | Received 29 Oct 2018, Accepted 10 Dec 2018, Published online: 24 Dec 2018

References

  • Yip A, Webster RM. The market for chimeric antigen receptor T cell therapies. Nat Rev Drug Discov. 2018;17(3):161–162.
  • Plasschaert LW, Žilionis R, Choo-Wing R, et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature. 2018 Aug 01;560(7718):377–381.
  • Fraietta JA, Nobles CL, Sammons MA, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature. 2018 Jun 01;558(7709):307–312.
  • Mocciaro A, Roth TL, Bennett HM, et al. Light-activated cell identification and sorting (LACIS) for selection of edited clones on a nanofluidic device. Commun Biol. 2018;1:41. PubMed PMID: PMC6123811.
  • Banerjee S. A 3D microrobotic actuator for micro and nano manipulation (Master's thesis). University of Canterbury; 2015. Available from: https://ir.canterbury.ac.nz/handle/10092/11376
  • Dollery CT. Intracellular drug concentrations. Clin Pharmacol Ther. 2013;93(3):263–266.
  • Chalouni C, Doll S. Fate of antibody-drug conjugates in cancer cells. J Exp Clin Cancer Res. 2018;37(1): 20. PubMed PMID: 29409507.
  • Kobayashi H, Lei C, Wu Y, et al. Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning. Sci Rep. 2017;7:12454. PubMed PMID: PMC5622112.
  • Van Valen DA, Kudo T, Lane KM, et al. Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput Biol. 2016;12(11):e1005177.
  • Ouyang W, Aristov A, Lelek M, et al. Deep learning massively accelerates super-resolution localization microscopy. Nat Biotechnol. 2018 Apr 16;36:460–468.
  • Doan M, Vorobjev I, Rees P, et al. Diagnostic potential of imaging flow cytometry. Trends Biotechnol. 2018 Jul 01;36(7):649–652.
  • Godinez WJ, Hossain I, Lazic SE, et al. A multi-scale convolutional neural network for phenotyping high-content cellular images. Bioinformatics. 2017;33(13):2010–2019.
  • Thomas RJ, Chandra A, Hourd PC, et al. Cell culture automation and quality engineering: a necessary partnership to develop optimized manufacturing processes for cell-based therapies. JALA: J Assoc Lab Autom. 2008;13(3):152–158.
  • Tian H, Six DA, Krucker T, et al. Subcellular chemical imaging of antibiotics in single bacteria using C60-secondary ion mass spectrometry. Anal Chem. 2017 May 02;89(9):5050–5057.
  • Whiteman MC, Bogardus L, Giacone D, et al. Virus reduction neutralization test: a single-cell imaging high-throughput virus neutralization assay for dengue. Am J Trop Med Hyg. 2018. DOI:10.4269/ajtmh.17-0948.
  • Chattopadhyay PK, Gierahn TM, Roederer M, et al. Single-cell technologies for monitoring immune systems. Nat Immunol. 2014 Jan 21;15:128.
  • Little D, Luft C, Mosaku O, et al. A single cell high content assay detects mitochondrial dysfunction in iPSC-derived neurons with mutations in SNCA. Sci Rep. 2018;8:9033. PubMed PMID: PMC5998042.
  • Single-cell molecular profiling for precision cancer research. Abnova E-Newsletter. 2018 Apr 04. Available from: http://www.abnova.com/newspaper/newspaper.asp?Journal=1070404in
  • Zhang C-Z, Spektor A, Cornils H, et al. Chromothripsis from DNA damage in micronuclei. Nature. 2015 May 27;522:179. online.
  • Yuan J, Sheng J, Sims PA. An optically decodable bead array for linking imaging and sequencing with single-cell resolution. bioRxiv. 2018. DOI:10.1101/355677
  • Dettinger P, Frank T, Etzrodt M, et al. Automated microfluidic system for dynamic stimulation and tracking of single cells. Anal Chem. 2018 Jul 30. DOI:10.1021/acs.analchem.8b00312.
  • Fertrin KY, van Beers EJ, Samsel L, et al. Imaging flow cytometry documents incomplete resistance of human sickle F-cells to ex vivo hypoxia-induced sickling. Blood. 2014;124(4):658–660.
  • Hennig H, Rees P, Blasi T, et al. An open-source solution for advanced imaging flow cytometry data analysis using machine learning. Methods. 2017 Jan 01;112:201–210.
  • Swirski FK, Berger CR, Figueiredo J-L, et al. A near-infrared cell tracker reagent for multiscopic in vivo imaging and quantification of leukocyte immune responses. PLOS ONE. 2007;2(10):e1075.
  • Ueda Y, Ishiwata T, Shinji S, et al. In vivo imaging of T cell lymphoma infiltration process at the colon. Sci Rep. 2018;8:3978. PubMed PMID: PMC5838227.
