444
Views
29
CrossRef citations to date
0
Altmetric
Review

Targeting the Wnt/β-catenin pathway in neurodegenerative diseases: recent approaches and current challenges

, , &
Pages 803-822 | Received 15 Jan 2020, Accepted 19 Mar 2020, Published online: 13 Apr 2020

References

  • Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.
  • Croce JC, McClay DR. Evolution of the Wnt pathways. Methods Mol Biol. 2008;469:3–18.
  • van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development. 2009;136(19):3205–3214. Oct.
  • Inestrosa NC, Arenas E. Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci. 2010 Feb;11(2):77–86.
  • Pinto D, Clevers H. Wnt control of stem cells and differentiation in the intestinal epithelium. Exp Cell Res. 2005 Jun 10;306(2):357–363.
  • Nemeth MJ, Mak KK, Yang Y, et al. beta-Catenin expression in the bone marrow microenvironment is required for long-term maintenance of primitive hematopoietic cells. Stem Cells. 2009 May;27(5):1109–1119.
  • Malhotra S, Kincade PW. Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell. 2009 Jan 9;4(1):27–36.
  • Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012 Jun 8;149(6):1192–1205.
  • Verkaar F, Cadigan KM, van Amerongen R. Celebrating 30 years of Wnt signaling. Sci Signal. 2012 Dec 11;5(254):mr2.
  • Moon RT, Kohn AD, De Ferrari GV, et al. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet. 2004 Sep;5(9):691–701.
  • Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci. 2016 Aug;1(158):78–88.
  • Nusse R, Clevers H. Wnt/ beta-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017 Jun 1;169(6):985–999.
  • Berwick DC, Harvey K. The importance of Wnt signalling for neurodegeneration in Parkinson’s disease. Biochem Soc Trans. 2012 Oct;40(5):1123–1128.
  • Serafino A, Sferrazza G, Colini Baldeschi A, et al. Developing drugs that target the Wnt pathway: recent approaches in cancer and neurodegenerative diseases. Expert Opin Drug Discov. 2017 Feb;12(2):169–186.
  • Schinner S. Wnt-signalling and the metabolic syndrome. Horm Metab Res. 2009 Feb;41(2):159–163.
  • Tao H, Yang JJ, Shi KH, et al. Wnt signaling pathway in cardiac fibrosis: new insights and directions. Metabolism. 2016 Feb;65(2):30–40.
  • Chilosi M, Poletti V, Zamo A, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol. 2003 May;162(5):1495–1502.
  • Schinner S, Willenberg HS, Schott M, et al. Pathophysiological aspects of Wnt-signaling in endocrine disease. Eur J Endocrinol. 2009 May;160(5):731–737.
  • Harris JE. Melanocyte Regeneration in Vitiligo Requires WNT beneath their Wings. J Invest Dermatol. 2015 Dec;135(12):2921–2923.
  • Glass DA 2nd, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005 May;8(5):751–764.
  • Uluckan O, Jimenez M, Karbach S, et al. Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts. Sci Transl Med. 2016 Mar 16;8(330):330ra37.
  • Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013 Jan;13(1):11–26.
  • Luu HH, Zhang R, Haydon RC, et al. Wnt/beta-catenin signaling pathway as a novel cancer drug target. Curr Cancer Drug Targets. 2004 Dec;4(8):653–671.
  • Huang P, Yan R, Zhang X, et al. Activating Wnt/beta-catenin signaling pathway for disease therapy: challenges and opportunities. Pharmacol Ther. 2019 Apr;196:79–90.
  • Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014 Jul;13(7):513–532.
  • Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982 Nov;31(1):99–109.
  • Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012 Dec;13(12):767–779.
  • Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009 Jul;10(7):468–477.
  • MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009 Jul;17(1):9–26.
  • Willert K, Nusse R. Wnt proteins. Cold Spring Harb Perspect Biol. 2012 Sep;4(9):a007864.
  • He X, Semenov M, Tamai K, et al. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development. 2004 Apr;131(8):1663–1677.
  • Harrison-Uy SJ, Pleasure SJ. Wnt signaling and forebrain development. Cold Spring Harb Perspect Biol. 2012 Jul;4(7):a008094.
