387
Views
33
CrossRef citations to date
0
Altmetric
Review

Halogen bonding in halocarbon-protein complexes and computational tools for rational drug design

ORCID Icon, ORCID Icon & ORCID Icon
Pages 805-820 | Received 22 Mar 2019, Accepted 13 May 2019, Published online: 27 May 2019

References

  • Ford MC, Ho PS. Computational tools to model halogen bonds in medicinal chemistry. J Med Chem. 2016;59:1655–1670.
  • Gerebtzoff G, Li-Blatter X, Fischer H, et al. Halogenation of drugs enhances membrane binding and permeation. ChemBioChem. 2004;5:676–684.
  • Ungati H, Govindaraj V, Mugesh G. The remarkable effect of halogen substitution on the membrane transport of fluorescent molecules in living cells. Angew Chem Int Ed Engl. 2018;57:8989–8993.
  • Ho PS. Halogen bonding in medicinal chemistry: from observation to prediction. Future Med Chem. 2017;9:637–640.
  • Costa PJ. The halogen bond: nature and applications. Phys Sci Rev. 2017;2:488.
  • Cavallo G, Metrangolo P, Milani R, et al. The halogen bond. Chem Rev. 2016;116:2478–2601.
  • Clark T, Hennemann M, Murray JS, et al. Halogen bonding: the sigma-hole. J Mol Model. 2007;13:291–296.
  • Metrangolo P, Murray JS, Pilati T, et al. The fluorine atom as a halogen bond donor, viz. a positive site. CrystEngComm. 2011;13:6593–6596.
  • Eskandari K, Lesani M. Does fluorine participate in halogen bonding? Chem. Eur. J. 2015;21:4739–4746.
  • Auffinger P, Hays FA, Westhof E, et al. Halogen bonds in biological molecules. Proc Natl Acad Sci USA. 2004;101:16789–16794.
  • Scholfield MR, Zanden CMV, Carter M, et al. Halogen bonding (X-bonding): a biological perspective. Protein Sci. 2013;22:139–152.
  • Ho PS. Biomolecular halogen bonds. Top Curr Chem. 2015;358:241–276.
  • Voth AR, Khuu P, Oishi K, et al. Halogen bonds as orthogonal molecular interactions to hydrogen bonds. Nat Chem. 2009;1:74–79.
  • Rowe RK, Ho PS. Relationships between hydrogen bonds and halogen bonds in biological systems. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2017;73:255–264.
  • Lu Y, Shi T, Wang Y, et al. Halogen bonding – a novel interaction for rational drug design? J Med Chem. 2009;52:2854–2862.
  • Hernandes MZ, Cavalcanti SMT, Moreira DRM, et al. Halogen atoms in the modern medicinal chemistry: hints for the drug design. Curr Drug Targets. 2010;11:303–314.
  • Lu Y, Liu Y, Xu Z, et al. Halogen bonding for rational drug design and new drug discovery. Expert Opin Drug Discov. 2012;7:375–383.
  • Sirimulla S, Bailey JB, Vegesna R, et al. Halogen interactions in protein-ligand complexes: implications of halogen bonding for rational drug design. J Chem Inf Model. 2013;53:2781–2791.
  • Wilcken R, Zimmermann MO, Lange A, et al. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem. 2013;56:1363–1388.
  • Xu Z, Yang Z, Liu Y, et al. Halogen bond: its role beyond drug-target binding affinity for drug discovery and development. J Chem Inf Model. 2014;54:69–78.
  • El Hage K, Pandyarajan V, Phillips NB, et al. Extending halogen-based medicinal chemistry to proteins: iodo-insulin as a case study. J Biol Chem. 2016;291:27023–27041.
  • Mendez L, Henriquez G, Sirimulla S, et al. Looking back, looking forward at halogen bonding in drug discovery. Molecules. 2017;22:1397.
  • Baumli S, Endicott JA, Johnson LN. Halogen bonds form the basis for selective P-TEFb inhibition by DRB. Chem Biol. 2010;17:931–936.