  • Li L, Zhou Q, Voss TC, et al. High-throughput imaging: focusing in on drug discovery in 3D. Methods. 2016 Nov 21;96:97–102. PubMed PMID: PMC4766031.
  • Trask OJ, Nickischer D, Burton A. High-throughput automated confocal microscopy imaging screen of a kinase-focused library to identify p38 mitogen-activated protein kinase inhibitors using the GE InCell 3000 analyzer. Janzen WP, Bernasconi P, et al., editors. High throughput screening: methods and protocols. 2nd ed. Totowa, NJ:Humana Press; 2009. p.159–186.
  • Schueder F, Lara-Gutiérrez J, Beliveau BJ, et al. Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT. Nat Commun. 2017 Dec 12;8(1):2090.
  • Honarnejad K, Kirsch AK, Daschner A, et al. FRET-based calcium imaging: a tool for high-throughput/content phenotypic drug screening in Alzheimer disease. J Biomol Screen. 2013 Dec 01;18(10):1309–1320..
  • Ž M, Özdemir E, McKinney JD. Single-cell tracking reveals antibiotic-induced changes in mycobacterial energy metabolism. PubMed PMID: PMC4338811 mBio. 2015;61:e02236–14.
  • Roszik J, Tóth G, Szöllősi J, et al. Validating pharmacological disruption of protein–protein interactions by acceptor photobleaching FRET imaging. In: Moll J, Colombo Reditors. Target identification and validation in drug discovery: methods and protocols. Totowa, NJ: Humana Press; 2013. p. 165–178.
  • Suhling K, Hirvonen LM, Levitt JA, et al. Fluorescence lifetime imaging (FLIM): basic concepts and some recent developments. Med Photonics. 2015 May 01;27:3–40.
  • Buschhaus JM, Gibbons AE, Luker KE, et al. Fluorescence lifetime imaging of a caspase-3 apoptosis reporter. Curr Protoc Cell Biol. 2017;77(1):21.12.1–21.12.12.
  • Jain P, Neveu B, Velot L, et al. Bioluminescence microscopy as a method to measure single cell androgen receptor activity heterogeneous responses to antiandrogens. Sci Rep. 2016 Sept 28;6:33968. online.
  • Gregor C, Gwosch KC, Sahl SJ, et al. Strongly enhanced bacterial bioluminescence with the ilux operon for single-cell imaging. Proc Nat Acad Sci. 2018. DOI:10.1073/pnas.1715946115.
  • Cevenini L, Camarda G, Michelini E, et al. Multicolor bioluminescence boosts malaria research: quantitative dual-color assay and single-cell imaging in plasmodium falciparum parasites. Anal Chem. 2014 Sept 02;86(17):8814–8821.
  • Iwano S, Sugiyama M, Hama H, et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science. 2018;359(6378):935–939.
  • Dixon AS, Schwinn MK, Hall MP, et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem Biol. 2016 Feb 19;11(2):400–408.
  • Rodriguez-Rivera FP, Zhou X, Theriot JA, et al. Acute modulation of mycobacterial cell envelope biogenesis by front-line tuberculosis drugs. Angew Chem. 2018;57(19):5267–5272.
  • Beuzer P, La Clair JJ, Cang H. Color-coded super-resolution small molecule imaging. Chembiochem Eur J Chem Biol. 2016 Apr 26;17(11):999–1003. PubMed PMID: PMC5291120.
  • Beghin A, Kechkar A, Butler C, et al. Localization-based super-resolution imaging meets high-content screening. Nat Methods. 2017 Oct 30;14:1184. online.
  • Gary SE. Moving pictures: imaging flow cytometry for drug development. Comb Chem High Throughput Screen. 2009;12(9):849–859.
  • Lalmansingh AS, Arora K, DeMarco RA, et al. High-throughput RNA FISH analysis by imaging flow cytometry reveals that pioneer factor Foxa1 reduces transcriptional stochasticity. PLoS ONE. 2013;8(9):e76043. PubMed PMID: PMC3779185.
  • Basiji DA, Ortyn WE, Liang L, et al. Cellular image analysis and imaging by flow cytometry. Clin Lab Med. 2007;27(3):653–viii. PubMed PMID: PMC2034394.
  • Li X, Soler M, Szydzik C, et al. Label-free optofluidic nanobiosensor enables real-time analysis of single-cell cytokine secretion. Small. 2018;14(26):1800698.
  • Buggenthin F, Marr C, Schwarzfischer M, et al. An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy. BMC Bioinformatics. 2013 October 04;14(1):297.
  • Emanuel G, Moffitt JR, Zhuang X. High-throughput, image-based screening of pooled genetic-variant libraries. Nat Methods. 2017;14:1159.
