341
Views
10
CrossRef citations to date
0
Altmetric
Review

Contemporary medicinal-chemistry strategies for discovery of blood coagulation factor Xa inhibitors

, , , , , & show all
Pages 915-931 | Received 23 Nov 2018, Accepted 30 May 2019, Published online: 07 Jun 2019

References

  • Nunez-Navarro NE, Santana FM, Parra LP, et al. Surfing the blood coagulation cascade: insight into the vital factor Xa. Curr Med Chem. 2018 Jan 25. Epub ahead of print. DOI:10.2174/0929867325666180125165340.
  • Pinto DJ, Smallheer JM, Cheney DL, et al. Factor Xa inhibitors: next-generation antithrombotic agents. J Med Chem. 2010;53(17):6243–6274.
  • Fischer PM. Design of small-molecule active-site inhibitors of the S1A family proteases as procoagulant and anticoagulant drugs. J Med Chem. 2018;61(9):3799–3822.
  • Xie Z, Tian Y, Lv X, et al. The selectivity and bioavailability improvement of novel oral anticoagulants: an overview. Eur J Med Chem. 2018;146:299–317.
  • Weitz JI, Harenberg J. New developments in anticoagulants: past, present and future. Thromb Haemost. 2017;117(7):1283–1288.
  • Gómez-Outes A, García-Fuentes M, Suárez-Gea ML. Discovery methods of coagulation-inhibiting drugs. Expert Opin Drug Discov. 2017;12(12):1195–1205.
  • Dudley DA, Bunker AM, Chi L, et al. Rational design, synthesis, and biological activity of benzoxazinones as novel factor Xa inhibitors. J Med Chem. 2000;43(22):4063–4070.
  • Herron DK, Goodson T Jr, Wiley MR, et al. 1,2-Dibenzamidobenzene inhibitors of human factor Xa. J Med Chem. 2000;43(5):859–872.
  • Hirayama F, Koshio H, Ishihara T, et al. Discovery of N-[2-hydroxy-6-(4-methoxybenzamido)phenyl]-4- (4-methyl-1,4-diazepan-1-yl)benzamide (darexaban, YM150) as an efficacious and orally available factor Xa inhibitor. J Med Chem. 2011;54(23):8051–8065.
  • Zbinden KG, Anselm L, Banner DW, et al. Design of novel aminopyrrolidine factor Xa inhibitors from a screening hit. Eur J Med Chem. 2009;44(7):2787–2795.
  • Ye B, Arnaiz DO, Chou YL, et al. Thiophene-anthranilamides as highly efficacious and orally available factor Xa inhibitors. J Med Chem. 2007;50(13):2967–2980.
  • Zuo X, Huo Z, Kang D, et al. Current insights into anti-HIV drug discovery and development: a review of recent patent literature (2014–2017). Expert Opin Ther Pat. 2018;28(4):299–316.
  • Zhan P, Liu X. Novel HIV-1 non-nucleoside reverse transcriptase inhibitors: a patent review (2005–2010). Expert Opin Ther Pat. 2011;21(5):717–796.
  • Li X, Zhang L, Tian Y, et al. Novel HIV-1 non-nucleoside reverse transcriptase inhibitors: a patent review (2011–2014). Expert Opin Ther Pat. 2014;24(11):1199–1227.
  • Song Y, Fang Z, Zhan P, et al. Recent advances in the discovery and development of novel HIV-1 NNRTI platforms (Part II): 2009–2013 update. Curr Med Chem. 2014;21(3):329–355.
  • Wiley MR, Weir LC, Briggs S, et al. Structure-based design of potent, amidine-derived inhibitors of factor Xa: evaluation of selectivity, anticoagulant activity, and antithrombotic activity. J Med Chem. 2000;43(5):883–899.
  • Corte JR, Fang T, Pinto DJ, et al. Structure-activity relationships of anthranilamide-based factor Xa inhibitors containing piperidinone and pyridinone P4 moieties. Bioorg Med Chem Lett. 2008;18(9):2845–2849.
  • Zhang P, Huang W, Wang L, et al. Discovery of betrixaban (PRT054021), N-(5-chloropyridin-2-yl)-2-(4-(N,N-dimethylcarbamimidoyl)benzamido)-5-methoxybenzamide, a highly potent, selective, and orally efficacious factor Xa inhibitor. Bioorg Med Chem Lett. 2009;19(8):2179–2185.
