1,734
Views
68
CrossRef citations to date
0
Altmetric
Perspective

Future challenges with DNA-encoded chemical libraries in the drug discovery domain

, , , ORCID Icon & ORCID Icon
Pages 735-753 | Received 22 Feb 2019, Accepted 30 Apr 2019, Published online: 21 May 2019

References

  • McCafferty J, Griffiths AD, Winter G, et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990;348(6301):552–554.
  • Kang AS, Barbas CF, Janda KD, et al. Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces. Proc Natl Acad Sci USA. 1991;88(10):4363–4366.
  • Clackson T, Hoogenboom HR, Griffiths AD, et al. Making antibody fragments using phage display libraries. Nature. 1991;352(6336):624–628.
  • Wilson DS, Keefe AD, Szostak JW. The use of mRNA display to select high-affinity protein-binding peptides. Proc Natl Acad Sci USA. 2001;98(7):3750–3755.
  • Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol. 1997;15(6):553–557.
  • Hanes J, Plückthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA. 1997;94(10):4937–4942.
  • Morimoto J, Hayashi Y, Iwasaki K, et al. Flexizymes: their evolutionary history and the origin of catalytic function. Acc Chem Res. 2011;44(12):1359–1368.
  • Heinis C, Rutherford T, Freund S, et al. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat Chem Biol. 2009;5(7):502–507.
  • Deyle K, Kong XD, Heinis C. Phage Selection of Cyclic Peptides for Application in Research and Drug Development. Acc Chem Res. 2017;50(8):1866–1874.
  • Mannocci L, Zhang YX, Scheuermann J, et al. High-throughput sequencing allows the identification of binding molecules isolated from DNA-encoded chemical libraries. Proc Natl Acad Sci USA. 2008;105(46):17670–17675.
  • Lerner RA, Brenner S. DNA-Encoded Compound Libraries as Open Source: A Powerful Pathway to New Drugs. Angew Chem Int Ed. 2017;56(5):1164–1165.
  • Belyanskaya SL, Ding Y, Callahan JF, et al. Discovering drugs with DNA-encoded library technology: from concept to clinic with an inhibitor of soluble epoxide hydrolase. ChemBioChem. 2017;18(9):837–842.
  • Arico-Muendel CC. From haystack to needle: finding value with DNA encoded library technology at GSK. Medchemcomm. 2016;7(10):1898–1909.
  • Harris PA, Berger SB, Jeong JU, et al. Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J Med Chem. 2017;60(4):1247–1261.
  • Brenner S, Lerner RA. Encoded combinatorial chemistry. Proc Natl Acad Sci USA. 1992;89(12):5381–5383.
  • Nielsen J, Brenner S, Janda KD. Synthetic methods for the implementation of encoded combinatorial chemistry. J Am Chem Soc. 1993;115(21):9812–9813.
  • Needels MC, Jones DG, Tate EH, et al. Generation and screening of an oligonucleotide-encoded synthetic peptide library. Proc Natl Acad Sci USA. 1993;90(22):10700–10704.
  • Melkko S, Scheuermann J, Dumelin CE, et al. Encoded self-assembling chemical libraries. Nat Biotechnol. 2004;22(5):568–574.
  • Gartner ZJ, Brian NT, Grubina R, et al. DNA-templated organic synthesis and selection of a library of macrocycles. Science. 2004;305(5690):1601–1605.
  • Halpin DR, Harbury PB. DNA display I. Sequence-encoded routing of DNA populations. PLoS Biol. 2004;2(7):1015–1021.
  • Franzini RM, Neri D, Scheuermann J. DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries. Acc Chem Res. 2014;47(4):1247–1255.
  • Goodnow RA Jr. A handbook for DNA-encoded chemistry: theory and applications for exploring chemical space and drug discovery. Hoboken (NJ): John Wiley & Sons; 2014.
  • Zambaldo C, Barluenga S, Winssinger N. PNA-encoded chemical libraries. Curr Opin Chem Biol. 2015;26:8–15.
  • Li G, Zheng W, Liu Y, et al. Novel encoding methods for DNA-templated chemical libraries. Curr Opin Chem Biol. 2015;26:25–33.