  • Wąsik R, Łebska M, Felczak K, et al. Relative role of halogen bonds and hydrophobic interactions in inhibition of human protein kinase CK2α by tetrabromobenzotriazole and some C(5)-substituted analogues. J Phys Chem B. 2010;114:10601–10611.
  • Fedorov O, Huber K, Eisenreich A, et al. Specific CLK inhibitors from a novel chemotype for regulation of alternative splicing. Chem Biol. 2011;18:67–76.
  • Poznański J, Shugar D. Halogen bonding at the ATP binding site of protein kinases: preferred geometry and topology of ligand binding. Biochim Biophys Acta. 2013;1834:1381–1386.
  • Signorelli J, Shah Gandhi A. Cobimetinib. Ann Pharmacother. 2017;51:146–153.
  • Kolář MH, Hobza P. Computer modeling of halogen bonds and other σ-hole interactions. Chem Rev. 2016;116:5155–5187.
  • Costa PJ, Nunes R. Advances in the computational modeling of halogen bonds in biochemical systems. In: Ul-Haq Z, Wilson AK, editors. Frontiers in Computational Chemistry. Vol. 4. Sharjah, UAE: Bentham Science Publishers; 2018. p. 144–183.
  • Zimmermann MO, Lange A, Zahn S, et al. Using surface scans for the evaluation of halogen bonds toward the side chains of aspartate, asparagine, glutamate, and glutamine. J Chem Inf Model. 2016;56:1373–1383.
  • Imai YN, Inoue Y, Nakanishi I, et al. Cl-pi interactions in protein-ligand complexes. Protein Sci. 2008;17:1129–1137.
  • Voth AR, Ho PS. The role of halogen bonding in inhibitor recognition and binding by protein kinases. Curr Top Med Chem. 2007;7:1336–1348.
  • Matter H, Nazaré M, Güssregen S, et al. Evidence for C-Cl/C-Br … pi interactions as an important contribution to protein-ligand binding affinity. Angew Chem Int Ed Engl. 2009;48:2911–2916.
  • Lu Y, Wang Y, Xu Z, et al. C-X…H contacts in biomolecular systems: how they contribute to protein-ligand binding affinity. J Phys Chem B. 2009;113:12615–12621.
  • Lin F-Y, Ad M Jr. Do halogen-hydrogen bond donor interactions dominate the favorable contribution of halogens to ligand-protein binding? J Phys Chem B. 2017;121:6813–6821.
  • Lu Y, Wang Y, Zhu W. Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design. Phys Chem Chem Phys. 2010;12:4543–4551.
  • Zhang Q, Xu Z, Shi J, et al. Underestimated halogen bonds forming with protein backbone in protein data bank. J Chem Inf Model. 2017;57:1529–1534.
  • Zhang Q, Xu Z, Zhu W. The underestimated halogen bonds forming with protein side chains in drug discovery and design. J Chem Inf Model. 2017;57:22–26.
  • Wilcken R, Zimmermann MO, Lange A, et al. Addressing methionine in molecular design through directed sulfur-halogen bonds. J Chem Theory Comput. 2011;7:2307–2315.
  • Lange A, Zimmermann MO, Wilcken R, et al. Targeting histidine side chains in molecular design through nitrogen-halogen bonds. J Chem Inf Model. 2013;53:3178–3189.
  • Kolář M, Hostaš J, Hobza P. The strength and directionality of a halogen bond are co-determined by the magnitude and size of the σ-hole. PhysChemChemPhys. 2014;16:9987–9996.
  • Brinck T, Stenlid JH. The molecular surface property approach: a guide to chemical interactions in chemistry, medicine, and material science. Adv Theory Simul. 2019;2:1800149.
  • Kolář MH, Carloni P, Hobza P. Statistical analysis of σ-holes: a novel complementary view on halogen bonding. Phys Chem Chem Phys. 2014;16:19111–19114.
