391
Views
16
CrossRef citations to date
0
Altmetric
Review

Chikungunya virus drug discovery: still a long way to go?

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 855-866 | Received 25 Feb 2019, Accepted 05 Jun 2019, Published online: 14 Jun 2019

References

  • Robinson MC. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53. I. Clinical features. Trans R Soc Trop Med Hyg. 1955;49(1):28–32.
  • Weaver SC, Winegar R, Manger ID, et al. Alphaviruses: population genetics and determinants of emergence. Antiviral Res. 2012;94(3):242–257.
  • Lo Presti A, Cella E, Angeletti S, et al. Molecular epidemiology, evolution and phylogeny of chikungunya virus: an updating review. Infect Genet Evol. 2016;41:270–278.
  • Weaver SC, Forrester NL. Chikungunya: evolutionary history and recent epidemic spread. Antiviral Res. 2015;120:32–39.
  • Tsetsarkin KA, Vanlandingham DL, McGee CE, et al. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007;3(12):e201.
  • Couderc T, Lecuit M. Chikungunya virus pathogenesis: from bedside to bench. Antiviral Res. 2015;121:120–131.
  • Thiberville SD, Moyen N, Dupuis-Maguiraga L, et al. Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Res. 2013;99(3):345–370.
  • Powers AM. Vaccine and therapeutic options to control chikungunya virus. Clin Microbiol Rev. 2018;31(1):e00104–16.
  • Abdelnabi R, Neyts J, Delang L. Towards antivirals against chikungunya virus. Antiviral Res. 2015;121:59–68.
  • Cavrini F, Gaibani P, Pierro AM, et al. Chikungunya: an emerging and spreading arthropod-borne viral disease. J Infect Dev Ctries. 2009;3(10):744–752.
  • Chevillon C, Briant L, Renaud F, et al. The chikungunya threat: an ecological and evolutionary perspective. Trends Microbiol. 2008;16(2):80–88.
  • Ahola T, Kaariainen L. Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. Proc Natl Acad Sci U S A. 1995;92:507–511.
  • Ahola T, Kujala P, Tuittila M, et al. Effects of palmitoylation of replicase protein nsP1 on alphavirus infection. J Virol. 2000;74(15):6725–6733.
  • Peranen J, Laakkonen P, Hyvonen M, et al. The alphavirus replicase protein nsP1 is membrane-associated and has affinity to endocytic organelles. Virology. 1995;208(2):610–620.
  • Ahola T, Lampio A, Auvinen P, et al. Semliki forest virus mRNA capping enzyme requires association with anionic membrane phospholipids for activity. Embo J. 1999;18:3164–3172.
  • Peranen J, Rikkonen M, Liljestrom P, et al. Nuclear localization of semliki forest virus-specific nonstructural protein nsP2. J Virol. 1990;64(5):1888–1896.
  • Gomez de Cedron M, Ehsani N, Mikkola ML, et al. RNA helicase activity of Semliki Forest virus replicase protein nsP2. FEBS Lett. 1999:448(1):19–22.
  • Pastorino BA, Peyrefitte CN, Almeras L, et al. Expression and biochemical characterization of nsP2 cysteine protease of chikungunya virus. Virus Res. 2008;131(2):293–298.
  • Karpe YA, Aher PP, Lole KS. NTPase and 5ʹ-RNA triphosphatase activities of chikungunya virus nsP2 protein. PLoS One. 2011;6(7):e22336.
  • Fros JJ, Liu WJ, Prow NA, et al. Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J Virol. 2010;84(20):10877–10887.
  • Götte B, Liu L, McInerney MG. The enigmatic alphavirus non-structural protein 3 (nsP3) revealing its secrets at last. Viruses. 2018;10(3):105.
  • Zhang R, Hryc CF, Cong Y, et al. 4.4 A cryo-EM structure of an enveloped alphavirus venezuelan equine encephalitis virus. Embo J. 2011;30(18):3854–3863.