  • Franzini RM, Randolph C. Chemical Space of DNA-Encoded Libraries. J Med Chem. 2016;59(14):6629–6644.
  • Salamon H, Klika ŠKopić M, Jung K, et al. Chemical biology probes from advanced DNA-encoded libraries. ACS Chem Biol. 2016;11(2):296–307.
  • Kunig V, Potowski M, Gohla A, et al. DNA-encoded libraries–an efficient small molecule discovery technology for the biomedical sciences. Biol Chem. 2018;399(7):691–710.
  • Favalli N, Bassi G, Scheuermann J, et al. DNA-encoded chemical libraries - achievements and remaining challenges. FEBS Lett. 2018;592(12):2168–2180.
  • Neri D, Lerner RA. DNA-encoded chemical libraries: A selection system based on endowing organic compounds with amplifiable information. Ann Rev Biochem. 2018;87:479–502.
  • Goodnow RA Jr, Dumelin CE, Keefe AD. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat Rev Drug Discov. 2017;16(2):131–147.
  • Shi B, Zhou Y, Huang Y, et al. Recent advances on the encoding and selection methods of DNA-encoded chemical library. Bioorg Med Chem Lett. 2017;27(3):361–369.
  • Yuen LH, Franzini RM. Achievements, challenges, and opportunities in DNA-encoded library research: an academic point of view. Chembiochem. 2017;18(9):829–836.
  • Goodnow R Jr. DNA-encoded library technology (DELT) after a quarter century. SLAS Discov. 2018;23(5):385–386.
  • Clark MA, Acharya RA, Arico-Muendel CC, et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat Chem Biol. 2009;5(9):647–654.
  • Decurtins W, Wichert M, Franzini RM, et al. Automated screening for small organic ligands using DNA-encoded chemical libraries. Nat Protocols. 2016;11(4):764–780.
  • MacConnell AB, McEnaney PJ, Cavett VJ, et al. DNA-encoded solid-phase synthesis: encoding language design and complex oligomer library synthesis. ACS Comb Sci. 2015;17(9):518–534.
  • Mendes KR, Malone ML, Ndungu JM, et al. High-throughput identification of DNA-encoded IgG ligands that distinguish active and latent Mycobacterium tuberculosis infections. ACS Chem Biol. 2016;12(1):234–243.
  • Buller F, Zhang Y, Scheuermann J, et al. Discovery of TNF inhibitors from a DNA-encoded chemical library based on diels-alder cycloaddition. Chem Biol. 2009;16(10):1075–1086.
  • Buller F, Steiner M, Frey K, et al. Selection of carbonic anhydrase IX inhibitors from one million DNA-encoded compounds. ACS Chem Biol. 2011;6(4):336–344.
  • Leimbacher M, Zhang Y, Mannocci L, et al. Discovery of small-molecule interleukin-2 inhibitors from a DNA-encoded chemical library. Chem Eur J. 2012;18(25):7729–7737.
  • Wichert M, Krall N, Decurtins W, et al. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nat Chem. 2015;7:241–249.
  • Li Y, Luca R, Cazzamalli S, et al. Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold. Nat Chem. 2018;10(4):441–448.
  • Litovchick A, Clark MA, Keefe AD. Universal strategies for the DNA-encoding of libraries of small molecules using the chemical ligation of oligonucleotide tags. Artif DNA PNA XNA. 2014;5(1):e27896.
  • Tse BN, Snyder TM, Shen Y, et al. Translation of DNA into a library of 13 000 synthetic small-molecule macrocycles suitable for in vitro selection. J Am Chem Soc. 2008;130(46):15611–15626.
  • Usanov DL, Chan AI, Maianti JP, et al. Second-generation DNA-templated macrocycle libraries for the discovery of bioactive small molecules. Nat Chem. 2018;10:704–714.
  • Li X, Liu DR. DNA-templated organic synthesis: nature’s strategy for controlling chemical reactivity applied to synthetic molecules. Angew Chem Int Ed. 2004;43(37):4848–4870.
  • Li Y, Zhao P, Zhang M, et al. Multistep DNA-templated synthesis using a universal template. J Am Chem Soc. 2013;135(47):17727–17730.