  • Zhang L, Yang X, Yang S, et al. The Wnt/beta-catenin signaling pathway in the adult neurogenesis. Eur J Neurosci. 2011 Jan;33(1):1–8.
  • Salinas PC. Wnt signaling in the vertebrate central nervous system: from axon guidance to synaptic function. Cold Spring Harb Perspect Biol. 2012 Feb;4(2):1–14.
  • Jia L, Pina-Crespo J, Li Y. Restoring Wnt/beta-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol Brain. 2019 Dec 4;12(1):104.
  • McLeod F, Salinas PC. Wnt proteins as modulators of synaptic plasticity. Curr Opin Neurobiol. 2018 Dec;53:90–95.
  • Buechler J, Salinas PC. Deficient Wnt signaling and synaptic vulnerability in Alzheimer’s disease: emerging roles for the LRP6 receptor. Front Synaptic Neurosci. 2018;10:38.
  • Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002 Oct 25;298(5594):789–791.
  • Liebner S, Corada M, Bangsow T, et al. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol. 2008 Nov 3;183(3):409–417.
  • Engelhardt B, Liebner S. Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res. 2014 Mar;355(3):687–699.
  • Liebner S, Dijkhuizen RM, Reiss Y, et al. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol. 2018 Mar;135(3):311–336.
  • Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018 Mar;14(3):133–150.
  • L’Episcopo F, Tirolo C, Testa N, et al. Plasticity of subventricular zone neuroprogenitors in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson’s disease involves cross talk between inflammatory and Wnt/beta-catenin signaling pathways: functional consequences for neuroprotection and repair. J Neurosci. 2012 Feb 8;32(6):2062–2085.
  • L’Episcopo F, Tirolo C, Testa N, et al. Aging-induced Nrf2-ARE pathway disruption in the subventricular zone drives neurogenic impairment in parkinsonian mice via PI3K-Wnt/beta-catenin dysregulation. J Neurosci. 2013 Jan 23;33(4):1462–1485.
  • Lie DC, Colamarino SA, Song HJ, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005 Oct 27;437(7063):1370–1375.
  • Varela-Nallar L, Inestrosa NC. Wnt signaling in the regulation of adult hippocampal neurogenesis. Front Cell Neurosci. 2013;7:100.
  • L’Episcopo F, Serapide MF, Tirolo C, et al. A Wnt1 regulated Frizzled-1/beta-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: therapeutical relevance for neuron survival and neuroprotection. Mol Neurodegener. 2011;6:49.
  • L’Episcopo F, Tirolo C, Caniglia S, et al. Targeting Wnt signaling at the neuroimmune interface for dopaminergic neuroprotection/repair in Parkinson’s disease. J Mol Cell Biol. 2014 Feb;6(1):13–26.
  • Inestrosa NC, Montecinos-Oliva C, Fuenzalida M. Wnt signaling: role in Alzheimer disease and schizophrenia. J Neuroimmune Pharmacol. 2012 Dec;7(4):788–807.
  • Inestrosa NC, Varela-Nallar L. Wnt signaling in the nervous system and in Alzheimer’s disease. J Mol Cell Biol. 2014 Feb;6(1):64–74.
  • Pinto C, Medinas DB, Fuentes-Villalobos F, et al. beta-catenin aggregation in models of ALS motor neurons: GSK3beta inhibition effect and neuronal differentiation. Neurobiol Dis. 2019 Oct;130:104497.
  • Chen Y, Guan Y, Zhang Z, et al. Wnt signaling pathway is involved in the pathogenesis of amyotrophic lateral sclerosis in adult transgenic mice. Neurol Res. 2012 May;34(4):390–399.
  • Okerlund ND, Cheyette BN. Synaptic Wnt signaling-a contributor to major psychiatric disorders? J Neurodev Disord. 2011 Jun;3(2):162–174.
  • Godin JD, Poizat G, Hickey MA, et al. Mutant huntingtin-impaired degradation of β-catenin causes neurotoxicity in Huntington’s disease. Embo J. 2010 Jul 21;29(14):2433–2445.
  • L’Episcopo F, Tirolo C, Testa N, et al. Reactive astrocytes and Wnt/beta-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Neurobiol Dis. 2011 Feb;41(2):508–527.