  • Sagi K, Nakagawa T, Yamanashi M, et al. Rational design, synthesis, and structure-activity relationships of novel factor Xa inhibitors: (2-substituted-4-amidinophenyl)pyruvic and -propionic acids. J Med Chem. 2003;46(10):1845–1857.
  • Nazaré M, Will DW, Matter H, et al. Probing the subpockets of factor Xa reveals two binding modes for inhibitors based on a 2-carboxyindole scaffold: a study combining structure-activity relationship and X-ray crystallography. J Med Chem. 2005;48(14):4511–4525.
  • Guertin KR, Gardner CJ, Klein SI, et al. Optimization of the beta-aminoester class of factor Xa inhibitors. Part 2: identification of FXV673 as a potent and selective inhibitor with excellent in vivo anticoagulant activity. Bioorg Med Chem Lett. 2002;12(12):1671–1674.
  • Imaeda Y, Kuroita T, Sakamoto H, et al. Discovery of imidazo[1,5-c]imidazol-3-ones: weakly basic, orally active factor Xa inhibitors. J Med Chem. 2008;51(12):3422–3436.
  • Fujimoto T, Imaeda Y, Konishi N, et al. Discovery of a tetrahydropyrimidin-2(1H)-one derivative (TAK-442) as a potent, selective, and orally active factor Xa inhibitor. J Med Chem. 2010;53(9):3517–3531.
  • Goldstein S, Bates ER, Bhatt DL, et al. AXIOM investigators. Phase 2 study of TAK-442, an oral factor Xa inhibitor, in patients following acute coronary syndrome. Thromb Haemost. 2014;111(6):1141–1152.
  • Qiao JX, Cheney DL, Alexander RS, et al. Achieving structural diversity using the perpendicular conformation of alpha-substituted phenylcyclopropanes to mimic the bioactive conformation of ortho-substituted biphenyl P4 moieties: discovery of novel, highly potent inhibitors of factor Xa. Bioorg Med Chem Lett. 2008;18(14):4118–4123.
  • Quan ML, Pinto DJ, Rossi KA, et al. Phenyltriazolinones as potent factor Xa inhibitors. Bioorg Med Chem Lett. 2010;20(4):1373–1377.
  • Van Huis CA1, Casimiro-Garcia A, Bigge CF, et al. Exploration of 4,4-disubstituted pyrrolidine-1,2-dicarboxamides as potent, orally active factor Xa inhibitors with extended duration of action. Bioorg Med Chem. 2009;17(6):2501–2511.
  • Choi-Sledeski YM, McGarry DG, Green DM, et al. Sulfonamidopyrrolidinone factor Xa inhibitors: potency and selectivity enhancements via P-1 and P-4 optimization. J Med Chem. 1999;42(18):3572–3587.
  • Watson NS, Brown D, Campbell M, et al. Design and synthesis of orally active pyrrolidin-2-one-based factor Xa inhibitors. Bioorg Med Chem Lett. 2006;16(14):3784–3788.
  • Young RJ, Campbell M, Borthwick AD, et al. Structure- and property-based design of factor Xa inhibitors: pyrrolidin-2-ones with acyclic alanyl amides as P4 motifs. Bioorg Med Chem Lett. 2006;16(23):5953–5957.
  • Chan C, Borthwick AD, Brown D, et al. Factor Xa inhibitors: S1 binding interactions of a series of N-{(3S)-1-[(1S)-1-methyl-2-morpholin-4-yl-2-oxoethyl]-2-oxopyrrolidin-3-yl}sulfonamides. J Med Chem. 2007;50(7):1546–1557.
  • Young RJ, Brown D, Burns-Kurtis CL, et al. Selective and dual action orally active inhibitors of thrombin and factor Xa. Bioorg Med Chem Lett. 2007;17(10):2927–2930.
  • Young RJ, Borthwick AD, Brown D, et al. Structure and property based design of factor Xa inhibitors: biaryl pyrrolidin-2-ones incorporating basic heterocyclic motifs. Bioorg Med Chem Lett. 2008;18(1):28–33.
  • Kleanthous S, Borthwick AD, Brown D, et al. Structure and property based design of factor Xa inhibitors: pyrrolidin-2-ones with monoaryl P4 motifs. Bioorg Med Chem Lett. 2010;20(2):618–622.