  • Krusemark CJ, Tilmans NP, Brown PO, et al. Directed chemical evolution with an outsized genetic code. PloS One. 2016;11(8):1–16.
  • Wrenn SJ, Weisinger RM, Halpin DR, et al. Synthetic ligands discovered by in vitro selection. J Am Chem Soc. 2007;129(43):13137–13143.
  • Weisinger RM, Wrenn SJ, Harbury PB. Highly parallel translation of DNA sequences into small molecules. PloS One. 2012;7(3):e28056.
  • Weisinger RM, Marinelli RJ, Wrenn SJ, et al. Mesofluidic devices for DNA-programmed combinatorial chemistry. PloS One. 2012;7(3):e32299.
  • Mullard A. DNA-encoded drug libraries come of age. Nat Biotechnol. 2016;34(5):450–451.
  • Melkko S, Zhang Y, Dumelin CE, et al. Isolation of high-affinity trypsin inhibitors from a DNA-encoded chemical library. Angew Chem Int Ed. 2007;46(25):4671–4674.
  • Scheuermann J, Dumelin CE, Melkko S, et al. DNA-encoded chemical libraries for the discovery of MMP-3 inhibitors. Bioconjugate Chem. 2008;19(3):778–785.
  • Erlanson DA, Fesik SW, Hubbard RE, et al. Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov. 2016;15(9):605–619.
  • Scheuermann J, Neri D. Dual-pharmacophore DNA-encoded chemical libraries. Curr Opin Chem Biol. 2015;26:99–103.
  • Mannocci L, Zhang Y, Scheuermann J, et al. High-throughput sequencing allows the identification of binding molecules isolated from DNA-encoded chemical libraries. Proc Natl Acad Sci. 2008;105(46):17670–17675.
  • Dumelin CE, Trüssel S, Buller F, et al. A portable albumin binder from a DNA‐encoded chemical library. Angew Chem Int Ed. 2008;120(17):3240–3245.
  • Satz AL. Simulated screens of DNA encoded libraries: the potential influence of chemical synthesis fidelity on interpretation of structure–activity relationships. ACS Comb Sci. 2016;18(7):415–424.
  • Scott DE, Coyne AG, Hudson SA, et al. Fragment-based approaches in drug discovery and chemical biology. Biochemistry. 2012;51(25):4990–5003.
  • Ferenczy GG, Keseru GM. How are fragments optimized? A retrospective analysis of 145 fragment optimizations. J Med Chem. 2013;56(6):2478–2486.
  • Zimmermann G, Rieder U, Bajic D, et al. A specific and covalent JNK-1 ligand selected from an encoded self-assembling chemical library. Chem Eur J. 2017;23(34):8152–8155.
  • Bigatti M, Dal Corso A, Vanetti S, et al. Impact of a central scaffold on the binding affinity of fragment pairs isolated from DNA‐encoded self‐assembling chemical libraries. ChemMedChem. 2017;12(21):1748–1752.
  • Reddavide FV, Lin W, Lehnert S, et al. DNA-encoded dynamic combinatorial chemical libraries. Angew Chem Int Ed. 2015;54(27):7924–7928.
  • Reddavide FV, Cui M, Lin W, et al. Second generation DNA-encoded dynamic combinatorial chemical libraries. Chem Commun. 2019;55(26):3753–3756.
  • Li G, Zheng W, Chen Z, et al. Design, preparation, and selection of DNA-encoded dynamic libraries. Chem Sci. 2015;6(12):7097–7104.
  • Zhou Y, Li C, Peng J, et al. DNA-encoded dynamic chemical library and its applications in ligand discovery. J Am Chem Soc. 2018;140(46):15859–15867.
  • Hansen MH, Blakskjær P, Petersen LK, et al. A yoctoliter-scale DNA reactor for small-molecule evolution. J Am Chem Soc. 2009;131(3):1322–1327.
  • Cao C, Zhao P, Li Z, et al. A DNA-templated synthesis of encoded small molecules by DNA self-assembly. Chem Commun. 2014;50(75):10997–10999.
  • Daguer JP, Ciobanu M, Alvarez S, et al. DNA-templated combinatorial assembly of small molecule fragments amenable to selection/amplification cycles. Chem Sci. 2011;2(4):625–632.