  • L’Episcopo F, Tirolo C, Testa N, et al. Switching the microglial harmful phenotype promotes lifelong restoration of subtantia nigra dopaminergic neurons from inflammatory neurodegeneration in aged mice. Rejuvenation Res. 2011 Aug;14(4):411–424.
  • Marchetti B. Wnt/beta-catenin signaling pathway governs a full program for dopaminergic neuron survival, neurorescue and regeneration in the MPTP mouse model of Parkinson’s disease. Int J Mol Sci. 2018 Nov 24;19:12.
  • L’Episcopo F, Tirolo C, Serapide MF, et al. Microglia polarization, gene-environment interactions and Wnt/beta-catenin signaling: emerging roles of glia-neuron and glia-stem/neuroprogenitor crosstalk for dopaminergic neurorestoration in aged Parkinsonian brain. Front Aging Neurosci. 2018;10:12.
  • Lukaszewicz AI, Anderson DJ. Cyclin D1 promotes neurogenesis in the developing spinal cord in a cell cycle-independent manner. Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11632–11637.
  • Kuwabara T, Hsieh J, Muotri A, et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci. 2009 Sep;12(9):1097–1105.
  • Miranda CJ, Braun L, Jiang Y, et al. Aging brain microenvironment decreases hippocampal neurogenesis through Wnt-mediated survivin signaling. Aging Cell. 2012 Jun;11(3):542–552.
  • Ingraham CA, Park GC, Makarenkova HP, et al. Matrix metalloproteinase (MMP)-9 induced by Wnt signaling increases the proliferation and migration of embryonic neural stem cells at low O2 levels. J Biol Chem. 2011 May 20;286(20):17649–17657.
  • Fujioka H, Dairyo Y, Yasunaga K, et al. Neural functions of matrix metalloproteinases: plasticity, neurogenesis, and disease. Biochem Res Int. 2012;2012:789083.
  • Wisniewska MB, Misztal K, Michowski W, et al. LEF1/beta-catenin complex regulates transcription of the Cav3.1 calcium channel gene (Cacna1g) in thalamic neurons of the adult brain. J Neurosci. 2010 Apr 7;30(14):4957–4969.
  • Hirabayashi Y, Itoh Y, Tabata H, et al. The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development. 2004 Jun;131(12):2791–2801.
  • Zhang L, Cen L, Qu S, et al. Enhancing beta-catenin activity via GSK3beta inhibition protects PC12 cells against rotenone toxicity through Nurr1 induction. PLoS One. 2016;11(4):e0152931.
  • Saucedo-Cardenas O, Quintana-Hau JD, Le WD, et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):4013–4018.
  • Yi H, Hu J, Qian J, et al. Expression of brain-derived neurotrophic factor is regulated by the Wnt signaling pathway. Neuroreport. 2012 Feb 15;23(3):189–194.
  • Serafino A, Moroni N, Zonfrillo M, et al. WNT-pathway components as predictive markers useful for diagnosis, prevention and therapy in inflammatory bowel disease and sporadic colorectal cancer. Oncotarget. 2014 Feb 28;5(4):978–992.
  • Najdi R, Holcombe RF, Waterman ML. Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog. 2011;10:5.
  • Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004 Mar 5;303(5663):1483–1487.
  • Ohnuki T, Nakamura A, Okuyama S, et al. Gene expression profiling in progressively MPTP-lesioned macaques reveals molecular pathways associated with sporadic Parkinson’s disease. Brain Res. 2010 Jul;30(1346):26–42.
  • Zhang L, Deng J, Pan Q, et al. Targeted methylation sequencing reveals dysregulated Wnt signaling in Parkinson disease. J Genet Genomics. 2016 Oct 20;43(10):587–592.
  • Caricasole A, Copani A, Caraci F, et al. Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J Neurosci. 2004 Jun 30;24(26):6021–6027.
  • Gonzalez-Fernandez C, Gonzalez P, Andres-Benito P, et al. Wnt signaling alterations in the human spinal cord of amyotrophic lateral sclerosis cases: spotlight on Fz2 and Wnt5a. Mol Neurobiol. 2019 Oct;56(10):6777–6791.