  • Young RJ, Adams C, Blows M, et al. Structure and property based design of factor Xa inhibitors: pyrrolidin-2-ones with aminoindane and phenylpyrrolidine P4 motifs. Bioorg Med Chem Lett. 2011;21(6):1582–1587.
  • Watson NS, Adams C, Belton D, et al. The discovery of potent and long-acting oral factor Xa inhibitors with tetrahydroisoquinoline and benzazepine P4 motifs. Bioorg Med Chem Lett. 2011;21(6):1588–1592.
  • Young RJ, Borthwick AD, Brown D, et al. Structure and property based design of factor Xa inhibitors: pyrrolidin-2-ones with biaryl P4 motifs. Bioorg Med Chem Lett. 2008;18(1):23–27.
  • Salonen LM1, Holland MC, Kaib PS, et al. Molecular recognition at the active site of factor Xa: cation-π interactions, stacking on planar peptide surfaces, and replacement of structural water. Chemistry. 2012;18(1):213–222.
  • Schärer K, Morgenthaler M, Paulini R, et al. Quantification of cation-pi interactions in protein-ligand complexes: crystal-structure analysis of Factor Xa bound to a quaternary ammonium ion ligand. Angew Chem Int Ed Engl. 2005;44(28):4400–4404.
  • Salonen LM, Bucher C, Banner DW, et al. Cation-pi interactions at the active site of factor Xa: dramatic enhancement upon stepwise N-alkylation of ammonium ions. Angew Chem Int Ed Engl. 2009;48(4):811–814.
  • Stumpfe D, Bajorath J. Exploring activity cliffs in medicinal chemistry. J Med Chem. 2012;55:2932–2942.
  • Stumpfe D, Hu Y, Dimova D, et al. Recent progress in understanding activity cliffs and their utility in medicinal chemistry. J Med Chem. 2014;57:18–28.
  • Lu X, Li X, Yang J, et al. Arylazolyl(azinyl)thioacetanilides. Part 20: discovery of novel purinylthioacetanilides derivatives as potent HIV-1 NNRTIs via a structure-based bioisosterism approach. Bioorg Med Chem. 2016;24(18):4424–4433.
  • Li X, Huang B, Zhou Z, et al. Arylazolyl(azinyl)thioacetanilides: part 19: discovery of novel substituted imidazo[4,5-b]pyridin-2-ylthioacetanilides as potent HIV NNRTIs via a structure-based bioisosterism approach. Chem Biol Drug Des. 2016;88(2):241–253.
  • Li X, Lu X, Chen W, et al. Arylazolyl(azinyl)thioacetanilides. Part 16: structure-based bioisosterism design, synthesis and biological evaluation of novel pyrimidinylthioacetanilides as potent HIV-1 inhibitors. Bioorg Med Chem. 2014;22(19):5290–5297.
  • Zhan P, Chen W, Li Z, et al. Discovery of novel 2-(3-(2-chlorophenyl)pyrazin-2-ylthio)-N-arylacetamides as potent HIV-1 inhibitors using a structure-based bioisosterism approach. Bioorg Med Chem. 2012;20(23):6795–6802.
  • Zhan P, Li X, Li Z, et al. Structure-based bioisosterism design, synthesis and biological evaluation of novel 1,2,4-triazin-6-ylthioacetamides as potent HIV-1 NNRTIs. Bioorg Med Chem Lett. 2012;22(23):7155–7162.
  • Yoshikawa K, Kobayashi S, Nakamoto Y, et al. Design, synthesis, and SAR of cis-1,2-diaminocyclohexane derivatives as potent factor Xa inhibitors. Part II: exploration of 6–6 fused rings as alternative S1 moieties. Bioorg Med Chem. 2009;17(24):8221–8233.
  • Kucznierz R1, Grams F, Leinert H, et al. Tetrahydro-isoquinoline-based factor Xa inhibitors. J Med Chem. 1998;41(25):4983–4994.
  • Pinto DJ, Orwat MJ, Wang S, et al. Discovery of 1-[3-(aminomethyl)phenyl]-N-3-fluoro-2ʹ-(methylsulfonyl)-[1,1ʹ-biphenyl]-4-yl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide (DPC423), a highly potent, selective, and orally bioavailable inhibitor of blood coagulation factor Xa. J Med Chem. 2001;44(4):566–578.