  • Daguer J-P, Zambaldo C, Ciobanu M, et al. DNA display of fragment pairs as a tool for the discovery of novel biologically active small molecules. Chem Sci. 2014;6(1):739–744.
  • Svensen N, Díaz-Mochón JJ, Bradley M. Decoding a PNA encoded peptide library by PCR: the discovery of new cell surface receptor ligands. Chem Biol. 2011;18(10):1284–1289.
  • Satz AL. DNA encoded library selections and insights provided by computational simulations. ACS Chem Biol. 2015;10(10):2237–2245.
  • Satz AL, Hochstrasser R, Petersen AC. Analysis of current DNA encoded library screening data indicates higher false negative rates for numerically larger libraries. ACS Comb Sci. 2017;19(4):234–238.
  • Kuai L, O’Keeffe T, Arico-Muendel C. Randomness in DNA encoded library selection data can be modeled for more reliable enrichment calculation. SLAS Discov. 2018;23(5):405–416.
  • Eidam O, Satz AL. Analysis of the productivity of DNA encoded libraries. MedChemComm. 2016;7:1323–1331.
  • Franzini RM, Ekblad T, Zhong N, et al. Identification of structure-activity relationships from screening a structurally compact DNA-encoded chemical library. Angew Chem Int Ed. 2015;54(13):3927–3931.
  • Franzini RM, Biendl S, Mikutis G, et al. “Cap-and-Catch” purification for enhancing the quality of libraries of DNA conjugates. ACS Comb Sci. 2015;17(7):393–398.
  • Yuen LH, Dana S, Liu Y, et al. A focused DNA-encoded chemical library for the discovery of inhibitors of NAD(+)-dependent enzymes. J Am Chem Soc. 2019;141(13):5169–5181.
  • Stress C, Sauter B, Schneider L, et al. A DNA-encoded chemical library incorporating elements of natural macrocycles. Angew Chem Int Ed. 2019. DOI:10.1002/anie.201902513.
  • Goodnow RA Jr., Dumelin CE, Keefe AD. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat Rev Drug Discov. 2017;16(2):131–147.
  • Malone ML, Paegel BM. What is a “DNA-Compatible” Reaction? ACS Comb Sci. 2016;18(4):182–187.
  • Pels K, Dickson P, An H, et al. DNA-compatible solid-phase combinatorial synthesis of β-cyanoacrylamides and related electrophiles. ACS Comb Sci. 2018;20(2):61–69.
  • Tran-Hoang N, Kodadek T. Solid-phase synthesis of beta-amino ketones via DNA-compatible organocatalytic mannich reactions. ACS Comb Sci. 2018;20(2):55–60.
  • Shu K, Kodadek T. Solid-phase synthesis of β-hydroxy ketones via DNA-compatible organocatalytic aldol reactions. ACS Comb Sci. 2018;20(5):277–281.
  • Satz AL, Cai J, Chen Y, et al. DNA compatible multistep synthesis and applications to DNA encoded libraries. Bioconjugate Chem. 2015;26(8):1623–1632.
  • Fan LJ, Davie CP. Zirconium(IV)-catalyzed ring opening of on-DNA epoxides in water. ChemBioChem. 2017;18(9):843–847.
  • Lu XJ, Fan LJ, Phelps CB, et al. Ruthenium promoted on-DNA ring-closing metathesis and cross-metathesis. Bioconjugate Chem. 2017;28(6):1625–1629.
  • Skopic MK, Salamon H, Bugain O, et al. Acid- and Au(I)-mediated synthesis of hexathymidine-DNA-heterocycle chimeras, an efficient entry to DNA-encoded libraries inspired by drug structures. Chem Sci. 2017;8(5):3356–3361.
  • Skopic MK, Willems S, Wagner B, et al. Exploration of a Au(I)-mediated three-component reaction for the synthesis of DNA-tagged highly substituted spiroheterocycles. Org Biomol Chem. 2017;15(40):8648–8654.
  • Potowski M, Kunig VBK, Loscha F, et al. Synthesis of DNA-coupled isoquinolones and pyrrolidines by solid phase ytterbium- and silver-mediated imine chemistry. MedChemComm. 2019. DOI:10.1039/C9MD00042A.