  • Hornykiewicz O. Parkinson’s disease and its chemotherapy. Biochem Pharmacol. 1975 May 15;24(10):1061–1065.
  • Del Tredici K, Braak H. Lewy pathology and neurodegeneration in premotor Parkinson’s disease. Mov Disord. 2012 Apr 15;27(5):597–607.
  • Olanow CW, Schapira AH. Therapeutic prospects for Parkinson disease. Ann Neurol. 2013 Sep;74(3):337–347.
  • Hirsch EC, Jenner P, Przedborski S. Pathogenesis of Parkinson’s disease. Mov Disord. 2013 Jan;28(1):24–30.
  • Marchetti B, Abbracchio MP. To be or not to be (inflamed)–is that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends Pharmacol Sci. 2005 Oct;26(10):517–525.
  • McGeer PL, McGeer EG. Glial reactions in Parkinson’s disease. Mov Disord. 2008 Mar 15;23(4):474–483.
  • Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009 Apr;8(4):382–397.
  • Abou-Sleiman PM, Muqit MM, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci. 2006 Mar;7(3):207–219.
  • Lill CM. Genetics of Parkinson’s disease. Mol Cell Probes. 2016 Dec;30(6):386–396.
  • Cannon JR, Greenamyre JT. Gene-environment interactions in Parkinson’s disease: specific evidence in humans and mammalian models. Neurobiol Dis. 2013 Sep;57:38–46.
  • Warner TT, Schapira AH. Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol. 2003;53(Suppl 3):S16–23. discussion S23-5.
  • Gao HM, Hong JS. Gene-environment interactions: key to unraveling the mystery of Parkinson’s disease. Prog Neurobiol. 2011 Jun;94(1):1–19.
  • Chen D, Wei X, Zou J, et al. Contra-directional expression of serum homocysteine and uric acid as important biomarkers of multiple system atrophy severity: a cross-sectional study. Front Cell Neurosci. 2015;9:247.
  • Price TO, Farr SA, Niehoff ML, et al. Protective effect of topiramate on hyperglycemia-induced cerebral oxidative stress, pericyte loss and learning behavior in diabetic mice. Int Libr Diabetes Metab. 2015 Mar;1(1):6–12.
  • Wang YL, Ju B, Zhang YZ, et al. Protective effect of curcumin against oxidative stress-induced injury in rats with Parkinson’s disease through the Wnt/beta-catenin signaling pathway. Cell Physiol Biochem. 2017;43(6):2226–2241.
  • Zou J, Chen Z, Wei X, et al. Cystatin C as a potential therapeutic mediator against Parkinson’s disease via VEGF-induced angiogenesis and enhanced neuronal autophagy in neurovascular units. Cell Death Dis. 2017 Jun 1;8(6):e2854.
  • Colini Baldeschi A, Pittaluga E, Andreola F, et al. Atrial natriuretic peptide acts as a neuroprotective agent in in vitro models of parkinson’s disease via up-regulation of the Wnt/beta-catenin pathway. Front Aging Neurosci. 2018;10:20.
  • L’Episcopo F, Tirolo C, Testa N, et al. Wnt/beta-catenin signaling is required to rescue midbrain dopaminergic progenitors and promote neurorepair in ageing mouse model of Parkinson’s disease. Stem Cells. 2014 Aug;32(8):2147–2163.
  • Berwick DC, Harvey K. The regulation and deregulation of Wnt signaling by PARK genes in health and disease. J Mol Cell Biol. 2014 Feb;6(1):3–12.
  • Arenas E. Wnt signaling in midbrain dopaminergic neuron development and regenerative medicine for Parkinson’s disease. J Mol Cell Biol. 2014 Feb;6(1):42–53.
  • Parish CL, Thompson LH. Modulating Wnt signaling to improve cell replacement therapy for Parkinson’s disease. J Mol Cell Biol. 2014 Feb;6(1):54–63.
  • Parish CL, Arenas E. Stem-cell-based strategies for the treatment of Parkinson’s disease. Neurodegener Dis. 2007;4(4):339–347.