  • Haginoya N1, Kobayashi S, Komoriya S, et al. Synthesis and conformational analysis of a non-amidine factor Xa inhibitor that incorporates 5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridine as S4 binding element. J Med Chem. 2004;47(21):5167–5182.
  • Yee YK, Tebbe AL, Linebarger JH, et al. N(2)-Aroylanthranilamide inhibitors of human factor Xa. J Med Chem. 2000;43(5):873–882.
  • Shi Y, O’Connor SP, Sitkoff D, et al. Arylsulfonamidopiperidone derivatives as a novel class of factor Xa inhibitors. Bioorg Med Chem Lett. 2011;21(24):7516–7521.
  • Yoshikawa K, Yoshino T, Yokomizo Y, et al. Design, synthesis and SAR of novel ethylenediamine and phenylenediamine derivatives as factor Xa inhibitors. Bioorg Med Chem Lett. 2011;21(7):2133–2140.
  • Kohrt JT, Filipski KJ, Cody WL, et al. The discovery of glycine and related amino acid-based factor Xa inhibitors. Bioorg Med Chem. 2006;14(13):4379–4392.
  • Shi Y, Zhang J, Shi M, et al. Cyanoguanidine-based lactam derivatives as a novel class of orally bioavailable factor Xa inhibitors. Bioorg Med Chem Lett. 2009;19(15):4034–4041.
  • Senger S, Convery MA, Chan C, et al. Arylsulfonamides: a study of the relationship between activity and conformational preferences for a series of factor Xa inhibitors. Bioorg Med Chem Lett. 2006;16(22):5731–5735.
  • Hu Y, Stumpfe D, Bajorath J. Recent advances in scaffold hopping. J Med Chem. 2017;60(4):1238–1246.
  • Li X, Zhan P, Liu H, et al. Arylazolyl(azinyl)thioacetanilides. Part 10: design, synthesis and biological evaluation of novel substituted imidazopyridinylthioacetanilides as potent HIV-1 inhibitors. Bioorg Med Chem. 2012;20(18):5527–5536.
  • Han Q, Dominguez C, Stouten PF, et al. Design, synthesis, and biological evaluation of potent and selective amidino bicyclic factor Xa inhibitors. J Med Chem. 2000;43(23):4398–4415.
  • Phillips GB, Buckman BO, Davey DD, et al. Discovery of N-[2-[5-[Amino(imino)methyl]-2-hydroxyphenoxy]-3,5-difluoro-6-[3-(4, 5-dihydro-1-methyl-1H-imidazol-2-yl)phenoxy]pyridin-4-yl]-N-methylglycine (ZK-807834): a potent, selective, and orally active inhibitor of the blood coagulation enzyme factor Xa. J Med Chem. 1998;41(19):3557–3562.
  • Adler M1, Davey DD, Phillips GB, et al. Preparation, characterization, and the crystal structure of the inhibitor ZK-807834 (CI-1031) complexed with factor Xa. Biochemistry. 2000;39(41):12534–12542.
  • Phillips G, Davey DD, Eagen KA, et al. Design, synthesis, and activity of 2,6-diphenoxypyridine-derived factor Xa inhibitors. J Med Chem. 1999;42(10):1749–1756.
  • Ewing WR, Becker MR, Manetta VE, et al. Design and structure-activity relationships of potent and selective inhibitors of blood coagulation factor Xa. J Med Chem. 1999;42(18):3557–3571.
  • Qiao JX, Chang CH, Cheney DL, et al. SAR and X-ray structures of enantiopure 1,2-cis-(1R,2S)-cyclopentyldiamine and cyclohexyldiamine derivatives as inhibitors of coagulation factor Xa. Bioorg Med Chem Lett. 2007;17(16):4419–4427.
  • Nagata T, Yoshino T, Haginoya N, et al. Cycloalkanediamine derivatives as novel blood coagulation factor Xa inhibitors. Bioorg Med Chem Lett. 2007;17(16):4683–4688.
  • Anselm L, Banner DW, Benz J, et al. Discovery of a factor Xa inhibitor (3R,4R)-1-(2,2-difluoro-ethyl)-pyrrolidine-3,4-dicarboxylic acid 3-[(5-chloro-pyridin-2-yl)-amide] 4-[[2-fluoro-4-(2-oxo-2H-pyridin-1-yl)-phenyl]-amide] as a clinical candidate. Bioorg Med Chem Lett. 2010;20(17):5313–5319.