  • Gerry CJ, Yang Z, Stasi M, et al. DNA-compatible [3+2] nitrone-olefin cycloaddition suitable for DEL syntheses. Org Lett. 2019;21(5):1325–1330.
  • Brown DG, Bostrom J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J Med Chem. 2016;59(10):4443–4458.
  • Kolmel DK, Loach RP, Knauber T, et al. Employing photoredox catalysis for DNA-encoded chemistry: decarboxylative alkylation of alpha-amino acids. ChemMedChem. 2018;13(20):2159–2165.
  • Wang J, Lundberg H, Asai S, et al. Kinetically guided radical-based synthesis of C(sp(3))-C(sp(3)) linkages on DNA. Proc Natl Acad Sci U S A. 2018;115(28):6404–6410.
  • Phelan JP, Sbl JS, Simon Berritt AJ, et al. Open-air alkylation reactions in photoredox-catalyzed DNA-encoded library synthesis. J Am Chem Soc. 2019;141(8):3723–3732.
  • Wang X, Sun H, Liu J, et al. Ruthenium-promoted C-H activation reactions between DNA-conjugated acrylamide and aromatic acids. Org Lett. 2018;20(16):4764–4768.
  • Li JY, Huang HB. Development of DNA-compatible suzuki-miyaura reaction in aqueous media. Bioconjugate Chem. 2018;29(11):3841–3846.
  • Christopher Gerry MW, Clemons P, Schreiber S. DNA barcoding a complete matrix of stereoisomeric small molecules. ChemRxiv 2019. Preprint. doi: 10.26434/chemrxiv.7289471
  • Ding Y, DeLorey JL, Clark MA. Novel Catalyst System for Suzuki-Miyaura Coupling of Challenging DNA-Linked Aryl Chlorides. Bioconjugate Chem. 2016;27(11):2597–2600.
  • Ding Y, Franklin GJ, DeLorey JL, et al. Design and synthesis of biaryl DNA-encoded libraries. ACS Comb Sci. 2016;18(10):625–629.
  • Wang X, Sun H, Liu J, et al. Palladium-promoted DNA-Compatible heck reaction. Org Lett. 2019;21(3):719–723.
  • Du H-C, Huang H. DNA-compatible nitro reduction and synthesis of benzimidazoles. Bioconjugate Chem. 2017;28(10):2575–2580.
  • Du H-C, Simmons N, Faver JC, et al. A mild, DNA-compatible nitro reduction using B2(OH)4. Org Lett. 2019;21(7):2194–2199.
  • Ding Y, Chai J, Centrella PA, et al. Development and synthesis of DNA-encoded benzimidazole library. ACS Comb Sci. 2018;20(5):251–255.
  • de Pedro Beato E, Priego J, Gironda-Martínez A, et al. Mild and efficient palladium-mediated C-N cross-coupling reaction between DNA-conjugated aryl bromides and aromatic amines. ACS Comb Sci. 2019;21(2):69–74.
  • Lu XJ, Roberts SE, Franklin GJ, et al. On-DNA Pd and Cu promoted C-N cross-coupling reactions. MedChemComm. 2017;8(8):1614–1617.
  • Li H, Sun Z, Wu W, et al. Inverse-electron-demand Diels-Alder reactions for the synthesis of pyridazines on DNA. Org Lett. 2018;20(22):7186–7191.
  • Thomas B, Lu XJ, Birmingham WR, et al. Application of biocatalysis to on-DNA carbohydrate library synthesis. ChemBioChem. 2017;18(9):858–863.
  • Kielar C, Reddavide FV, Tubbenhauer S, et al. Pharmacophore nanoarrays on DNA origami substrates as a single-molecule assay for fragment-based drug discovery. Angew Chem Int Ed. 2018;57(45):14873–14877.
  • Erharuyi O, Simanski S, McEnaney PJ, et al. Screening one bead one compound libraries against serum using a flow cytometer: determination of the minimum antibody concentration required for ligand discovery. Bioorg Med Chem Lett. 2018;28(16):2773–2778.
