2,865
Views
128
CrossRef citations to date
0
Altmetric
Review

Recent applications of click chemistry in drug discovery

, , , , , & show all
Pages 779-789 | Received 03 Jan 2019, Accepted 01 May 2019, Published online: 16 May 2019

References

  • Kolb HC, Finn MG, Sharpless KB. Click Chemistry: diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001;40(11):2004–2021.
  • Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discov Today. 2003;8(24):1128–1137.
  • Wang X, Huang B, Liu X, et al. Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discov Today. 2016;21(1):118–132.
  • Wu G, Zalloum WA, Meuser ME, et al. Discovery of phenylalanine derivatives as potent HIV-1 capsid inhibitors from click chemistry-based compound library. Eur J Med Chem. 2018;158:478–492.
  • Kang D, Zhang H, Zhou Z, et al. First discovery of novel 3-hydroxy-quinazoline-2,4(1H,3H)-diones as specific anti-vaccinia and adenovirus agents via ‘privileged scaffold‘ refining approach. Bioorg Med Chem Lett. 2016;26(21):5182–5186.
  • Gao P, Sun L, Zhou J, et al. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach. Expert Opin Drug Discov. 2016;11(9):857–871.
  • Fang Z, Kang D, Zhang L, et al. Synthesis and biological evaluation of a series of 2-((1-substituted-1H-1,2,3-triazol-4-yl)methylthio)-6-(naphthalen-1-ylmethyl)pyrimidin-4(3H)-one as potential HIV-1 inhibitors. Chem Biol Drug Des. 2015;86(4):614–618.
  • Díaz JL, Christmann U, Fernández A, et al. Synthesis and structure-activity relationship study of a new series of selective σ(1) receptor ligands for the treatment of pain: 4-aminotriazoles. J Med Chem. 2015;58(5):2441–2451.
  • Mohammed I, Kummetha IR, Singh G, et al. 1,2,3-Triazoles as amide bioisosteres: discovery of a new class of potent HIV-1 Vif antagonists. J Med Chem. 2016;59(16):7677–7682.
  • Song Y, Chen W, Kang D, et al. “Old friends in new guise”: exploiting privileged structures for scaffold re-evolution/refining. Comb Chem High Throughput Screen. 2014;17(6):536–553.
  • Caselli E, Romagnoli C, Vahabi R, et al. Click chemistry in lead optimization of boronic acids as β-lactamase inhibitors. J Med Chem. 2015;58(14):5445–5458.
  • Zeng DY, Kuang GT, Wang SK, et al. Discovery of novel 11-triazole substituted benzofuro[3,2-b]quinolone derivatives as c-myc G-quadruplex specific stabilizers via click chemistry. J Med Chem. 2017;60(13):5407–5423.
  • Haase VH. HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism. Hemodial Int. 2017;21(Suppl 1):S110–S124.
  • Wu Y, Jiang Z, Li Z, et al. Click Chemistry-based discovery of [3-hydroxy-5-(1H-1,2,3-triazol-4-yl)picolinoyl]glycines as orally active hypoxia-inducing factor prolyl hydroxylase inhibitors with favorable safety profiles for the treatment of anemia. J Med Chem. 2018;61(12):5332–5349.
  • Bertrand HC, Schaap M, Baird L, et al. Design, synthesis, and evaluation of triazole derivatives that induce Nrf2 dependent gene products and inhibit the Keap1-Nrf2 protein-protein interaction. J Med Chem. 2015;58(18):7186–7194.
  • Schiefer IT, Tapadar S, Litosh V, et al. Design, synthesis, and optimization of novel epoxide incorporating peptidomimetics as selective calpain inhibitors. J Med Chem. 2013;56(15):6054–6068.
  • Kamanna K, Aneja R, Duffy C, et al. Non-natural peptide triazole antagonists of HIV-1 envelope gp120. ChemMedChem. 2013;8(2):322–328.
  • Aneja R, Rashad AA, Li H, et al. Peptide triazole inactivators of HIV-1 utilize a conserved two-cavity binding site at the junction of the inner and outer domains of Env gp120. J Med Chem. 2015;58(9):3843–3858.
  • Fang Z, Song Y, Zhan P, et al. Conformational restriction: an effective tactic in ‘follow-on‘-based drug discovery. Future Med Chem. 2014;6(8):885–901.
  • Rashad AA, Kalyana Sundaram RV, Aneja R, et al. Macrocyclic envelope glycoprotein antagonists that irreversibly inactivate HIV-1 before host cell encounter. J Med Chem. 2015;58(18):7603–7608.
  • Testa C, Papini AM, Chorev M, et al. Copper-catalyzed azide-alkyne cycloaddition (CuAAC)-mediated macrocyclization of peptides: impact on conformation and biological activity. Curr Top Med Chem. 2018;18(7):591–610.
  • Palmer D, Jpl G, Hansen L V, et al. Click-chemistry-mediated synthesis of selective melanocortin receptor 4 agonists. J Med Chem. 2017;60(21):8716–8730.
  • Testa C, Scrima M, Grimaldi M, et al. 1,4-disubstituted-[1,2,3]triazolyl-containing analogues of MT-II: design, synthesis, conformational analysis, and biological activity. J Med Chem. 2014;57(22):9424–9434.