  • Wang G, Moffitt JR, Zhuang X. Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Sci Rep. 2018 Mar 19;8(1):4847.
  • Zhao Q, Eichten A, Parveen A, et al. Single-cell transcriptome analyses reveal endothelial cell heterogeneity in tumors and changes following antiangiogenic treatment. Cancer Res. 2018;78(9):2370–2382.
  • Valihrach L, Androvic P, Kubista M. Platforms for single-cell collection and analysis. Int J Mol Sci. 2018;19(3):807. PubMed PMID: 29534489.
  • Chi C-W, Ahmed AR, Dereli-Korkut Z, et al. Microfluidic cell chips for high-throughput drug screening. Bioanalysis. 2016 May;8(9):921–937. PubMed PMID: 27071838.
  • Lecault V, White AK, Singhal A, et al. Microfluidic single cell analysis: from promise to practice. Curr Opin Chem Biol. 2012 Aug 01;16(3):381–390.
  • Gómez-Sjöberg R, Leyrat AA, Pirone DM, et al. Versatile, fully automated, microfluidic cell culture system. Anal Chem. 2007 Nov 01;79(22):8557–8563.
  • Tay S, Hughey JJ, Lee TK, et al. Single-cell NF-κB dynamics reveal digital activation and analog information processing in cells. Nature. 2010 Jun 27;466(7303):267–271. PubMed PMID: PMC3105528.
  • Linshiz G, Jensen E, Stawski N, et al. End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis. J Biol Eng. 2016 Feb 02;10:3.
  • Lecault V, Vaninsberghe M, Sekulovic S, et al. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat Methods. 2011 May 22;8(7):581–586.
  • Shirasaki Y, Yamagishi M, Suzuki N, et al. Real-time single-cell imaging of protein secretion. Sci Rep. 2014;4:4736.
  • Kim MJ, Lee SC, Pal S, et al. High-content screening of drug-induced cardiotoxicity using quantitative single cell imaging cytometry on microfluidic device. Lab Chip. 2011;11(1):104–114.
  • Lissandrello C, Dubay R, Kotz KT, et al. Purification of lymphocytes by acoustic separation in plastic microchannels. SLAS Technol. 2018 Aug 01;23(4):352–363.
  • MacConnell AB, Price AK, Paegel BM. An integrated microfluidic processor for DNA-encoded combinatorial library functional screening. ACS Comb Sci. 2017 Mar 13;19(3):181–192.
  • Kulesa A, Kehe J, Hurtado JE, et al. Combinatorial drug discovery in nanoliter droplets. Proc Nat Acad Sci. 2018 June 26;115(26):6685–6690.
  • Lau AKS, Wong TTW, Shum HC, et al. Ultrafast microfluidic cellular imaging by optical time-stretch. In: Barteneva NS, Vorobjev IA, editors. Imaging flow cytometry: methods and protocols. New York, NY: Springer New York; 2016. p. 23–45.
  • Wu J-L, Xu Y-Q, Xu J-J, et al. Ultrafast laser-scanning time-stretch imaging at visible wavelengths. Light Sci Appl. 2017;6(1):e16196–e16196. PubMed PMID: 30167195.
  • Lei C, Kobayashi H, Wu Y, et al. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nat Protoc. 2018 Jul 01;13(7):1603–1631.
  • Nitta N, Sugimura T, Isozaki A, et al. Intelligent image-activated cell sorting. Cell. 2018;175(1):266–276.e13.
  • Grimm JB, Muthusamy AK, Liang Y, et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat Methods. 2017 Sept 04;14(10):987–994. PubMed PMID: PMC5621985.
  • Gunnarsson A, Snijder A, Hicks J, et al. Drug discovery at the single molecule level: inhibition-in-solution assay of membrane-reconstituted β-secretase using single-molecule imaging. Anal Chem. 2015 Apr 21;87(8):4100–4103.
  • Chen M, Zaytseva NV, Wu Q, et al. Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology. Appl Phys Lett. 2013;102(19):193702. PubMed PMID: PMC3669112.
  • Fang Y. Total internal reflection fluorescence quantification of receptor pharmacology. Biosensors (Basel). 2015;5:2.
  • Narayanan A, Meriin AB, Sherman MY, et al. A first order phase transition underlies the formation of sub-diffractive protein aggregates in mammalian cells. bioRxiv. 2017. DOI:10.1101/148395.
  • Huang X, Fan J, Li L, et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat Biotechnol. 2018 Apr 11;36:451–459.
  • Rossy J, Pageon SV, Davis DM, et al. Super-resolution microscopy of the immunological synapse. Curr Opin Immunol. 2013 Jun 01;25(3):307–312.
