434
Views
47
CrossRef citations to date
0
Altmetric
Review

Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: Structural characteristics and molecular targets

&
Pages 821-842 | Received 27 Feb 2019, Accepted 30 Apr 2019, Published online: 16 May 2019

References

  • Amalraj A, Pius A, Gopi S, et al. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J Tradit Complement Med. 2016, June 15; 7(2): 205–233.
  • Hongyu Zhou CSB, Huang S. Targets of curcumin. Curr Drug Targets. 2011;12(3):332–347.
  • Fuchs JR, Pandit B, Bhasin D, et al. Structure–activity relationship studies of curcumin analogues. Bioorg Med Chem Lett. 2009 Apr 01;19(7):2065–2069.
  • Agrawal DK, Mishra PK. Curcumin and its analogues: potential anticancer agents. Med Res Rev. 2010 Sep 01;30(5):818–860.
  • Gupta SC, Prasad S, Kim JH, et al. Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep. 2011;28(12):1937–1955. PubMed PMID: 21979811.
  • Anand P, Thomas SG, Kunnumakkara AB, et al. Biological activities of curcumin and its analogues (Congeners) made by man and mother nature. Biochem Pharmacol. 2008 Dec 01;76(11):1590–1611.
  • Mahdi H, Thomas PJ, Amirhossein S. One molecule, many targets and numerous effects: the pleiotropy of curcumin lies in its chemical structure. Curr Pharm Des. 2018;24(19):2129–2136.
  • Wang JQ, Wang X, Wang Y, et al. Novel curcumin analogue hybrids: synthesis and anticancer activity. Eur J Med Chem. 2018;156:493–509.
  • Balazs B, Kuppusamy ML, Esha M, et al. Synthesis and biological evaluation of curcumin-nitroxide-based molecular hybrids as antioxidant and anti-proliferative agents. Med Chem. 2017;13(8):761–772.
  • Katsori AM, Chatzopoulou M, Dimas K, et al. Curcumin analogues as possible anti-proliferative & anti-inflammatory agents. Eur J Med Chem. 2011 Jul 01;46(7):2722–2735.
  • Katsori A-M, Palagani A, Bougarne N, et al. Inhibition of the NF-κB signaling pathway by a novel heterocyclic curcumin analogue. Molecules. 2015;20(1):863–878. PubMed PMID: 25580684.
  • Xia Y, Shen S, Verma IM. NF-κB, an active player in human cancers. Cancer Immunol Res. 2014;2(9):823–830. PubMed PMID: 25187272.
  • Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. PubMed PMID: 29158945.
  • Crawford LJ, Walker B, Irvine AE. Proteasome inhibitors in cancer therapy. PubMed PMID: 21484190 J Cell Commun Signal. 2011;52:101–110.
  • Almond JB, Cohen GM. The proteasome: a novel target for cancer chemotherapy [Spotlight on molecular targeted therapy]. Leukemia. 2002 Apr 08;16:433.
  • Sasaki T, Hiroki K, Yamashita Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Biomed Res Int. 2013;2013:546318. PubMed PMID: 23986907.
  • Parker AL, Kavallaris M, McCarroll JA. Microtubules and their role in cellular stress in cancer. Front Oncol. 2014;4:153. PubMed PMID: 24995158.
  • Olsson M, Zhivotovsky B. Caspases and cancer. PubMed PMID: 21455218 Cell Death Differ. 2011;189:1441–1449.
  • Johnston PA, Grandis JR. STAT3 signaling: anticancer strategies and challenges. PubMed PMID: 21441118 Mol Interv. 2011;111:18–26.
  • Groner B, von Manstein V. Jak Stat signaling and cancer: opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol. 2017 Aug 15;451: 1–14.
  • Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295–a016295. PubMed PMID: 25190079.
  • Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. PubMed PMID: 21508345 Arterioscler Thromb Vasc Biol. 2011;315:986–1000.
  • Martel-Pelletier J, Lajeunesse D, Reboul P, et al. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann Rheum Dis. 2003;62(6):501.
  • Hämäläinen M, Lilja R, Kankaanranta H, et al. Inhibition of iNOS expression and NO production by anti-inflammatory steroids: reversal by histone deacetylase inhibitors. Pulm Pharmacol Ther. 2008 Apr 01;21(2):331–339.
  • Qiu X, Du Y, Lou B, et al. Synthesis and identification of new 4-arylidene curcumin analogues as potential anticancer agents targeting nuclear factor-κB signaling pathway. J Med Chem. 2010;53(23):8260–8273. PubMed PMID: 21070043.
  • Zuo Y, Huang J, Zhou B, et al. Synthesis, cytotoxicity of new 4-arylidene curcumin analogues and their multi-functions in inhibition of both NF-κB and Akt signalling. Eur J Med Chem. 2012;55:346–357.
  • Yadav B, Taurin S, Rosengren RJ, et al. Synthesis and cytotoxic potential of heterocyclic cyclohexanone analogues of curcumin. Bioorg Med Chem. 2010 Sep 15;18(18):6701–6707.
  • Wei X, Du Z-Y, Cui -X-X, et al. Effects of cyclohexanone analogues of curcumin on growth, apoptosis and NF-κB activity in PC-3 human prostate cancer cells. Oncol Lett. 2012;4(2):279–284. PubMed PMID: 22844370.
  • Chen J, Zhang L, Shu Y, et al. Curcumin analogue CA15 Exhibits anticancer effects on HEp-2 cells via targeting NF-κB. Biomed Res Int. 2017;2017:10.