  • Heidrich J, Exner TE, Boeckler FM. Predicting the magnitude of σ-holes using VmaxPred, a fast and efficient tool supporting the application of halogen bonds in drug discovery. J Chem Inf Model. 2019;59:636–643.
  • Lange A, Heidrich J, Zimmermann MO, et al. Scaffold effects on halogen bonding strength. J Chem Inf Model. 2019;59:885–894.
  • Zimmermann MO, Lange A, Wilcken R, et al. Halogen-enriched fragment libraries as chemical probes for harnessing halogen bonding in fragment-based lead discovery. Future Med Chem. 2014;6:617–639.
  • Heidrich J, Sperl LE, Boeckler FM. Embracing the diversity of halogen bonding motifs in fragment-based drug discovery-construction of a diversity-optimized halogen-enriched fragment library. Front Chem. 2019;7:9.
  • Nunes R, Vila-Viçosa D, Machuqueiro M, et al. Biomolecular simulations of halogen bonds with a GROMOS force field. J Chem Theory Comput. 2018;14:5383–5392.
  • Ibrahim MAA. Molecular mechanical study of halogen bonding in drug discovery. J Comput Chem. 2011;32:2564–2574.
  • Rendine S, Pieraccini S, Forni A, et al. Halogen bonding in ligand-receptor systems in the framework of classical force fields. PhysChemChemPhys. 2011;13:19508–19516.
  • Ibrahim MAA. Performance assessment of semiempirical molecular orbital methods in describing halogen bonding: quantum mechanical and quantum mechanical/molecular mechanical-molecular dynamics study. J Chem Inf Model. 2011;51:2549–2559.
  • Ibrahim MAA. Molecular mechanical perspective on halogen bonding. J Mol Model. 2012;18:4625–4638.
  • Ibrahim MAA. AMBER empirical potential describes the geometry and energy of noncovalent halogen interactions better than advanced semiempirical quantum mechanical method PM6-DH2X. J Phys Chem B. 2012;116:3659–3669.
  • Kolář M, Hobza P. On extension of the current biomolecular empirical force field for the description of halogen bonds. J Chem Theory Comput. 2012;8:1325–1333.
  • Soteras Gutiérrez I, Lin F-Y, Vanommeslaeghe K, et al. Parametrization of halogen bonds in the CHARMM general force field: improved treatment of ligand-protein interactions. Bioorg Med Chem. 2016;24:4812–4825.
  • Jorgensen WL, Schyman P. Treatment of halogen bonding in the opls-aa force field; application to potent anti-HIV agents. J Chem Theory Comput. 2012;8:3895–3901.
  • Harder E, Damm W, Maple J, et al. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput. 2016;12:281–296.
  • Roos K, Wu C, Damm W, et al. OPLS3e: extending force field coverage for drug-like small molecules. J Chem Theory Comput. 2019;15:1863–1874.
  • Franchini D, Dapiaggi F, Pieraccini S, et al. Halogen bonding in the framework of classical force fields: the case of chlorine. Chem Phys Lett. 2018;712:89–94.
  • Titov OI, Shulga DA, Palyulin VA. Quadrupole correction: from molecular electrostatic potential to free energies of halogen bonding. J Chem Theory Comput. 2019;15:1159–1167.
  • Horton JT, Allen AEA, Dodda LS, et al. QUBEKit: automating the derivation of force field parameters from quantum mechanics. J Chem Inf Model. 2019. DOI:10.1021/acs.jcim.8b00767
  • Carter M, Rappé AK, Ho PS. Scalable anisotropic shape and electrostatic models for biological bromine halogen bonds. J Chem Theory Comput. 2012;8:2461–2473.
  • Scholfield MR, Ford MC, Vander Zanden CM, et al. Force field model of periodic trends in biomolecular halogen bonds. J Phys Chem B. 2015;119:9140–9149.