  • Kielian M, Chanel-Vos C, Liao M. Alphavirus entry and membrane fusion. Viruses. 2010;2(4):796–825.
  • Snyder AJ, Mukhopadhyay S. The alphavirus E3 glycoprotein functions in a clade-specific manner. J Virol. 2012;86(24):13609–13620.
  • Melton JV, Ewart GD, Weir RC, et al. Alphavirus 6K proteins form ion channels. J Biol Chem. 2002;277(49):46923–46931.
  • Sanz MA, Carrasco L. Sindbis virus variant with a deletion in the 6K gene shows defects in glycoprotein processing and trafficking: lack of complementation by a wild-type 6K gene in trans. J Virol. 2001;75(16):7778–7784.
  • Da Silva-Júnior EF, Leoncini GO, Rodrigues ÉES, et al. The medicinal chemistry of chikungunya virus. Bioorg Med Chem. 2017;25(16):4219–4244.
  • Ching K-C, F. P. Ng L, Chai CLL. A compendium of small molecule direct-acting and host-targeting inhibitors as therapies against alphaviruses. J Antimicrob Chemother. 2017;72(11):2973–2989.
  • Abdelnabi R, Neyts J, Delang L. Chikungunya virus infections: time to act, time to treat. Curr Opin Virol. 2017;24:25–30.
  • Mercorelli B, Palù G, Loregian A. Drug repurposing for viral infectious diseases: how far are we? Trends Microbiol. 2018;26(10):865–876.
  • Paeshuyse J, Dallmeier K, Neyts J. Ribavirin for the treatment of chronic hepatitis C virus infection: a review of the proposed mechanisms of action. Curr Opin Virol. 2011;1(6):590–598.
  • Briolant S, Garin D, Scaramozzino N, et al. In vitro inhibition of chikungunya and semliki forest viruses replication by antiviral compounds: synergistic effect of interferon-α and ribavirin combination. Antiviral Res. 2004;61(2):111–117.
  • Scholte FEM, Tas A, Martina BEE, et al. Characterization of synthetic chikungunya viruses based on the consensus sequence of recent E1-226V isolates. PLoS One. 2013;8(8):e71047.
  • Ehteshami M, Tao S, Zandi K, et al. Characterization of β-D-N4-hydroxycytidine as a novel inhibitor of chikungunya virus. Antimicrob Agents Chemother. 2017;61(4):e02395–16.
  • Urakova N, Kuznetsova V, Crossman DK, et al. β-D-N4-hydroxycytidine is a potent anti-alphavirus compound that induces a high level of mutations in the viral genome. J Virol. 2018;92(3):e01965–17.
  • Delang L, Segura Guerrero N, Tas A, et al. Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral. J Antimicrob Chemother. 2014;69(10):2770–2784.
  • Delang L, Abdelnabi R, Neyts J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res. 2018;153:85–94.
  • Ferreira AC, Reis PA, de Freitas CS, et al. Beyond members of the flaviviridae family, sofosbuvir also inhibits chikungunya virus replication. Antimicrob Agents Chemother. 2018;63(2):e01389–18.
  • Delogu I, Pastorino B, Baronti C, et al. In vitro antiviral activity of arbidol against chikungunya virus and characteristics of a selected resistant mutant. Antiviral Res. 2011;90(3):99–107.
  • Di Mola A, Peduto A, La Gatta A, et al. Structure–activity relationship study of arbidol derivatives as inhibitors of chikungunya virus replication. Bioorg Med Chem. 2014;22(21):6014–6025.
  • Khan M, Santhosh SR, Tiwari M, et al. Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against chikungunya virus in vero cells. J Med Virol. 2010;82(5):817–824.
  • Bernard E, Solignat M, Gay B, et al. Endocytosis of chikungunya virus into mammalian cells: role of clathrin and early endosomal compartments. PLoS One. 2010;5(7):e11479.