  • Katsori A-M, Palagani A, Bougarne N, et al. Inhibition of the NF-κB signaling pathway by a novel heterocyclic curcumin analogue. Molecules. 2015;20:1.
  • Chen C, Liu Y, Chen Y, et al. C086, a novel analog of curcumin, induces growth inhibition and down-regulation of NFκB in colon cancer cells and xenograft tumors. Cancer Biol Ther. 2011 Nov 01;12(9):797–807.
  • Al-Hujaily EM, Mohamed AG, Al-Sharif I, et al. PAC, a novel curcumin analogue, has anti-breast cancer properties with higher efficiency on ER-negative cells. Breast Cancer Res Treat. 2011 Jul 01;128(1):97–107.
  • Cao B, Wang Y, Ding K, et al. Synthesis of the pyridinyl analogues of dibenzylideneacetone (pyr-dba) via an improved Claisen–schmidt condensation, displaying diverse biological activities as curcumin analogues. Org Biomol Chem. 2012;10(6):1239–1245.
  • Peng Y-M, Zheng J-B, Zhou Y-B, et al. Characterization of a novel curcumin analog P1 as potent inhibitor of the NF-κB signaling pathway with distinct mechanisms. Acta Pharmacol Sin. 2013;34(7):939–950. PubMed PMID: 23603982.
  • Olivera A, Moore TW, Hu F, et al. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): anti-inflammatory and anti-cancer properties. Int Immunopharmacol. 2012;12(2):368–377. PubMed PMID: 22197802.
  • Adams BK, Ferstl EM, Davis MC, et al. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg Med Chem. 2004 Jul 15;12(14):3871–3883.
  • Rajitha B, Belalcazar A, Nagaraju GP, et al. Inhibition of NF-κB translocation by curcumin analogs induces G0/G1 arrest and downregulates thymidylate synthase in colorectal cancer. Cancer Lett. 2016 Apr 10;373(2):227–233.
  • Yang CH, Yue J, Sims M, et al. The curcumin analog EF24 targets NF-κB and miRNA-21, and has potent anticancer activity in vitro and in vivo. Plos One. 2013;8(8):e71130.
  • Ravindran J, Subbaraju GV, Ramani MV, et al. Bisdemethylcurcumin and structurally related hispolon analogues of curcumin exhibit enhanced prooxidant, anti-proliferative and anti-inflammatory activities in vitro. Biochem Pharmacol. 2010;79(11):1658–1666. PubMed PMID: 20138025.
  • Hackler L Jr., Ózsvári B, Gyuris M, et al. The curcumin analog C-150, Influencing NF-κB, UPR and Akt/Notch pathways has potent anticancer activity in vitro and in vivo. Plos One. 2016;11(3):e0149832.
  • Meiyanto E, Putri DD, Ratna AS, et al. Curcumin and its Analogues (PGV-0 and PGV-1) enhance sensitivity of resistant MCF-7 cells to doxorubicin through inhibition of HER2 and NF-kB activation. Asian Pac J Cancer Prev. 2014;15(1):179–184.
  • Chen L, Li Q, Weng B, et al. Design, synthesis, anti-lung cancer activity, and chemosensitization of tumor-selective MCACs based on ROS-mediated JNK pathway activation and NF-κB pathway inhibition. Eur J Med Chem. 2018;151:508–519.
  • Sato A, Kudo C, Yamakoshi H, et al. Curcumin analog GO-Y030 is a novel inhibitor of IKKβ that suppresses NF-κB signaling and induces apoptosis. Cancer Sci. 2011 May 01;102(5):1045–1051.
  • Sri Ramya PV, Guntuku L, Angapelly S, et al. Curcumin inspired 2-chloro/phenoxy quinoline analogues: synthesis and biological evaluation as potential anticancer agents. Bioorg Med Chem Lett. 2018 Mar 01;28(5):892–898.
  • Li Y, Zhang L-P, Dai F, et al. Hexamethoxylated monocarbonyl analogues of curcumin cause G2/M cell cycle arrest in NCI-H460 cells via michael acceptor-dependent redox intervention. J Agric Food Chem. 2015 Sep 09;63(35):7731–7742.
  • Qiu C, Hu Y, Wu K, et al. Synthesis and biological evaluation of allylated mono-carbonyl analogues of curcumin (MACs) as anti-cancer agents for cholangiocarcinoma. Bioorg Med Chem Lett. 2016 Dec 15;26(24):5971–5976.
  • Pan Y, Wang M, Bu X, et al. Curcumin analogue T83 exhibits potent antitumor activity and induces radiosensitivity through inactivation of Jab1 in nasopharyngeal carcinoma. BMC Cancer. 2013 Jul 01;13(1):323.
  • Yogosawa S, Yamada Y, Yasuda S, et al. Dehydrozingerone, a structural analogue of curcumin, induces cell-cycle arrest at the G2/M phase and accumulates intracellular ROS in HT-29 human colon cancer cells. J Nat Prod. 2012 Dec 28;75(12):2088–2093.
  • Pan Y, Liu G, Xiao J, et al. A novel curcuminoid exhibits enhanced antitumor activity in nasopharyngeal carcinoma. Int J Oncol. 2016;48(5):2175–2183.
  • de Freitas Silva M, Coelho LF, Guirelli IM, et al. Synthetic resveratrol-curcumin hybrid derivative inhibits mitosis progression in estrogen positive MCF-7 breast cancer cells. Toxicol in Vitro. 2018;50:75–85.
  • Khwaja S, Fatima K, Hasanain M, et al. Antiproliferative efficacy of curcumin mimics through microtubule destabilization. Eur J Med Chem. 2018;151:51–61.