  • Prampolini G, Campetella M, De Mitri N, et al. Systematic and automated development of quantum mechanically derived force fields: the challenging case of halogenated hydrocarbons. J Chem Theory Comput. 2016;12:5525–5540.
  • Santos LA, Eff DC, Ramalho TC. Toward the classical description of halogen bonds: a quantum based generalized empirical potential for fluorine, chlorine, and bromine. J Phys Chem A. 2017;121:2442–2451.
  • Du L, Gao J, Bi F, et al. A polarizable ellipsoidal force field for halogen bonds. J Comput Chem. 2013;34:2032–2040.
  • Mu X, Wang Q, Wang L-P, et al. Modeling organochlorine compounds and the σ-hole effect using a polarizable multipole force field. J Phys Chem B. 2014;118:6456–6465.
  • Adluri ANS, Murphy JN, Tozer T, et al. Polarizable force field with a σ-hole for liquid and aqueous bromomethane. J Phys Chem B. 2015;119:13422–13432.
  • Lin F-Y, AD MacKerell Jr. Polarizable empirical force field for halogen-containing compounds based on the classical drude oscillator. J Chem Theory Comput. 2018;14:1083–1098.
  • Lin F-Y, AD MacKerell Jr. Improved modeling of halogenated ligand-protein interactions using the drude polarizable and CHARMM additive empirical force fields. J Chem Inf Model. 2019;59:215–228.
  • Ibrahim MAA, Hasb AAM, Mekhemer GAH. Role and nature of halogen bonding in inhibitor receptor complexes for drug discovery: casein kinase-2 (CK2) inhibition as a case study. Theor Chem Acc. 2018;137:38.
  • Kitchen DB, Decornez H, Furr JR, et al. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3:935–949.
  • Suárez-Castro A, Valle-Sánchez M, Cortés-García CJ, et al. Molecular docking in halogen bonding. In: Vlachakis DP, editor. Molecular Docking. London, UK: InTech. 2018. p .99–114.
  • Liu Y, Xu Z, Yang Z, et al. A knowledge-based halogen bonding scoring function for predicting protein-ligand interactions. J Mol Model. 2013;19:5015–5030.
  • Yang Z, Liu Y, Chen Z, et al. A quantum mechanics-based halogen bonding scoring function for protein-ligand interactions. J Mol Model. 2015;21:138.
  • Titov OI, Shulga DA, Palyulin VA, et al. Quadrupole correction for halogen bonding description in virtual screening and molecular docking. Dokl Chem. 2016;471:338–342.
  • Titov OI, Shulga DA, Palyulin VA, et al. Perspectives of halogen bonding description in scoring functions and QSAR/QSPR: substituent effects in aromatic core. Mol Inform. 2015;34:404–416.
  • Kuhn B, Fuchs JE, Reutlinger M, et al. Rationalizing tight ligand binding through cooperative interaction networks. J Chem Inf Model. 2011;51:3180–3198.
  • Kolář M, Hobza P, Bronowska AK. Plugging the explicit σ-holes in molecular docking. Chem Commun. 2013;49:981–983.
  • Allen WJ, Balius TE, Mukherjee S, et al. DOCK 6: impact of new features and current docking performance. J Comput Chem. 2015;36:1132–1156.
  • Pecina A, Meier R, Fanfrlík J, et al. The SQM/COSMO filter: reliable native pose identification based on the quantum-mechanical description of protein-ligand interactions and implicit COSMO solvation. Chem Commun. 2016;52:3312–3315.
  • Brahmkshatriya PS, Dobeš P, Fanfrlik J, et al. Quantum mechanical scoring: structural and energetic insights into cyclin-dependent kinase 2 inhibition by pyrazolo[1,5-a]pyrimidines. Curr Comput Aided Drug Des. 2013;9:118–129.
  • Kurczab R. The evaluation of QM/MM-driven molecular docking combined with MM/GBSA calculations as a halogen-bond scoring strategy. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2017;73:188–194.
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–461.