  • De Lamballerie X, Boisson V, Reynier JC, et al. On chikungunya acute infection and chloroquine treatment. Vector-Borne Zoonotic Dis. 2008;8(6):837–839.
  • Wong ZK, Chu JJ. The interplay of viral and host factors in chikungunya virus infection: targets for antiviral strategies. Viruses. 2018;10(6):294.
  • Varghese FS, Rausalu K, Hakanen M, et al. Obatoclax inhibits alphavirus membrane fusion by neutralizing the acidic environment of endocytic compartments. Antimicrob Agents Chemother. 2017;61(3):e02227–16.
  • Varghese FS, Kaukinen P, Gläsker S, et al. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antiviral Res. 2016;126:117–124.
  • Varghese FS, Thaa B, Amrun SN, et al. The antiviral alkaloid berberine reduces chikungunya virus-induced mitogen-activated protein kinase signaling. J Virol. 2016;90(21):9743–9757.
  • Wang Y, Jin F, Wang R, et al. HSP90: a promising broad-spectrum antiviral drug target. Arch Virol. 2017;162(11):3269–3282.
  • Sidera K, Patsavoudi E. HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov. 2014;9(1):1–20.
  • Rathore APS, Haystead T, Das PK, et al. Chikungunya virus nsP3 & nsP4 interacts with HSP-90 to promote virus replication: HSP-90 inhibitors reduce CHIKV infection and inflammation in vivo. Antiviral Res. 2014;103:7–16.
  • Das I, Basantray I, Mamidi P, et al. Heat shock protein 90 positively regulates chikungunya virus replication by stabilizing viral non-structural protein nsP2 during infection. PLoS One. 2014;9(6):e100531.
  • Karlas A, Berre S, Couderc T, et al. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs. Nat Commun. 2016;7:11320.
  • Gigante A, Canela MD, Delang L, et al. Identification of 1,2,3 Triazolo-[4,5-d]-pyrimidin-7(6H)-ones as novel inhibitors of chikungunya virus replication. J Med Chem. 2014;57(10):4000–4008.
  • Gong EY, Bonfanti J-F, Ivens T, et al. Development of a high-throughput antiviral assay for screening inhibitors of chikungunya virus and generation of drug-resistant mutations in cultured cells. In: Gong EY, editor. Antiviral methods and protocols. Totowa (NJ): Humana Press; 2013. p. 429–438.
  • Lani R, Hassandarvish P, Shu M-H, et al. Antiviral activity of selected flavonoids against chikungunya virus. Antiviral Res. 2016;133:50–61.
  • Weber C, Sliva K, von Rhein C, et al. The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection. Antiviral Res. 2015;113:1–3.
  • Lani R, Hassandarvish P, Chiam CW, et al. Antiviral activity of silymarin against chikungunya virus. Sci Rep. 2015;5:11421.
  • Gómez-SanJuan A, Gamo A-M, Delang L, et al. Inhibition of the replication of different strains of chikungunya virus by 3-aryl-[1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones. ACS Infect Dis. 2018;4(4):605–619.
  • Gigante A, Gómez-SanJuan A, Delang L, et al. Antiviral activity of [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones against chikungunya virus targeting the viral capping nsP1. Antiviral Res. 2017;144:216–222.
  • Delang L, Li C, Tas A, et al. The viral capping enzyme nsP1: a novel target for the inhibition of chikungunya virus infection [Article]. Sci Rep. 2016;6:31819.
  • Kaur R, Mudgal R, Narwal M, et al. Development of an ELISA assay for screening inhibitors against divalent metal ion dependent alphavirus capping enzyme. Virus Res. 2018;256:209–218.
  • Feibelman KM, Fuller BP, Li L, et al. Identification of small molecule inhibitors of the chikungunya virus nsP1 RNA capping enzyme. Antiviral Res. 2018;154:124–131.