  • Dahmke IN, Boettcher SP, Groh M, et al. Cooking enhances curcumin anti-cancerogenic activity through pyrolytic formation of “deketene curcumin”. Food Chem. 2014;151:514–519.
  • Wang R, Zhang X, Chen C, et al. Synthesis and evaluation of 1,7-diheteroarylhepta-1,4,6-trien-3-ones as curcumin-based anticancer agents. Eur J Med Chem. 2016;110:164–180. PubMed PMID: 26827161.
  • Zhang X, Wang R, Perez GR, et al. Design, synthesis, and biological evaluation of 1,9-diheteroarylnona-1,3,6,8-tetraen-5-ones as a new class of anti-prostate cancer agents. Bioorg Med Chem. 2016;24(19):4692–4700. PubMed PMID: 27543391.
  • Mohankumar KPS, Periyasamy L, Chellakan SB, et al. Antiproliferative effects of an analog of curcumin in hep-2 cells: a comparative study with curcumin. Nat Prod Commun. 2013;8(2):1–4.
  • Alibeiki F, Jafari N, Karimi M, et al. Potent anti-cancer effects of less polar Curcumin analogues on gastric adenocarcinoma and esophageal squamous cell carcinoma cells. Sci Rep. 2017;7(1):2559. PubMed PMID: 28566729.
  • Arezki A, Chabot G, Quentin L, et al. Synthesis and biological evaluation of novel ferrocenyl curcuminoid derivatives. MedChemComm. 2011;2(3):190–195. PubMed PMID: 23967373.
  • Ramya PVS, Guntuku L, Angapelly S, et al. Synthesis and biological evaluation of curcumin inspired imidazo[1,2-a]pyridine analogues as tubulin polymerization inhibitors. Eur J Med Chem. 2018;143:216–231.
  • Sri Ramya PV, Angapelly S, Guntuku L, et al. Synthesis and biological evaluation of curcumin inspired indole analogues as tubulin polymerization inhibitors. Eur J Med Chem. 2017;127:100–114.
  • Fawzy IM, Youssef KM, Ismail NSM, et al. Design, synthesis and biological evaluation of novel curcumin analogs with anticipated anticancer activity. Future J Pharm Sci. 2015 Jun 01;1(1):22–31.
  • Ruan B-F, Lu X, Li -T-T, et al. Synthesis, biological evaluation and molecular docking studies of resveratrol derivatives possessing curcumin moiety as potent antitubulin agents. Bioorg Med Chem. 2012 Jan 15;20(2):1113–1121.
  • Tan K-L, Koh S-B, Ee RP-L, et al. Curcumin analogues with potent and selective anti-proliferative activity on acute promyelocytic leukemia: involvement of accumulated misfolded nuclear receptor co-repressor (N-CoR) protein as a basis for selective activity. ChemMedChem. 2012 Sep 01;7(9):1567–1579.
  • Yue X, Zuo Y, Ke H, et al. Identification of 4-arylidene curcumin analogues as novel proteasome inhibitors for potential anticancer agents targeting 19S regulatory particle associated deubiquitinase. Biochem Pharmacol. 2017;137:29–50.
  • Liu H, Liu Y-Z, Zhang F, et al. Identification of potential pathways involved in the induction of cell cycle arrest and apoptosis by a new 4-arylidene curcumin analogue T63 in lung cancer cells: a comparative proteomic analysis. Mol Biosyst. 2014;10(6):1320–1331.
  • Padhye S, Yang H, Jamadar A, et al. New difluoro Knoevenagel condensates of curcumin, their Schiff bases and copper complexes as proteasome inhibitors and apoptosis inducers in cancer cells. Pharm Res. 2009;26(8):1874–1880. PubMed PMID: 19421843. DOI:10.1007/s11095-009-9900-8
  • Qiu P, Xu L, Gao L, et al. Exploring pyrimidine-substituted curcumin analogues: design, synthesis and effects on EGFR signaling. Bioorg Med Chem. 2013 Sep 01;21(17):5012–5020.
  • Ahsan MJ, Khalilullah H, Yasmin S, et al. Synthesis, characterisation, and in vitro anticancer activity of curcumin analogues bearing pyrazole/pyrimidine ring targeting EGFR tyrosine kinase. Biomed Res Int. 2013;2013:14.
  • Ahsan MJ. Evaluation of anticancer activity of curcumin analogues bearing a heterocyclic nucleus. Asian Pac J Cancer Prev. 2016;17(4):1739–1744.
  • Wada K, Lee J-Y, Hung H-Y, et al. Novel curcumin analogs to overcome EGFR-TKI lung adenocarcinoma drug resistance and reduce EGFR-TKI-induced GI adverse effects. Bioorg Med Chem. 2015;23(7):1507–1514. PubMed PMID: 25753330.
  • Weng Q, Fu L, Chen G, et al. Design, synthesis, and anticancer evaluation of long-chain alkoxylated mono-carbonyl analogues of curcumin. Eur J Med Chem. 2015;103:44–55.
  • Citalingam K, Abas F, Lajis NH, et al. Anti-proliferative effect and induction of apoptosis in androgen-independent human prostate cancer cells by 1,5-bis(2-hydroxyphenyl)-1,4-pentadiene-3-one. Molecules. 2015;20(2):3406–3430. PubMed PMID: 25690296.
  • Paulraj F, Abas F, Lajis HN, et al. The curcumin analogue 1,5-Bis(2-hydroxyphenyl)-1,4-pentadiene-3-one induces apoptosis and downregulates E6 and E7 oncogene expression in HPV16 and HPV18-infected cervical cancer cells. Molecules. 2015;20:7.