  • Koebel MR, Schmadeke G, Posner RG, et al. AutoDock VinaXB: implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina. J Cheminform. 2016;8:27.
  • Zimmermann MO, Lange A, Boeckler FM. Evaluating the potential of halogen bonding in molecular design: automated scaffold decoration using the new scoring function XBScore. J Chem Inf Model. 2015;55:687–699.
  • Halogenonding.com | University of Tuebingen. [Internet]. [cited 2019 Feb 14]. Available from: http://www.halogenbonding.com/
  • Řezáč J, Riley KE, Hobza P. Benchmark calculations of noncovalent interactions of halogenated molecules. J Chem Theory Comput. 2012;8:4285–4292.
  • Kozuch S, Martin JML. Halogen bonds: benchmarks and theoretical analysis. J Chem Theory Comput. 2013;9:1918–1931.
  • Li A, Muddana HS, Gilson MK. Quantum mechanical calculation of noncovalent interactions: a large-scale evaluation of PMx, DFT, and SAPT approaches. J Chem Theory Comput. 2014;10:1563–1575.
  • Kantsadi AL, Hayes JM, Manta S, et al. The σ-hole phenomenon of halogen atoms forms the structural basis of the strong inhibitory potency of C5 halogen substituted glucopyranosyl nucleosides towards glycogen phosphorylase b. ChemMedChem. 2012;7:722–732.
  • Riley KE, Strength HP. Character of halogen bonds in protein–ligand complexes. Cryst Growth Des. 2011;11:4272–4278.
  • Bayse CA, Rafferty ER. Is halogen bonding the basis for iodothyronine deiodinase activity? Inorg Chem. 2010;49:5365–5367.
  • Wilcken R, Zimmermann MO, Lange A, et al. Using halogen bonds to address the protein backbone: a systematic evaluation. J Comput Aided Mol Des. 2012;26:935–945.
  • Zimmermann MO, Boeckler FM. Targeting the protein backbone with aryl halides: systematic comparison of halogen bonding and π⋯π interactions using N-methylacetamide. MedChemCommun. 2016;7:500–505.
  • Adasme-Carreño F, Muñoz-Gutierrez C, Alzate-Morales JH. Halogen bonding in drug-like molecules: a computational and systematic study of the substituent effect. RSC Adv. The Royal Society of Chemistry 2016;6:61837–61847.
  • El Hage K, Piquemal J-P, Hobaika Z, et al. Could the “Janus-like” properties of the halobenzene CX bond (X=Cl, Br) be leveraged to enhance molecular recognition? J Comput Chem. 2015;36:210–221.
  • Christensen AS, Kubař T, Cui Q, et al. Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chem Rev. 2016;116:5301–5337.
  • Řezáč J, Hobza P. A halogen-bonding correction for the semiempirical PM6 method. Chem Phys Lett. 2011;506:286–289.
  • Dobes P, Rezác J, Fanfrlík J, et al. Semiempirical quantum mechanical method PM6-DH2X describes the geometry and energetics of CK2-inhibitor complexes involving halogen bonds well, while the empirical potential fails. J Phys Chem B. 2011;115:8581–8589.
  • Wilcken R, Liu X, Zimmermann MO, et al. Halogen-enriched fragment libraries as leads for drug rescue of mutant p53. J Am Chem Soc. 2012;134:6810–6818.
  • Wilcken R, Zimmermann MO, Bauer MR, et al. Experimental and theoretical evaluation of the ethynyl moiety as a halogen bioisostere. ACS Chem Biol. 2015;10:2725–2732.
  • Lange A, Günther M, Büttner FM, et al. Targeting the gatekeeper MET146 of C-Jun N-terminal kinase 3 Induces a bivalent halogen/chalcogen bond. J Am Chem Soc. 2015;137:14640–14652.
  • Alam M, Beevers RE, Ceska T, et al. Synthesis and SAR of aminopyrimidines as novel c-Jun N-terminal kinase (JNK) inhibitors. Bioorg Med Chem Lett. 2007;17:3463–3467.