  • Lazar C, Kluczyk A, Kiyota T, et al. Drug evolution concept in drug design: 1. Hybridization method. J Med Chem. 2004;47(27):6973–6982.
  • Huang B, Wang X, Liu X, et al. Discovery of novel DAPY-IAS hybrid derivatives as potential HIV-1 inhibitors using molecular hybridization based on crystallographic overlays. Bioorg Med Chem. 2017 Aug 15;25(16):4397–4406.
  • Zhang H, Tian Y, Kang D, et al. Discovery of uracil-bearing DAPYs derivatives as novel HIV-1 NNRTIs via crystallographic overlay-based molecular hybridization. Eur J Med Chem. 2017;130:209–222.
  • Liu Z, Chen W, Zhan P, et al. Design, synthesis and anti-HIV evaluation of novel diarylnicotinamide derivatives (DANAs) targeting the entrance channel of the NNRTI binding pocket through structure-guided molecular hybridization. Eur J Med Chem. 2014;87:52–62.
  • Chen W, Zhan P, Rai D, et al. Discovery of 2-pyridone derivatives as potent HIV-1 NNRTIs using molecular hybridization based on crystallographic overlays. Bioorg Med Chem. 2014;22(6):1863–1872.
  • Choi-Sledeski YM, Kearney R, Poli G, et al. Discovery of an orally efficacious inhibitor of coagulation factor Xa which incorporates a neutral P1 ligand. J Med Chem. 2003;46(5):681–684.
  • Komoriya S, Haginoya N, Kobayashi S, et al. Design, synthesis, and biological activity of non-basic compounds as factor Xa inhibitors: SAR study of S1 and aryl binding sites. Bioorg Med Chem. 2005;13(12):3927–3954.
  • Adler M1, Kochanny MJ, Ye B, et al. Crystal structures of two potent nonamidine inhibitors bound to factor Xa. Biochemistry. 2002;41(52):15514–15523.
  • Wang X, Huang B, Suzuki T, et al. Medicinal chemistry insights in the discovery of novel LSD1 inhibitors. Epigenomics. 2015;7(8):1379–1396.
  • Zhan P, Song Y, Itoh Y, et al. Recent advances in the structure-based rational design of TNKSIs. Mol Biosyst. 2014;10(11):2783–2799.
  • Zhang S, Zhang J, Gao P, et al. Efficient drug discovery by rational lead hybridization based on crystallographic overlay. Drug Discov Today. 2019;24(3):805–813.
  • Fang Z, Song Y, Zhan P, et al. Conformational restriction: an effective tactic in ‘follow-on’-based drug discovery. Future Med Chem. 2014;6(8):885–901.
  • Hirayama F1, Koshio H, Katayama N, et al. Design, synthesis and biological activity of YM-60828 derivatives. Part 2: potent and orally-bioavailable factor Xa inhibitors based on benzothiadiazine-4-one template. Bioorg Med Chem. 2003;11(3):367–381.
  • Pruitt JR, Pinto DJ, Galemmo RA Jr, et al. Discovery of 1-(2-aminomethylphenyl)-3-trifluoromethyl-N-[3-fluoro-2ʹ-(aminosulfonyl)[1,1ʹ-biphenyl)]-4-yl]-1H-pyrazole-5-carboxyamide (DPC602), a potent, selective, and orally bioavailable factor Xa inhibitor(1). J Med Chem. 2003;46(25):5298–5315.
  • Quan ML, Lam PY, Han Q, et al. Discovery of 1-(3ʹ-aminobenzisoxazol-5ʹ-yl)-3-trifluoromethyl-N-[2-fluoro-4-[(2ʹ-dimethylaminomethyl)imidazol-1-yl]phenyl]-1H-pyrazole-5-carboxyamide hydrochloride (razaxaban), a highly potent, selective, and orally bioavailable factor Xa inhibitor. J Med Chem. 2005;48(6):1729–1744.
  • Pinto DJ, Orwat MJ, Quan ML, et al. 1-[3-Aminobenzisoxazol-5ʹ-yl]-3-trifluoromethyl-6-[2ʹ-(3-(R)-hydroxy-N-pyrrolidinyl)methyl-[1,1ʹ]-biphen-4-yl]-1,4,5,6-tetrahydropyrazolo-[3,4-c]-pyridin-7-one (BMS-740808) a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. Bioorg Med Chem Lett. 2006;16(15):4141–4147.