  • Pisano M, Pagnan G, Dettori MA, et al. Enhanced anti-tumor activity of a new curcumin-related compound against melanoma and neuroblastoma cells. Mol Cancer. 2010;9:137. PubMed PMID: 20525240.
  • Faião-Flores F, Quincoces Suarez JA, Fruet AC, et al. Curcumin analog DM-1 in monotherapy or combinatory treatment with dacarbazine as a strategy to inhibit in vivo melanoma progression. PloS One. 2015;10(3):e0118702–e0118702. PubMed PMID: 25742310.
  • Faião-Flores F, Suarez JAQ, Maria-Engler SS, et al. The curcumin analog DM-1 induces apoptotic cell death in melanoma. Tumor Biol. 2013 Apr 01;34(2):1119–1129.
  • Friedman L, Lin L, Ball S, et al. Curcumin analogues exhibit enhanced growth suppressive activity in human pancreatic cancer cells. Anticancer Drugs. 2009;20(6):444–449. PubMed PMID: 19384191.
  • Bill MA, Fuchs JR, Li C, et al. The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity. Mol Cancer. 2010 Jun 25;9(1):165.
  • Bill MA, Nicholas C, Mace TA, et al. Structurally modified curcumin analogs inhibit STAT3 phosphorylation and promote apoptosis of human renal cell carcinoma and melanoma cell lines. Plos One. 2012;7(8):e40724.
  • Lin L, Hutzen B, Zuo M, et al. Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res. 2010;70(6):2445–2454. PubMed PMID: 20215512.
  • Liu Y, Fuchs J, Li C, et al. IL-6, a risk factor for hepatocellular carcinoma: FLLL32 inhibits IL-6-Induced STAT3 phosphorylation in human hepatocellular cancer cells. Cell Cycle. 2010 Sep 01;9(17):3423–3427.
  • Jordan BC, Kumar B, Thilagavathi R, et al. Synthesis, evaluation of cytotoxic properties of promising curcumin analogues and investigation of possible molecular mechanisms. Chem Biol Drug Des. 2018;91(1):332–337. PubMed PMID: 28649799.
  • Wang X, Zhang Y, Zhang X, et al. The curcumin analogue hydrazinocurcumin exhibits potent suppressive activity on carcinogenicity of breast cancer cells via STAT3 inhibition. Int J Oncol. 2011;40(4):1189–1195. PubMed PMID: 22179587.
  • Weng Q, Ren L, Guo L, et al. Curcumin analogue, A13, exhibits anti-leukemia effect via inhibiting STAT3. Tumor Biol. 2016 Jul 01;37(7):9959–9966.
  • Hutzen B, Friedman L, Sobo M, et al. Curcumin analogue GO-Y030 inhibits STAT3 activity and cell growth in breast and pancreatic carcinomas. Int J Oncol. 2009;35(4):867–872.
  • Lin L, Liu Y, Li H, et al. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. Br J Cancer. 2011;105(2):212–220. PubMed PMID: 21694723.
  • Zhou D-Y, Ding N, Van Doren J, et al. Effects of curcumin analogues for inhibiting human prostate cancer cells and the growth of human PC-3 prostate xenografts in immunodeficient mice. Biol Pharm Bull. 2014;37(6):1029–1034.
  • Shi Q, Shih CCY, Lee KH. Novel anti-prostate cancer curcumin analogues that enhance androgen receptor degradation activity. Anticancer Agents Med Chem. 2009;9(8):904–912.
  • Zhou D-Y, Zhao S-Q, Du Z-Y, et al. Pyridine analogues of curcumin exhibit high activity for inhibiting CWR-22Rv1 human prostate cancer cell growth and androgen receptor activation. Oncol Lett. 2016;11(6):4160–4166. PubMed PMID: 27313760.
  • Kesharwani RK, Srivastava V, Singh P, et al. A Novel approach for overcoming drug resistance in breast cancer chemotherapy by targeting new synthetic curcumin analogues against aldehyde dehydrogenase 1 (ALDH1A1) and glycogen synthase kinase-3 β (GSK-3β). Appl Biochem Biotechnol. 2015 Aug 01;176(7):1996–2017.
  • Wang H, Du Z, Zhang C, et al. Biological evaluation and 3D-QSAR studies of curcumin analogues as aldehyde dehydrogenase 1 inhibitors. Int J Mol Sci. 2014;15(5):8795–8807. PubMed PMID: 24840575.
  • Bayomi SM, El-Kashef HA, El-Ashmawy MB, et al. Synthesis and biological evaluation of new curcumin analogues as antioxidant and antitumor agents: molecular modeling study. Eur J Med Chem. 2015;101:584–594.
  • Appiah-Opong R, Commandeur JNM, Istyastono E, et al. Inhibition of human glutathione S-transferases by curcumin and analogues. Xenobiotica. 2009 Apr 01;39(4):302–311.
  • Al-Qasem A, Al-Howail HA, Al-Swailem M, et al. PAC exhibits potent anti-colon cancer properties through targeting cyclin D1 and suppressing epithelial-to-mesenchymal transition. Mol Carcinog. 2016 Mar 01;55(3):233–244.
  • Al-Howail HA, Hakami HA, Al-Otaibi B, et al. PAC down-regulates estrogen receptor alpha and suppresses epithelial-to-mesenchymal transition in breast cancer cells. BMC Cancer. 2016;16:540. PubMed PMID: 27465411.
  • Yu HJ, Shin JA, Nam JS, et al. Apoptotic effect of dibenzylideneacetone on oral cancer cells via modulation of specificity protein 1 and Bax. Oral Dis. 2013 Nov 01;19(8):767–774.