  • Jiang S, Zhang L, Cui D, et al. The important role of halogen bond in substrate selectivity of enzymatic catalysis. Sci Rep. 2016;6:34750.
  • Rana N, Conley JM, Soto-Velasquez M, et al. Molecular modeling evaluation of the enantiomers of a novel adenylyl cyclase 2 Inhibitor. J Chem Inf Model. 2017;57:322–334.
  • Kurczab R, Canale V, Satała G, et al. Amino acid hot spots of halogen bonding: a combined theoretical and experimental case study of the 5-HT7 receptor. J Med Chem. 2018;61:8717–8733.
  • González-Vera JA, Medina RA, Martín-Fontecha M, et al. A new serotonin 5-HT6 receptor antagonist with procognitive activity - Importance of a halogen bond interaction to stabilize the binding. Sci Rep. 2017;7:41293.
  • Marciniec K, Kurczab R, Książek M, et al. Structural determinants influencing halogen bonding: a case study on azinesulfonamide analogs of aripiprazole as 5-HT1A, 5-HT7, and D2 receptor ligands. Chem Cent J. 2018;12:55.
  • Zhou Y, Wang Y, Li P, et al. Exploring halogen bonds in 5-hydroxytryptamine 2B receptor-ligand interactions. ACS Med Chem Lett. 2018;9:1019–1024.
  • Zhou Y, Ma J, Lin X, et al. Structure-based discovery of novel and selective 5-hydroxytryptamine 2B receptor antagonists for the treatment of irritable bowel syndrome. J Med Chem. 2016;59:707–720.
  • Li Y, Guo B, Xu Z, et al. Repositioning organohalogen drugs: a case study for identification of potent B-Raf V600E inhibitors via docking and bioassay. Sci Rep. 2016;6:31074.
  • Su P-C, Johnson ME. Evaluating thermodynamic integration performance of the new amber molecular dynamics package and assess potential halogen bonds of enoyl-ACP reductase (FabI) benzimidazole inhibitors. J Comput Chem. 2016;37:836–847.
  • Tan YS, Spring DR, Abell C, et al. The use of chlorobenzene as a probe molecule in molecular dynamics simulations. J Chem Inf Model. 2014;54:1821–1827.
  • Rahman A, Ali MT, Shawan MMAK, et al. Halogen-directed drug design for alzheimer’s disease: a combined density functional and molecular docking study. SpringerPlus. 2016;5:1346.
  • Abu Saleh M, Solayman M, Hoque MM, et al. Inhibition of DNA topoisomerase type IIα (TOP2A) by mitoxantrone and its halogenated derivatives: a combined density functional and molecular docking study. Biomed Res Int. 2016;2016:6817502.
  • Fanfrlík J, Ruiz FX, Kadlčíková A, et al. The effect of halogen-to-hydrogen bond substitution on human aldose reductase inhibition. ACS Chem Biol. 2015;10:1637–1642.
  • Fanfrlík J, Kolář M, Kamlar M, et al. Modulation of aldose reductase inhibition by halogen bond tuning. ACS Chem Biol. 2013;8:2484–2492.
  • Jedwabny W, Dyguda-Kazimierowicz E. Revisiting the halogen bonding between phosphodiesterase type 5 and its inhibitors. J Mol Model. 2019;25:29.
  • Nunes R, Vila Viçosa D, Costa PJ. Tackling halogenated species with PBSA: effect of emulating the σ-hole [Internet]. 2019. doi:10.26434/chemrxiv.7660550
  • Shah MB, Liu J, Zhang Q, et al. Halogen-π interactions in the cytochrome P450 active site: structural insights into human CYP2B6 substrate selectivity. ACS Chem Biol. 2017;12:1204–1210.
  • Heroven C, Georgi V, Ganotra GK, et al. Halogen-aromatic π interactions modulate inhibitor residence times. Angew Chem Int Ed Engl. 2018;57:7220–7224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.