  • Dai TL, Zhang C, Peng F, et al. Depletion of canonical Wnt signaling components has a neuroprotective effect on midbrain dopaminergic neurons in an MPTP-induced mouse model of Parkinson’s disease. Exp Ther Med. 2014 Aug 8;2:384–390. doi:10.3892/etm.2014.1745
  • Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016 Jun;8(6):595–608.
  • Ryman DC, Acosta-Baena N, Aisen PS, et al. Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta-analysis. Neurology. 2014 Jul 15;83(3):253–260.
  • Long JM, Holtzman DM. Alzheimer Disease: an Update on Pathobiology and Treatment Strategies. Cell. 2019 Oct 3;179(2):312–339.
  • Cao J, Hou J, Ping J, et al. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol Neurodegener. 2018 Dec 12;13(1):64.
  • Futch HS, Croft CL, Truong VQ, et al. Targeting psychologic stress signaling pathways in Alzheimer’s disease. Mol Neurodegener. 2017 Jun 21;12(1):49.
  • De Ferrari GV, Inestrosa NC. Wnt signaling function in Alzheimer’s disease. Brain Res Brain Res Rev. 2000 Aug;33(1):1–12.
  • Cerpa W, Toledo EM, Varela-Nallar L, et al. The role of Wnt signaling in neuroprotection. Drug News Perspect. 2009 Dec;22(10):579–591.
  • De Ferrari GV, Chacon MA, Barria MI, et al. Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by beta-amyloid fibrils. Mol Psychiatry. 2003 Feb;8(2):195–208.
  • Alvarez AR, Godoy JA, Mullendorff K, et al. Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons. Exp Cell Res. 2004 Jul 1;297(1):186–196.
  • Bloom GS. Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014 Apr;71(4):505–508.
  • Li H, Liu CC, Zheng H, et al. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer’s disease -conformist, nonconformist, and realistic prospects for AD pathogenesis. Transl Neurodegener. 2018;7:34.
  • Hernandez F, Lucas JJ, Avila J. GSK3 and tau: two convergence points in Alzheimer’s disease. J Alzheimers Dis. 2013;33(Suppl 1):S141–4.
  • Scali C, Caraci F, Gianfriddo M, et al. Inhibition of Wnt signaling, modulation of Tau phosphorylation and induction of neuronal cell death by DKK1. Neurobiol Dis. 2006 Nov;24(2):254–265.
  • Taylor JP, Brown RH Jr, DW C. Decoding ALS: from genes to mechanism. Nature. 2016 Nov 10;539(7628):197–206.
  • Loeffler JP, Picchiarelli G, Dupuis L, et al. The Role of Skeletal Muscle in Amyotrophic Lateral Sclerosis. Brain Pathol. 2016 Mar;26(2):227–236.
  • McCauley ME, Baloh RH. Inflammation in ALS/FTD pathogenesis. Acta Neuropathol. 2019 May;137(5):715–730.
  • Wang S, Guan Y, Chen Y, et al. Role of Wnt1 and Fzd1 in the spinal cord pathogenesis of amyotrophic lateral sclerosis-transgenic mice. Biotechnol Lett. 2013 Aug;35(8):1199–1207.
  • Chen Y, Guan Y, Liu H, et al. Activation of the Wnt/beta-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. Biochem Biophys Res Commun. 2012 Apr 6;420(2):397–403.
  • Van Steenwinckel J, Schang AL, Krishnan ML, et al. Decreased microglial Wnt/beta-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain. 2019 Dec 1;142(12):3806–3833.
  • Halleskog C, Mulder J, Dahlstrom J, et al. WNT signaling in activated microglia is proinflammatory. Glia. 2011 Jan;59(1):119–131.
  • Halleskog C, Schulte G. WNT-3A and WNT-5A counteract lipopolysaccharide-induced pro-inflammatory changes in mouse primary microglia. J Neurochem. 2013 Jun;125(6):803–808.
  • Edens BM, Yan J, Miller N, et al. A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis. Elife. 2017 May 2;6:e25453.
  • Wishart TM, Mutsaers CA, Riessland M, et al. Dysregulation of ubiquitin homeostasis and beta-catenin signaling promote spinal muscular atrophy. J Clin Invest. 2014 Apr;124(4):1821–1834.