  • Lee H-E, Choi E-S, Jung J-Y, et al. Inhibition of specificity protein 1 by dibenzylideneacetone, a curcumin analogue, induces apoptosis in mucoepidermoid carcinomas and tumor xenografts through Bim and truncated Bid. Oral Oncol. 2014 Mar 01;50(3):189–195.
  • Nagaraju GP, Zhu S, Wen J, et al. Novel synthetic curcumin analogues EF31 and UBS109 are potent DNA hypomethylating agents in pancreatic cancer. Cancer Lett. 2013 Dec 01;341(2):195–203.
  • Hurtado M, Sankpal UT, Ranjan A, et al. Investigational agents to enhance the efficacy of chemotherapy or radiation in pancreatic cancer. Crit Rev Oncol Hematol. 2018;126:201–207.
  • Nagaraju GP, Zhu S, Ko JE, et al. Antiangiogenic effects of a novel synthetic curcumin analogue in pancreatic cancer. Cancer Lett. 2015 Feb 28;357(2):557–565.
  • Rajitha B, Nagaraju GP, Shaib WL, et al. Novel synthetic curcumin analogs as potent antiangiogenic agents in colorectal cancer. Mol Carcinog. 2017 Jan 01;56(1):288–299.
  • Zhu S, Moore TW, Lin X, et al. Synthetic curcumin analog EF31 inhibits the growth of head and neck squamous cell carcinoma xenografts. Integr Biol (Camb). 2012;4(6):633–640. PubMed PMID: 22532032.
  • Brown A, Shi Q, Moore TW, et al. Monocarbonyl curcumin analogues: heterocyclic pleiotropic kinase inhibitors that mediate anticancer properties. J Med Chem. 2013;56(9):3456–3466. PubMed PMID: 23550937.
  • Yamaguchi M, Zhu S, Zhang S, et al. Curcumin analogue UBS109 prevents bone loss in breast cancer bone metastasis mouse model: involvement in osteoblastogenesis and osteoclastogenesis. Cell Tissue Res. 2014 Jul 01;357(1):245–252.
  • Gundewar C, Ansari D, Tang L, et al. Antiproliferative effects of curcumin analog L49H37 in pancreatic stellate cells: a comparative study. Ann Gastroenterol. 2015 Jul–Sep;28(3):391–398. PubMed PMID: 26129848.
  • Zhang P, Bai H, Liu G, et al. MicroRNA-33b, upregulated by EF24, a curcumin analog, suppresses the epithelial-to-mesenchymal transition (EMT) and migratory potential of melanoma cells by targeting HMGA2. Toxicol Lett. 2015 May 05;234(3):151–161.
  • Nagy LI, Fehér LZ, Szebeni GJ, et al. Curcumin and its analogue induce apoptosis in leukemia cells and have additive effects with bortezomib in cellular and xenograft models. Biomed Res Int. 2015;2015:968981. PubMed PMID: 26075279.
  • Bao B, Ali S, Ahmad A, et al. Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PloS One. 2012;7(12):e50165–e50165. PubMed PMID: 23272057.
  • Bao B, Ali S, Banerjee S, et al. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res. 2012;72(1):335–345. PubMed PMID: 22108826.
  • Sarkar S, Dubaybo H, Ali S, et al. Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27(kip1), p57(kip2), and PUMA. Am J Cancer Res. 2013;3(5):465–477. PubMed PMID: 24224124.
  • Azmi AS, Ali S, Banerjee S, et al. Network modeling of CDF treated pancreatic cancer cells reveals a novel c-myc-p73 dependent apoptotic mechanism. Am J Transl Res. 2011;3(4):374–382. PubMed PMID: 21904657.
  • Cen L, Hutzen B, Ball S, et al. New structural analogues of curcumin exhibit potent growth suppressive activity in human colorectal carcinoma cells. BMC Cancer. 2009 Mar 30;9(1):99.
  • Basile V, Ferrari E, Lazzari S, et al. Curcumin derivatives: molecular basis of their anti-cancer activity. Biochem Pharmacol. 2009 Nov 15;78(10):1305–1315.
  • Lo C-Y, Liu P-L, Lin L-C, et al. Antimelanoma and antityrosinase from alpinia galangal constituents. Sci World J. 2013;2013:5.
  • Rozzo C, Fanciulli M, Fraumene C, et al. Molecular changes induced by the curcumin analogue D6 in human melanoma cells. Mol Cancer. 2013;12:37. PubMed PMID: 23642048.
  • Faião-Flores F, Suarez JAQ, Soto-Cerrato V, et al. Bcl-2 family proteins and cytoskeleton changes involved in DM-1 cytotoxic effect on melanoma cells. Tumor Biol. 2013 Apr 01;34(2):1235–1243.
  • Xiao J, Chu Y, Hu K, et al. Synthesis and biological analysis of a new curcumin analogue for enhanced anti-tumor activity in HepG 2 cells. Oncol Rep. 2010;23(5):1435–1441.
  • Pan Y, Xiao J, Liang G, et al. A new curcumin analogue exhibits enhanced antitumor activity in nasopharyngeal carcinoma. Oncol Rep. 2013;30(1):239–245.
  • Zhao J-A, Sang M-X, Geng C-Z, et al. A novel curcumin analogue is a potent chemotherapy candidate for human hepatocellular carcinoma. Oncol Lett. 2016;12(5):4252–4262. PubMed PMID: 27895800.