  • Li Y, Zimmermann G, Scheuermann J, et al. Quantitative PCR is a valuable tool to monitor the performance of DNA-encoded chemical library selections. ChemBioChem. 2017;18(9):848–852.
  • Denton KE, Wang S, Gignac MC, et al. Robustness of in vitro selection assays of DNA-encoded peptidomimetic ligands to CBX7 and CBX8. SLAS Discov. 2018;23(5):417–428.
  • Denton KE, Krusemark CJ. Crosslinking of DNA-linked ligands to target proteins for enrichment from DNA-encoded libraries. MedChemComm. 2016;7(10):2020–2027.
  • Sannino A, Gabriele E, Bigatti M, et al. Quantitative assessment of affinity selection performance using DNA-encoded chemical libraries. ChemBioChem. 2019;20(7):955–962.
  • McGregor LM, Jain T, Liu DR. Identification of ligand-target pairs from combined libraries of small molecules and unpurified protein targets in cell lysates. J Am Chem Soc. 2014;136(8):3264–3270.
  • McGregor LM, Gorin DJ, Dumelin CE, et al. Interaction-dependent PCR: identification of ligand-target pairs from libraries of ligands and libraries of targets in a single solution-phase experiment. J Am Chem Soc. 2010;132(44):15522–15524.
  • Chan AI, McGregor LM, Jain T, et al. Discovery of a covalent kinase inhibitor from a DNA-encoded small-molecule library × protein library selection. J Am Chem Soc. 2017;139(30):10192–10195.
  • Blakskjaer P, Christensen AB, Hansen NJV, et al., A method for making an enriched library patent WO2012041633 A1. 2012 2012.4.5.
  • Zhao P, Chen Z, Li Y, et al. Selection of DNA-encoded small molecule libraries against unmodified and non-immobilized protein targets. Angew Chem Int Ed. 2014;53(38):10056–10059.
  • Shi B, Deng Y, Li X. Polymerase-extension-based selection method for DNA-encoded chemical libraries against nonimmobilized protein targets. ACS Comb Sci. 2019. DOI:10.1021/acscombsci.9b00011
  • Shi B, Deng Y, Zhao P, et al. Selecting a DNA-encoded chemical library against non-immobilized proteins using a “ligate-cross-link-purify” strategy. Bioconjug Chem. 2017;28(9):2293–2301.
  • Bao J, Krylova SM, Cherney LT, et al. Predicting electrophoretic mobility of protein-ligand complexes for ligands from DNA-encoded libraries of small molecules. Anal Chem. 2016;88(10):5498–5506.
  • Kochmann S, Le ATH, Hili R, et al. Predicting efficiency of NECEEM-based partitioning of protein binders from nonbinders in DNA-encoded libraries. Electrophoresis. 2018;39(23):2991–2996.
  • Anson L. Membrane protein biophysics. Nature. 2009;459:343.
  • Kollmann CS, Bai X, Tsai CH, et al. Application of encoded library technology (ELT) to a protein-protein interaction target: discovery of a potent class of integrin lymphocyte function-associated antigen 1 (LFA-1) antagonists. Bioorg Med Chem. 2014;22(7):2353–2365.
  • Ahn S, Kahsai AW, Pani B, et al. Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library. Proc Natl Acad Sci USA. 2017;114(7):1708–1713.
  • Ahn S, Pani B, Kahsai AW, et al. Small-molecule positive allosteric modulators of the beta2-adrenoceptor isolated from DNA-encoded libraries. Mol Pharmacol. 2018;94(2):850–861.
  • Brown DG, Brown GA, Centrella P, et al. Agonists and antagonists of protease-activated receptor 2 discovered within a DNA-encoded chemical library using mutational stabilization of the target. SLAS Discov. 2018;23(5):429–436.
  • Wu Z, Graybill TL, Zeng X, et al. Cell-based selection expands the utility of DNA-encoded small-molecule library technology to cell surface drug targets: identification of novel antagonists of the NK3 tachykinin receptor. ACS Comb Sci. 2015;17(12):722–731.
  • Svensen N, Díaz-Mochón JJ, Bradley M. Encoded peptide libraries and the discovery of new cell binding ligands. Chem Commun. 2011;47(27):7638–7640.