  • Lepore E, Casola I, Dobrowolny G, et al. Neuromuscular Junction as an Entity of Nerve-Muscle Communication. Cells. 2019 Aug 16;8(8):906.
  • Messeant J, Ezan J, Delers P, et al. Wnt proteins contribute to neuromuscular junction formation through distinct signaling pathways. Development. 2017 May 1;144(9):1712–1724.
  • Barik A, Zhang B, Sohal GS, et al. Crosstalk between Agrin and Wnt signaling pathways in development of vertebrate neuromuscular junction. Dev Neurobiol. 2014 Aug;74(8):828–838.
  • Strochlic L, Falk J, Goillot E, et al. Wnt4 participates in the formation of vertebrate neuromuscular junction. PLoS One. 2012;7(1):e29976.
  • Wei L, Sun C, Lei M, et al. Activation of Wnt/beta-catenin pathway by exogenous Wnt1 protects SH-SY5Y cells against 6-hydroxydopamine toxicity. J Mol Neurosci. 2013 Jan;49(1):105–115.
  • Vesely DL. Cardiac and renal hormones: anticancer effects in vitro and in vivo. J Investig Med. 2009 Jan;57(1):22–28.
  • Serafino A, Moroni N, Psaila R, et al. Anti-proliferative effect of atrial natriuretic peptide on colorectal cancer cells: evidence for an Akt-mediated cross-talk between NHE-1 activity and Wnt/beta-catenin signaling. Biochim Biophys Acta. 2012 Jun;1822(6):1004–1018.
  • Prado J, Baltrons MA, Pifarre P, et al. Glial cells as sources and targets of natriuretic peptides. Neurochem Int. 2010 Nov;57(4):367–374.
  • Mahinrad S, de Craen AJ, Yasar S, et al. Natriuretic peptides in the central nervous system: novel targets for cognitive impairment. Neurosci Biobehav Rev. 2016 Sep;68:148–156.
  • Saito Y. Roles of atrial natriuretic peptide and its therapeutic use. J Cardiol. 2010 Nov;56(3):262–270.
  • Semenov MV, Zhang X, He X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J Biol Chem. 2008 Aug 1;283(31):21427–21432.
  • Purro SA, Dickins EM, Salinas PC. The secreted Wnt antagonist Dickkopf-1 is required for amyloid beta-mediated synaptic loss. J Neurosci. 2012 Mar 7;32(10):3492–3498.
  • Elliott C, Rojo AI, Ribe E, et al. A role for APP in Wnt signalling links synapse loss with beta-amyloid production. Transl Psychiatry. 2018 Sep 20;8(1):179.
  • Ross SP, Baker KE, Fisher A, et al. miRNA-431 prevents amyloid-beta-induced synapse loss in neuronal cell culture model of Alzheimer’s disease by silencing Kremen1. Front Cell Neurosci. 2018;12:87.
  • Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980 Jun;107(2):519–527.
  • Forde JE, Dale TC. Glycogen synthase kinase 3: a key regulator of cellular fate. Cell Mol Life Sci. 2007 Aug;64(15):1930–1944.
  • Dong J, Li S, Mo JL, et al. Nurr1-based therapies for Parkinson’s disease. CNS Neurosci Ther. 2016 Mar 25;22(5):351–359.
  • Chen G, Huang LD, Jiang YM, et al. The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J Neurochem. 1999 Mar;72(3):1327–1330.
  • Kim AJ, Shi Y, Austin RC, et al. Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci. 2005 Jan 1;118(Pt 1):89–99.
  • Long ZM, Zhao L, Jiang R, et al. Valproic acid modifies synaptic structure and accelerates neurite outgrowth via the glycogen synthase kinase-3beta signaling pathway in an Alzheimer’s disease model. CNS Neurosci Ther. 2015 Nov;21(11):887–897.
  • Zeng Q, Long Z, Feng M, et al. Valproic acid stimulates hippocampal neurogenesis via activating the Wnt/beta-catenin signaling pathway in the APP/PS1/Nestin-GFP triple transgenic mouse model of alzheimer’s disease. Front Aging Neurosci. 2019;11:62.
  • Aggarwal SP, Zinman L, Simpson E, et al. Safety and efficacy of lithium in combination with riluzole for treatment of amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010 May 9;5:481–488. doi: 10.1016/S1474-4422(10)70068-5. Trial NCT00818389.