  • Vilekar P, Rao G, Awasthi S, et al. Diphenyldifluoroketone EF24 suppresses Pro-inflammatory interleukin-1 receptor 1 and toll-like receptor 4 in lipopolysaccharide-stimulated dendritic cells. J Inflamm (Lond). 2015;12:55. PubMed PMID: 26401121.
  • El-Gazzar MG, Zaher NH, El-Hossary EM, et al. Radio-protective effect of some new curcumin analogues. J Photochem Photobiol B Biol. 2016;162:694–702. DOI:10.1016/j.jphotobiol.2016.08.002
  • Zusso M, Mercanti G, Belluti F, et al. Phenolic 1,3-diketones attenuate lipopolysaccharide-induced inflammatory response by an alternative magnesium-mediated mechanism. Br J Pharmacol. 2017;174(10):1090–1103. PubMed PMID: 28198010.
  • Pae H-O, Jeong S-O, Kim HS, et al. Dimethoxycurcumin, a synthetic curcumin analogue with higher metabolic stability, inhibits NO production, inducible NO synthase expression and NF-κB activation in RAW264.7 macrophages activated with LPS. Mol Nutr Food Res. 2008 Sep 01;52(9):1082–1091.
  • Zhang Y, Liu Z, Wu J, et al. New MD2 inhibitors derived from curcumin with improved anti-inflammatory activity. Eur J Med Chem. 2018;148:291–305.
  • Mohd Aluwi MFF, Rullah K, Yamin BM, et al. Synthesis of unsymmetrical monocarbonyl curcumin analogues with potent inhibition on prostaglandin E2 production in LPS-induced murine and human macrophages cell lines. Bioorg Med Chem Lett. 2016 May 15;26(10):2531–2538.
  • Xiao J, Tan Y, Pan Y, et al. A new cyclooxygenase-2 inhibitor, (1E,4E)-1,5-Bis(2-bromophenyl)penta-1,4-dien-3-one (GL63) suppresses cyclooxygenase-2 gene expression in human lung epithelial cancer cells: coupled mRNA stabilization and posttranscriptional inhibition. Biol Pharm Bull. 2010;33(7):1170–1175.
  • Lin -C-C, Liu Y, Ho C-T, et al. Inhibitory effects of 1,3-bis-(2-substituted-phenyl)-propane-1,3-dione, β-diketone structural analogues of curcumin, on chemical-induced tumor promotion and inflammation in mouse skin. Food Funct. 2011;2(1):78–83.
  • Sohilait MR, Pranowo HD, Haryadi W. Molecular docking analysis of curcumin analogues with COX-2. Bioinformation. 2017;13(11):356–359. PubMed PMID: 29225427.
  • Mohd Aluwi MFF, Rullah K, Haque MA, et al. Suppression of PGE2 production via disruption of MAPK phosphorylation by unsymmetrical dicarbonyl curcumin derivatives. Med Chem Res. 2017 Dec 01;26(12):3323–3335.
  • Bandgar BP, Hote BS, Jalde SS, et al. Synthesis and biological evaluation of novel curcumin analogues as anti-inflammatory, anti-cancer and anti-oxidant agents. Med Chem Res. 2012 Oct 01;21(10):3006–3014.
  • Handler N, Jaeger W, Puschacher H, et al. Synthesis of novel curcumin analogues and their evaluation as selective cyclooxygenase-1 (COX-1) inhibitors. Chem Pharm Bull. 2007;55(1):64–71.
  • Goldhahn K, Hintersteininger M, Steiner G, et al. Enhanced antiproliferative and pro-apoptotic activities of a novel curcumin-related compound in jurkat leukemia T-cells. Anticancer Res. 2015 May 1;35(5):2675–2680.
  • Bukhari SNA, Lauro G, Jantan I, et al. Pharmacological evaluation and docking studies of α,β-unsaturated carbonyl based synthetic compounds as inhibitors of secretory phospholipase A2, cyclooxygenases, lipoxygenase and proinflammatory cytokines. Bioorg Med Chem. 2014 Aug 01;22(15):4151–4161.
  • Selvam C, Jachak SM, Thilagavathi R, et al. Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents. Bioorg Med Chem Lett. 2005 Apr 01;15(7):1793–1797.
  • Lin X, Ji S, Li R, et al. Terpecurcumins A–I from the rhizomes of curcuma longa: absolute configuration and cytotoxic activity. J Nat Prod. 2012 Dec 28;75(12):2121–2131.
  • Sardjiman SS, Reksohadiprodjo MS, Hakim L, et al. 1,5-Diphenyl-1,4-pentadiene-3-ones and cyclic analogues as antioxidative agents. Synthesis and structure-activity relationship. Eur J Med Chem. 1997 Jul 01;32(7):625–630.
  • Yuniarti N, Nugroho PA, Asyhar A, et al. In vitro and in silico studies on curcumin and its analogues as dual inhibitors for cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). ITB J.Sci. 2012;44 A, 1:51–66.
  • Lee K-H, Ab. Aziz FH, Syahida A, et al. Synthesis and biological evaluation of curcumin-like diarylpentanoid analogues for anti-inflammatory, antioxidant and anti-tyrosinase activities. Eur J Med Chem. 2009 Aug 01;44(8):3195–3200.
  • Leong SW, Faudzi SMM, Abas F, et al. Synthesis and sar study of diarylpentanoid analogues as new anti-inflammatory agents. Molecules. 2014;19(10):16058–16081. PubMed PMID: 25302700.
  • Mohd Faudzi SM, Leong SW, Abas F, et al. Synthesis, biological evaluation and QSAR studies of diarylpentanoid analogues as potential nitric oxide inhibitors. MedChemComm. 2015;6(6):1069–1080.