  • Bullard-Feibelman KM, Fuller BP, Geiss BJ. A sensitive and robust high-throughput screening assay for inhibitors of the chikungunya virus nsP1 capping enzyme. PLoS One. 2016;11(7):e0158923.
  • Peng W, Peltier DC, Larsen MJ, et al. Identification of thieno[3,2-b]pyrrole derivatives as novel small molecule inhibitors of neurotropic alphaviruses. J Infect Dis. 2009;199(7):950–957.
  • Ching KC, Kam YW, Merits A, et al. Trisubstituted thieno[3,2-b]pyrrole 5-carboxamides as potent inhibitors of alphaviruses. J Med Chem. 2015;58(23):9196–9213.
  • Ching KC, Tran TNQ, Amrun SN, et al. Structural optimizations of thieno[3,2-b]pyrrole derivatives for the development of metabolically stable inhibitors of chikungunya virus. J Med Chem. 2017;60(7):3165–3186.
  • Wada Y, Orba Y, Sasaki M, et al. Discovery of a novel antiviral agent targeting the nonstructural protein 4 (nsP4) of chikungunya virus. Virology. 2017;505:102–112.
  • Li C, Guillén J, Rabah N, et al. mRNA capping by Venezuelan equine encephalitis virus nsP1: functional characterization and implications for antiviral research. J Virol. 2015;89(16):8292–8303.
  • Ferreira-Ramos AS, Li C, Eydoux C, et al. Approved drugs screening against the nsP1 capping enzyme of venezuelan equine encephalitis virus using an immuno-based assay. Antiviral Res. 2019;163:59–69.
  • Lucas-Hourani M, Lupan A, Desprès P, et al. A phenotypic assay to identify chikungunya virus inhibitors targeting the nonstructural protein nsP2. J Biomol Screen. 2013;18(2):172–179.
  • Saha A, Acharya BN, Priya R, et al. Development of nsP2 protease based cell free high throughput screening assay for evaluation of inhibitors against emerging Chikungunya virus. Sci Rep. 2018;8(1):10831.
  • Aggarwal M, Sharma R, Kumar P, et al. Kinetic characterization of trans-proteolytic activity of chikungunya virus capsid protease and development of a FRET-based HTS assay. Sci Rep. 2015;5:14753.
  • Gaibani P, Landini MP, Sambri V. Diagnostic methods for CHIKV based on serological tools. In: Chu JJH, Ang SK, editors. Chikungunya virus: methods and protocols. New York: Springer New York; 2016. p. 63–73.
  • Wang Y-M, Lu J-W, Lin -C-C, et al. Antiviral activities of niclosamide and nitazoxanide against chikungunya virus entry and transmission. Antiviral Res. 2016;135:81–90.
  • Jurgeit A, McDowell R, Moese S, et al. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects. PLoS Path. 2012;8(10):e1002976.
  • Rossignol JF. Nitazoxanide: A first-in-class broad-spectrum antiviral agent. Antiviral Res. 2014;110:94–103.
  • PDB ids: 3TRK and 4ZTP, F77Unpublished Work.
  • Malet H, Coutard B, Jamal S, et al. The crystal structures of chikungunya and venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket. J Virol. 2009;83(13):6534–6545.
  • Sharma R, Kesari P, Kumar P, et al. Structure-function insights into chikungunya virus capsid protein: small molecules targeting capsid hydrophobic pocket. Virology. 2018;515:223–234.
  • Voss JE, Vaney MC, Duquerroy S, et al. Glycoprotein organization of chikungunya virus particles revealed by X-ray crystallography. Nature. 2010;468(7324):709–U137.
  • Gould EA, Coutard B, Malet H, et al. Understanding the alphaviruses: recent research on important emerging pathogens and progress towards their control. Antiviral Res. 2010;87(2):111–124.
  • Steuber H, Hilgenfeld R. Recent advances in targeting viral proteases for the discovery of novel antivirals. Curr Top Med Chem. 2010;10(3):323–345.