  • Wang C, Lu L, Na H, et al. Conjugation of a nonspecific antiviral sapogenin with a specific HIV fusion inhibitor: a promising strategy for discovering new antiviral therapeutics. J Med Chem. 2014;57(17):7342–7354.
  • Wurz RP, Dellamaggiore K, Dou H, et al. A “click chemistry platform” for the rapid synthesis of bispecific molecules for inducing protein degradation. J Med Chem. 2018;61(2):453–461.
  • Jayasekara PS, Barrett MO, Ball CB, et al. 4-Alkyloxyimino derivatives of uridine-5‘-triphosphate: distal modification of potent agonists as a strategy for molecular probes of P2Y2, P2Y4, and P2Y6 receptors. J Med Chem. 2014;57(9):3874–3883.
  • Vineberg JG, Zuniga ES, Kamath A, et al. Design, synthesis, and biological evaluations of tumor-targeting dual-warhead conjugates for a taxoid-camptothecin combination chemotherapy. J Med Chem. 2014;57(13):5777–5791.
  • Lang C, Maschauer S, Hübner H, et al. Synthesis and evaluation of a (18)F-labeled diarylpyrazole glycoconjugate for the imaging of NTS1-positive tumors. J Med Chem. 2013;56(22):9361–9365.
  • Tatum PR, Sawada H, Ota Y, et al. Identification of novel SIRT2-selective inhibitors using a click chemistry approach. Bioorg Med Chem Lett. 2014;24(8):1871–1874.
  • Suzuki T, Kasuya Y, Itoh Y, et al. Identification of highly selective and potent histone deacetylase 3 inhibitors using click chemistry-based combinatorial fragment assembly. PLoS One. 2013;8(7):e68669.
  • Wong ILK, Zhu X, Chan KF, et al. Discovery of novel flavonoid dimers to reverse multidrug resistance protein 1 (MRP1, ABCC1) mediated drug resistance in cancers using a high throughput platform with “Click Chemistry”. J Med Chem. 2018;61(22):9931–9951.
  • Wang Y, Zhu J, Zhang L. Discovery of cell-permeable O-GlcNAc transferase inhibitors via tethering in situ click chemistry. J Med Chem. 2017;60(1):263–272.
  • Zakharova EA, Shmatova OI, Kutovaya IV, et al. Synthesis of macrocyclic peptidomimetics via the Ugi-click-strategy. Org Biomol Chem. 2019 Mar 27;17(13):3433–3445.
  • Wijtmans M, de Graaf C, de Kloe G, et al. Triazole ligands reveal distinct molecular features that induce histamine H4 receptor affinity and subtly govern H4/H3 subtype selectivity. J Med Chem. 2011;54(6):1693–1703.
  • Clavadetscher J, Hoffmann S, Lilienkampf A, et al. Copper catalysis in living systems and in situ drug synthesis. Angew Chem Int Ed Engl. 2016;55(50):15662–15666.
  • Haldón E, Nicasio MC, Pérez PJ. Copper-catalysed azide-alkyne cycloadditions (CuAAC): an update. Org Biomol Chem. 2015;13(37):9528–9550.
  • Lee H, Lee JK, Min SJ, et al. Copper(I)-catalyzed synthesis of 1,4-disubstituted 1,2,3-triazoles from azidoformates and aryl terminal alkynes. J Org Chem. 2018;83(8):4805–4811.
  • Tiwari VK, Mishra BB, Mishra KB, et al. Cu-catalyzed click reaction in carbohydrate chemistry. Chem Rev. 2016;116(5):3086–3240.
  • Spiteri C, Moses JE. Copper-catalyzed azide-alkyne cycloaddition: regioselective synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Angew Chem Int Ed Engl. 2010;49(1):31–33.
  • Devaraj NK. The future of bioorthogonal chemistry. ACS Cent Sci. 2018;4(8):952–959.
  • Cai Z, Ouyang Q, Zeng D, et al. 64Cu-labeled somatostatin analogues conjugated with cross-bridged phosphonate-based chelators via strain-promoted click chemistry for PET imaging: in silico through in vivo studies. J Med Chem. 2014 Jul 24;57(14):6019–6029. . Epub 2014 Jul 11.
  • Yim C-B, Dijkgraaf I, Merkx R, et al. Synthesis of DOTA-conjugated multimeric [Tyr3]octreotide peptides via a combination of Cu(I)-catalyzed “click” cycloaddition and thio acid/sulfonyl azide “sulfo-click” amidation and their in vivo evaluation. J Med Chem. 2010;53(10):3944–3953.
  • Dong J, Krasnova L, Finn MG, et al. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew Chem Int Ed Engl. 2014;53(36):9430–9448.
  • Liu Z, Li J, Li S, et al. SuFEx click chemistry enabled late-stage drug functionalization. J Am Chem Soc. 2018;140(8):2919–2925.
  • Ding S, Qiao X, Kucera GL, et al. Using a build-and-click approach for producing structural and functional diversity in DNA-targeted hybrid anticancer agents. J Med Chem. 2012;55(22):10198–10203.
  • Hoyle CE, Bowman CN. Thiol-ene click chemistry. Angew Chem Int Ed Engl. 2010;49(9):1540–1573.
  • Kern FT, Wanner KT. Generation and screening of oxime libraries addressing the neuronal GABA transporter GAT1. ChemMedChem. 2015;10(2):396–410.
  • Kim J, Kim H, Park SB. Privileged structures: efficient chemical “navigators” toward unexplored biologically relevant chemical spaces. J Am Chem Soc. 2014;136(42):14629–14638.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.