  • Xie Z, Zhang Z, Yu S, et al. Synthesis and evaluation of anti-inflammatory N-substituted 3,5-Bis(2-(trifluoromethyl)benzylidene)piperidin-4-ones. ChemMedChem. 2017 Feb 20;12(4):327–336.
  • Zhao C, Cai Y, He X, et al. Synthesis and anti-inflammatory evaluation of novel mono-carbonyl analogues of curcumin in LPS-stimulated RAW 264.7 macrophages. Eur J Med Chem. 2010 Dec 01;45(12):5773–5780.
  • Zhao C, Yang J, Wang Y, et al. Synthesis of mono-carbonyl analogues of curcumin and their effects on inhibition of cytokine release in LPS-stimulated RAW 264.7 macrophages. Bioorg Med Chem. 2010 Apr 01;18(7):2388–2393.
  • Vilekar P, Awasthi S, Natarajan A, et al. EF24 suppresses maturation and inflammatory response in dendritic cells. Int Immunol. 2012;24(7):455–464. PubMed PMID: 22378503.
  • Yadav VR, Vilekar P, Awasthi S, et al. Hemorrhage-induced interleukin-1 receptor pathway in lung is suppressed by 3,5-bis(2-fluorobenzylidene)-4-piperidone in a rat model of hypovolemic shock. Artif Organs. 2014;38(8):675–683. PubMed PMID: 24749913.
  • Bandgar BP, Kinkar SN, Chavan HV, et al. Synthesis and biological evaluation of asymmetric indole curcumin analogs as potential anti-inflammatory and antioxidant agents. J Enzyme Inhib Med Chem. 2014 Feb 01;29(1):7–11.
  • Zhang Y, Liang D, Dong L, et al. Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury. Respir Res. 2015;16(1):43. PubMed PMID: 25889862.
  • Pan J, Xu T, Xu F, et al. Development of resveratrol-curcumin hybrids as potential therapeutic agents for inflammatory lung diseases. Eur J Med Chem. 2017 Jan 05;125:478–491.
  • Wang ZS, Chen LZ, Zhou HP, et al. Diarylpentadienone derivatives (curcumin analogues): synthesis and anti-inflammatory activity. Bioorg Med Chem Lett. 2017 Apr 15;27(8):1803–1807.
  • Hu W, Cai M, Qi D, et al. β-Ionone-derived curcumin analogs as potent anti-inflammatory agents. Pharm Chem J. 2018 Jan 01;51(10):902–906.
  • Liang G, Yang S, Zhou H, et al. Synthesis, crystal structure and anti-inflammatory properties of curcumin analogues. Eur J Med Chem. 2009 Feb 01;44(2):915–919.
  • Liang G, Li X, Chen L, et al. Synthesis and anti-inflammatory activities of mono-carbonyl analogues of curcumin. Bioorg Med Chem Lett. 2008;18(4):1525–1529. PubMed PMID: 18234497.
  • Zhang Y, Zhao C, He W, et al. Discovery and evaluation of asymmetrical monocarbonyl analogs of curcumin as anti-inflammatory agents. Drug Des Devel Ther. 2014;8:373–382. PubMed PMID: 24741294.
  • Zhao C, Zhang Y, Zou P, et al. Synthesis and biological evaluation of a novel class of curcumin analogs as anti-inflammatory agents for prevention and treatment of sepsis in mouse model. Drug Des Devel Ther. 2015;9:1663–1678. PubMed PMID: 25834403.
  • Deck LM, Hunsaker LA, Vander Jagt TA, et al. Activation of anti-oxidant Nrf2 signaling by enone analogues of curcumin. Eur J Med Chem. 2018;143:854–865.
  • Li W, Pung D, Su Z-Y, et al. Epigenetics reactivation of Nrf2 in prostate TRAMP C1 cells by curcumin analogue FN1. Chem Res Toxicol. 2016;29(4):694–703. PubMed PMID: 26991801.
  • Liang G, Zhou H, Wang Y, et al. Inhibition of LPS-induced production of inflammatory factors in the macrophages by mono-carbonyl analogues of curcumin. J Cell Mol Med. 2009;13(9B):3370–3379. PubMed PMID: 19243473.
  • Wang Y, Yu C, Pan Y, et al. A novel synthetic mono-carbonyl analogue of curcumin, A13, exhibits anti-inflammatory effects in vivo by inhibition of inflammatory mediators. Inflammation. 2012 Apr 01;35(2):594–604.
  • Pan Y, Wang Y, Cai L, et al. Inhibition of high glucose-induced inflammatory response and macrophage infiltration by a novel curcumin derivative prevents renal injury in diabetic rats. Br J Pharmacol. 2012;166(3):1169–1182. PubMed PMID: 22242942.
  • Li C, Miao X, Lou Y, et al. Cardioprotective effects of the novel curcumin analogue C66 in diabetic mice is dependent on JNK2 inactivation. J Cell Mol Med. 2018;22(12):6314–6326. PubMed PMID: 30320490.
  • Yadav VR, Sahoo K, Roberts PR, et al. Pharmacologic suppression of inflammation by a diphenyldifluoroketone, EF24, in a rat model of fixed-volume hemorrhage improves survival. J Pharmacol Exp Ther. 2013;347(2):346–356. PubMed PMID: 23995597.
  • Yadav VR, Hussain A, Xie J, et al. The salutary effects of diphenyldifluoroketone EF24 in liver of a rat hemorrhagic shock model. Scand J Trauma Resusc Emerg Med. 2015;23:8. PubMed PMID: 25645333.