  • Dani A, Huang B, Bergan J, et al. Superresolution imaging of chemical synapses in the brain. Neuron. 2010;68(5):843–856. PubMed PMID: 21144999.
  • Agasti SS, Wang Y, Schueder F, et al. DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chem Sci. 2017;8(4):3080–3091.
  • Wang Y, Woehrstein JB, Donoghue N, et al. Rapid sequential in situ multiplexing with DNA exchange imaging in neuronal cells and tissues. Nano Lett. 2017 Oct 11;17(10):6131–6139.
  • Bray M-A, Singh S, Han H, et al. Cell painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat Protoc. 2016 Aug 25;11:1757.
  • Lin J-R, Fallahi-Sichani M, Chen J-Y, et al. Cyclic immunofluorescence (CycIF), a highly multiplexed method for single-cell imaging. Curr Protoc Chem Biol. 2016;8(4):251–264. PubMed PMID: 27925668.
  • Rubakhin SS, Lanni EJ, Sweedler JV. Progress toward single cell metabolomics. Curr Opin Biotechnol. 2013 Dec 13;24(1):95–104. PubMed PMID: PMC3545069.
  • Fessenden M. Metabolomics: small molecules, single cells. Nature. 2016 Nov 30;540:153.
  • Svatoš A. Single-cell metabolomics comes of age: new developments in mass spectrometry profiling and imaging. Anal Chem. 2011 Jul 01;83(13):5037–5044.
  • Zhang L, Vertes A. Single-cell mass spectrometry approaches to explore cellular heterogeneity. Angew Chem. 2018;57(17):4466–4477.
  • Passarelli MK, Ewing AG. Single-cell imaging mass spectrometry. Curr Opin Chem Biol. 2013 Aug 12;17(5). PubMed PMID: PMC3823831. DOI: 10.1016/j.cbpa.2013.07.017.
  • Winograd N. The magic of cluster SIMS. Anal Chem. 2005 Apr 01;77(7):142A–149A.
  • Passarelli MK, Newman CF, Marshall PS, et al. Single-cell analysis: visualizing pharmaceutical and metabolite uptake in cells with label-free 3D mass spectrometry imaging. Anal Chem. 2015 Jul 07;87(13):6696–6702.
  • Passarelli MK, Pirkl A, Moellers R, et al. The 3D OrbiSIMS—label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat Methods. 2017 Nov 13;14:1175.
  • Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods. 2016 Nov 14;14:90.
  • Zavalin A, Todd EM, Rawhouser PD, et al. Direct imaging of single cells and tissue at subcellular spatial resolution using transmission geometry MALDI MS. J Mass Spectrom. 2012;47(11):i. PubMed PMID: PMC3507384.
  • Zavalin A, Yang J, Hayden K, et al. Tissue protein imaging at 1 μm laser spot diameter for high spatial resolution and high imaging speed using transmission geometry MALDI TOF MS. Anal Bioanal Chem. 2015 Feb 12;407(8):2337–2342. PubMed PMID: PMC4359058.
  • Gundlach-Graham A, Günther D. Toward faster and higher resolution LA–ICPMS imaging: on the co-evolution of LA cell design and ICPMS instrumentation. Anal Bioanal Chem. 2016 April 01;408(11):2687–2695.
  • Pisonero J, Bouzas-Ramos D, Traub H, et al. Critical evaluation of fast and highly resolved elemental distribution in single cells using LA-ICP-SFMS. J Anal At Spectrom. 2018. DOI:10.1039/C8JA00096D.
  • Bandura DR, Baranov VI, Ornatsky OI, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2009 Aug 15;81(16):6813–6822.
  • Giesen C, Wang HAO, Schapiro D, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014 Mar 02;11:417–422.
  • Chang Q, Ornatsky OI, Siddiqui I, et al. Imaging mass cytometry. Cytometry Part A. 2017 Feb 01;91(2):160–169.
  • Mavropolous A, Dongxia L, Ben L et al. Equivalence of imaging mass cytometry and immunofluorescence on FFPE tissue sections. White paper.
  • Schüffler PJ, Schapiro D, Giesen C, et al. Automatic single cell segmentation on highly multiplexed tissue images. Cytometry Part A. 2015 Oct 01;87(10):936–942.
  • Schapiro D, Jackson HW, Raghuraman S, et al. miCAT: a toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat Methods. 2017 Aug 07;14(9):873–876. PubMed PMID: PMC5617107.
  • Bodenmiller B. Multiplexed epitope-based tissue imaging for discovery and healthcare applications. Cell Syst. 2016 Apr 27;2(4):225–238.
  • Ota S, Horisaki R, Kawamura Y, et al. Ghost cytometry. Science. 2018;360(6394):1246–1251.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.