  • Bassetto M, De Burghgraeve T, Delang L, et al. Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus. Antiviral Res. 2013;98(1):12–18.
  • Russo AT, White MA, Watowich SJ. The crystal structure of the venezuelan equine encephalitis alphavirus nsP2 protease. Structure. 2006;14(9):1449–1458.
  • Giancotti G, Cancellieri M, Balboni A, et al. Rational modifications on a benzylidene-acrylohydrazide antiviral scaffold, synthesis and evaluation of bioactivity against chikungunya virus [Article]. Eur J Med Chem. 2018;149:56–68.
  • Das PK, Puusepp L, Varghese FS, et al. Design and validation of novel chikungunya virus protease inhibitors [Article]. Antimicrob Agents Chemother. 2016;60(12):7382–7395.
  • Choi HK, Tong L, Minor W, et al. Structure of sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature. 1991;354(6348):37–43.
  • Hong EM, Perera R, Kuhn RJ. Alphavirus capsid protein helix I controls a checkpoint in nucleocapsid core assembly. J Virol. 2006;80(18):8848–8855.
  • Jose J, Przybyla L, Edwards TJ, et al. Interactions of the cytoplasmic domain of sindbis virus E2 with nucleocapsid cores promote alphavirus budding. J Virol. 2012;86(5):2585–2599.
  • Aggarwal M, Tapas S, Preeti, et al. Crystal structure of aura virus capsid protease and its complex with dioxane: new insights into capsid-glycoprotein molecular contacts. PLoS One. 2012;7(12). DOI:10.1371/journal.pone.0051288
  • Choi HK, Lu GG, Lee S, et al. Structure of semliki forest virus core protein. Proteins-Struct Funct Genet. 1997;27(3):345–359.
  • Fernandez-Pol JA, Klos DJ, Hamilton PD. Antiviral, cytotoxic and apoptotic activities of picolinic acid on human immunodeficiency virus-1 and human herpes simplex virus-2 infected cells. Anticancer Res. 2001;21(6):A):3773–3776.
  • Sharma R, Fatma B, Saha A, et al. Inhibition of chikungunya virus by picolinate that targets viral capsid protein [Article]. Virology. 2016;498:265–276.
  • Singh KD, Kirubakaran P, Nagarajan S, et al. Homology modeling, molecular dynamics, e-pharmacophore mapping and docking study of chikungunya virus nsP2 protease. J Mol Model. 2012;18(1):39–51.
  • Nguyen PTV, Yu H, Keller PA. Identification of chikungunya virus nsP2 protease inhibitors using structure-base approaches. J Mol Graph. 2015;57:1–8.
  • Byler KG, Collins JT, Ogungbe IV, et al. Alphavirus protease inhibitors from natural sources: A homology modeling and molecular docking investigation. Comput Biol Chem. 2016;64:163–184.
  • Nguyen PTV, Yu H, Keller PA. Discovery of in silico hits targeting the nsP3 macro domain of chikungunya virus. J Mol Model. 2014;20(5):2216.
  • Rashad AA, Keller PA. Structure based design towards the identification of novel binding sites and inhibitors for the chikungunya virus envelope proteins. J Mol Graph. 2013;44:241–252.
  • Nguyen PTV, Yu H, Keller PA. Molecular docking studies to explore potential binding pockets and inhibitors for chikungunya virus envelope glycoproteins. Interdiscip Sci-Comput Life Sci. 2018;10(3):515–524.
  • Kumar SP, Kapopara RG, Patni MI, et al. Exploring the polymerase activity of chikungunya viral non structural protein 4 (nsP4) using molecular modeling, e- pharmacophore and docking studies. Int J Pharm Life Sc. 2012;3:1752–1765.
  • Singh A, Kumar A, Uversky Vladimir N, et al. Understanding the interactability of chikungunya virus proteins via molecular recognition feature analysis. RSC Adv. 2018;8(48):27293–27303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.