  • Ahmad W, Kumolosasi E, Jantan I, et al. Effects of novel diarylpentanoid analogues of curcumin on secretory phospholipase A2, cyclooxygenases, lipo-oxygenase, and microsomal prostaglandin E synthase-1. Chem Biol Drug Des. 2014 Jun 01;83(6):670–681.
  • Li Q, Zhang J, Chen LZ, et al. New pentadienone oxime ester derivatives: synthesis and anti-inflammatory activity. J Enzyme Inhib Med Chem. 2017;33(1):130–138. PubMed PMID: 29199491.
  • Jayakumar S, Patwardhan RS, Pal D, et al. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: possible involvement of ROS and thioredoxin reductase. Biochem Biophys Res Commun. 2016 Sep 09;478(1):446–454.
  • Son Y, Lee JH, Chung H-T, et al. Therapeutic roles of heme oxygenase-1 in metabolic diseases: curcumin and resveratrol analogues as possible inducers of heme oxygenase-1. Oxid Med Cell Longev. 2013;2013:639541. PubMed PMID: 24101950.
  • Son Y, Lee JH, Cheong Y-K, et al. Antidiabetic potential of the heme oxygenase-1 inducer curcumin analogues. Biomed Res Int. 2013;2013:918039. PubMed PMID: 24191253.
  • Liu Z, Sun Y, Ren L, et al. Evaluation of a curcumin analog as an anti-cancer agent inducing ER stress-mediated apoptosis in non-small cell lung cancer cells. BMC Cancer. 2013;13:494. PubMed PMID: 24156374.
  • Du Z-Y, Wei X, Huang M-T, et al. Anti-proliferative, anti-inflammatory and antioxidant effects of curcumin analogue A2. Arch Pharm Res. 2013 Oct 01;36(10):1204–1210.
  • Subramaniam D, May R, Sureban SM, et al. Diphenyl difluoroketone: A curcumin derivative with potent in vivo anticancer activity. Cancer Res. 2008;68(6):1962.
  • He Y, Li W, Hu G, et al. Bioactivities of EF24, a novel curcumin analog: a review [Review]. Front Oncol. 2018 December 11;8:614–621.
  • Roy S, Levi E, Majumdar APN, et al. Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J Hematol Oncol. 2012;5:58. PubMed PMID: 22992310.
  • Sufi SA, Adigopula LN, Syed SB, et al. In-silico and in-vitro anti-cancer potential of a curcumin analogue (1E, 6E)-1, 7-di (1H-indol-3-yl) hepta-1, 6-diene-3, 5-dione. Biomed Pharmacother. 2017;85:389–398.
  • Kandagalla S, Sharath BS, Bharath BR, et al. Molecular docking analysis of curcumin analogues against kinase domain of ALK5. In Silico Pharmacol. 2017;5(1):15. PubMed PMID: 29308351.
  • Prehm P. Curcumin analogue identified as hyaluronan export inhibitor by virtual docking to the ABC transporter MRP5. Food Chem Toxicol. 2013 Dec 01;62: 76–81.
  • Dileep KV, Tintu I, Sadasivan C. Molecular docking studies of curcumin analogs with phospholipase A2. Interdiscip Sci. 2011 Sep 29;3(3):189.
  • Zhou G, Xu S, Sun G, et al. Novel curcumin analogue IHCH exhibits potent anti-proliferative effects by inducing autophagy in A549 lung cancer cells. Mol Med Rep. 2014;10(1):441–446.
  • Yadav VR, Hussain A, Sahoo K, et al. Remediation of hemorrhagic shock-induced intestinal barrier dysfunction by treatment with diphenyldihaloketones EF24 and CLEFMA. J Pharmacol Exp Ther. 2014;351(2):413–422. PubMed PMID: 25204337.
  • Anthwal A, Thakur BK, Rawat MSM, et al. Synthesis, characterization and in vitro anticancer activity of C-5 curcumin analogues with potential to inhibit TNF-α-induced NF-κB activation. Biomed Res Int. 2014;2014:524161. PubMed PMID: 25157362.
  • Nugroho AE, Ikawati Z, Maeyama K. Effects of benzylidenecyclopentanone analogues of curcumin on histamine release from mast cells. Biol Pharm Bull. 2009;32(5):842–849.
  • McLane RD, Le Cozannet-Laidin L, Boyle MS, et al. Synthesis and PGE2 inhibitory activity of novel diarylheptanoids. Bioorg Med Chem Lett. 2018 Feb 01;28(3):334–338.
  • Nalli M, Ortar G, Schiano Moriello A, et al. Effects of curcumin and curcumin analogues on TRP channels. Fitoterapia. 2017;122:126–131.
  • Chatzopoulou M, Pegklidou K, Papastavrou N, et al. Development of aldose reductase inhibitors for the treatment of inflammatory disorders. Expert Opin Drug Discov. 2013 Nov 01;8(11):1365–1380.
  • Verma SK, Thareja S. Structure based comprehensive modelling, spatial fingerprints mapping and ADME screening of curcumin analogues as novel ALR2 inhibitors. PubMed PMID: 28399135 PloS One. 2017;124:e0175318–e0175318.
  • Du Z-Y, Bao Y-D, Liu Z, et al. Curcumin analogs as potent aldose reductase inhibitors. Arch Pharm (Weinheim). 2006 Mar 01;339(3):123–128.
  • Jadhav SY, Bhosale RB, Shirame SP, et al. PEG mediated synthesis and biological evaluation of asymmetrical pyrazole curcumin analogues as potential analgesic, anti-inflammatory and antioxidant agents. Chem Biol Drug Des. 2015 Mar 01;85(3):377–384.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.