  • Cuozzo JW, Centrella PA, Gikunju D, et al. Discovery of a potent BTK inhibitor with a novel binding mode by using parallel selections with a DNA-encoded chemical library. Chembiochem. 2017;18(9):864–871.
  • Franzini RM, Nauer A, Scheuermann J, et al. Interrogating target-specificity by parallel screening of a DNA-encoded chemical library against closely related proteins. Chem Commun. 2015;51(38):8014–8016.
  • Machutta CA, Kollmann CS, Lind KE, et al. Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening. Nat Commun. 2017;8:16081.
  • Winssinger N, Ficarro S, Schultz PG, et al. Profiling protein function with small molecule microarrays. Proc Natl Acad Sci USA. 2002;99(17):11139–11144.
  • Harris J, Mason DE, Li J, et al. Activity profile of dust mite allergen extract using substrate libraries and functional proteomic microarrays. Chem Biol. 2004;11(10):1361–1372.
  • Urbina HD, Debaene F, Jost B, et al. Self-assembled small-molecule microarrays for protease screening and profiling. Chembiochem. 2006;7(11):1790–1797.
  • Zambaldo C, Daguer J-P, Saarbach J, et al. Screening for covalent inhibitors using DNA-display of small molecule libraries functionalized with cysteine reactive moieties. MedChemComm. 2016;7(7):1340–1351.
  • Daguer JP, Zambaldo C, Abegg D, et al. Identification of covalent bromodomain binders through DNA display of small molecules. Angew Chem Int Ed. 2015;54(20):6057–6061.
  • Zhu Z, Grady LC, Ding Y, et al. Development of a selection method for discovering irreversible (covalent) binders from a DNA-encoded library. SLAS Discov. 2019;24(2). doi: 10.1177/2472555218808454.
  • Faver JC, Riehle K, Lancia DR Jr., et al. Quantitative Comparison of Enrichment from DNA-Encoded Chemical Library Selections. ACS Comb Sci. 2019;21(2):75–82.
  • Fernandez-Montalvan AE, Berger M, Kuropka B, et al. Isoform-selective ATAD2 chemical probe with novel chemical structure and unusual mode of action. ACS Chem Biol. 2017;12(11):2730–2736.
  • Favalli N, Biendl S, Hartmann M, et al. A DNA-encoded library of chemical compounds based on common scaffolding structures reveals the impact of ligand geometry on protein recognition. ChemMedChem. 2018;13(13):1303–1307.
  • Seigal BA, Connors WH, Fraley A, et al. The discovery of macrocyclic XIAP antagonists from a DNA-programmed chemistry library, and their optimization to give lead compounds with in vivo antitumor activity. J Med Chem. 2015;58(6):2855–2861.
  • Zhu ZR, Shaginian A, Grady LC, et al. Design and application of a DNA-encoded macrocyclic peptide library [article]. ACS Chem Biol. 2018;13(1):53–59.
  • Johannes JW, Bates S, Beigie C, et al. Structure based design of non-natural peptidic macrocyclic Mcl-1 inhibitors. ACS Med Chem Lett. 2017;8(2):239–244.
  • Richter H, Satz AL, Bedoucha M, et al. DNA-encoded library-derived DDR1 inhibitor prevents fibrosis and renal function loss in a genetic mouse model of Alport syndrome. ACS Chem Biol. 2018;14(1):37–49.
  • Wu Z, Graybill TL, Zeng X, et al. Cell-based selection expands the utility of dna-encoded small-molecule library technology to cell surface drug targets: identification of novel antagonists of the NK3 tachykinin receptor. ACS Comb Sci. 2015;17(12):722–731.
  • Chan AI, McGregor LM, Jain T, et al. Discovery of a covalent kinase inhibitor from a DNA-encoded small-molecule library x protein library selection. J Am Chem Soc. 2017;139(30):10192–10195.
  • Kolodny G, Li X, Balk S. Addressing cancer chemotherapeutic toxicity, resistance, and heterogeneity: novel theranostic use of DNA-encoded small molecule libraries. BioEssays. 2018;40(10):e1800057.
  • Cochrane WG, Malone ML, Dang VQ, et al. Activity-based DNA-encoded library screening. ACS Comb Sci. 2019;21(5):425–435.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.