  • Pinto DJ, Galemmo RA Jr, Quan ML, et al. Discovery of potent, efficacious, and orally bioavailable inhibitors of blood coagulation factor Xa with neutral P1 moieties. Bioorg Med Chem Lett. 2006;16(21):5584–5589.
  • Pinto DJ1, Orwat MJ, Koch S, et al. Discovery of 1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (apixaban, BMS-562247), a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. J Med Chem. 2007;50(22):5339–5356.
  • Lee YK, Parks DJ, Lu T, et al. 7-fluoroindazoles as potent and selective inhibitors of factor Xa. J Med Chem. 2008;51(2):282–297.
  • Xue T, Ding S, Guo B, et al. Design, synthesis, and structure-activity and structure-PK relationship studies of novel [6,6,5] tricyclic fused oxazolidinones leading to the discovery of a potent, selective, and orally bioavailable FXa inhibitor. J Med Chem. 2014;57(18):7770–7791.
  • Roehrig S, Straub A, Pohlmann J, et al. Discovery of the novel antithrombotic agent 5-chloro-N-({(5S)-2-oxo-3- [4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl}methyl)thiophene-2-carboxamide (BAY 59–7939): an oral, direct factor Xa inhibitor. J Med Chem. 2005;48(19):5900–5908.
  • Bhardwaj A, Kaur J, Wuest M, et al. In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nat Commun. 2017;8:1.
  • Zhan P, Pannecouque C, De Clercq E, et al. Anti-HIV Drug Discovery and Development: current Innovations and Future Trends. J Med Chem. 2016;59(7):2849–2878.
  • Zhan P, Itoh Y, Suzuki T, et al. Strategies for the discovery of target-specific or isoform-selective modulators. J Med Chem. 2015;58(19):7611–7633.
  • Jaegle M, Steinmetzer T, Rademann J. Protein-templated formation of an inhibitor of the blood coagulation factor Xa through a background-free amidation reaction. Angew Chem Int Ed Engl. 2017;56(13):3718–3722.
  • Zhan P, Liu X. Designed multiple ligands: an emerging anti-HIV drug discovery paradigm. Curr Pharm Des. 2009;15(16):1893–1917.
  • Zhan P, Liu X. Rationally designed multitarget anti-HIV agents. Curr Med Chem. 2013;20(13):1743–1758.
  • Meneyrol J, Follmann M, Lassalle G, et al. 5-Chlorothiophene-2-carboxylic acid [(S)-2-[2-methyl-3-(2-oxopyrrolidin-1-yl)benzenesulfonylamino]-3-(4-methylpiperazin-1-yl)-3-oxopropyl]amide (SAR107375), a selective and potent orally active dual thrombin and factor Xa inhibitor. J Med Chem. 2013;56(23):9441–9456.
  • Zhan P, Chen X, Li D, et al. HIV-1 NNRTIs: structural diversity, pharmacophore similarity, and implications for drug design. Med Res Rev. 2013;33(Suppl 1):E1–72.
  • Nazaré M, Matter H, Will DW, et al. Fragment deconstruction of small, potent factor Xa inhibitors: exploring the superadditivity energetics of fragment linking in protein-ligand complexes. Angew Chem Int Ed Engl. 2012;51(4):905–911.
  • Kim J, Kim H, Park SB. Privileged structures: efficient chemical “navigators” toward unexplored biologically relevant chemical spaces. J Am Chem Soc. 2014;136(42):14629–14638.
  • Wang X, Huang B, Liu X, et al. Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discov Today. 2016;21(1):118–132.
  • Segall M. Advances in multiparameter optimization methods for de novo drug design. Expert Opin Drug Discov. 2014;9:803–817.
  • Wager TT, Kormos BL, Brady JT, et al. Improving the odds of success in drug discovery: choosing the best compounds for in vivo toxicology studies. J Med Chem. 2013;56:9771–9779.
  • Quan ML, Pinto DJP, Smallheer JM, et al. Factor XIa inhibitors as new anticoagulants. J Med Chem. 2018;61(17):7425–7447.
  • Swedberg JE, Mahatmanto T, Abdul Ghani H, et al. Substrate-guided design of selective FXIIa inhibitors based on the plant-derived momordica cochinchinensis trypsin inhibitor-II (MCoTI-II) scaffold. J Med Chem. 2016;59(15):7287–7292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.