  • Singh S, Mishra A, Srivastava N, et al. MK-801 (dizocilpine) regulates multiple steps of adult hippocampal neurogenesis and alters psychological symptoms via Wnt/beta-catenin signaling in Parkinsonian rats. ACS Chem Neurosci. 2017 Mar 15;8(3):592–605.
  • Alvarez A, Opazo C, Alarcon R, et al. Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J Mol Biol. 1997 Sep 26;272(3):348–361.
  • Inestrosa NC, Alvarez A, Dinamarca MC, et al. Acetylcholinesterase-amyloid-beta-peptide interaction: effect of Congo Red and the role of the Wnt pathway. Curr Alzheimer Res. 2005 Jul;2(3):301–306.
  • Sinha A, Tamboli RS, Seth B, et al. Neuroprotective role of novel triazine derivatives by activating Wnt/beta catenin signaling pathway in rodent models of Alzheimer’s disease. Mol Neurobiol. 2015 Aug;52(1):638–652.
  • Solovyev ND. Importance of selenium and selenoprotein for brain function: from antioxidant protection to neuronal signalling. J Inorg Biochem. 2015 Dec;153:1–12.
  • Rita Cardoso B, Silva Bandeira V, Jacob-Filho W, et al. Selenium status in elderly: relation to cognitive decline. J Trace Elem Med Biol. 2014 Oct;28(4):422–426.
  • Corcoran NM, Martin D, Hutter-Paier B, et al. Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J Clin Neurosci. 2010 Aug;17(8):1025–1033.
  • Seeling JM, Miller JR, Gil R, et al. Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science. 1999 Mar 26;283(5410):2089–2091.
  • Sontag E, Nunbhakdi-Craig V, Sontag JM, et al. Protein phosphatase 2A methyltransferase links homocysteine metabolism with tau and amyloid precursor protein regulation. J Neurosci. 2007 Mar 14;27(11):2751–2759.
  • Jin N, Zhu H, Liang X, et al. Sodium selenate activated Wnt/beta-catenin signaling and repressed amyloid-beta formation in a triple transgenic mouse model of Alzheimer’s disease. Exp Neurol. 2017 Nov;297:36–49.
  • Wolozin B, Wang SW, Li NC, et al. Simvastatin is associated with a reduced incidence of dementia and Parkinson’s disease. BMC Med. 2007;5:20.
  • Zhang C, Wu JM, Liao M, et al. The ROCK/GGTase pathway are essential to the proliferation and differentiation of neural stem cells mediated by simvastatin. J Mol Neurosci. 2016 Dec; 60(4):474–485.
  • Robin NC, Agoston Z, Biechele TL, et al. Simvastatin promotes adult hippocampal neurogenesis by enhancing Wnt/beta-catenin signaling. Stem Cell Reports. 2014 Jan 14;2(1):9–17.
  • Palomera-Avalos V, Grinan-Ferre C, Puigoriol-Ilamola D, et al. Resveratrol protects SAMP8 brain under metabolic stress: focus on mitochondrial function and Wnt pathway. Mol Neurobiol. 2017 Apr;54(3):1661–1676.
  • Reddy PH, Manczak M, Yin X, et al. Protective effects of Indian spice curcumin against amyloid-beta in Alzheimer’s disease. J Alzheimers Dis. 2018;61(3):843–866.
  • Huang HC, Xu K, Jiang ZF. Curcumin-mediated neuroprotection against amyloid-beta-induced mitochondrial dysfunction involves the inhibition of GSK-3beta. J Alzheimers Dis. 2012;32(4):981–996.
  • Zhou T, Zu G, Zhang X, et al. Neuroprotective effects of ginsenoside Rg1 through the Wnt/beta-catenin signaling pathway in both in vivo and in vitro models of Parkinson’s disease. Neuropharmacology. 2016 Feb;101:480–489.
  • Li MY, Chang CT, Han YT, et al. Ginkgolide B promotes neuronal differentiation through the Wnt/beta-catenin pathway in neural stem cells of the postnatal mammalian subventricular zone. Sci Rep. 2018 Oct 8;8(1):14947.
  • Wu DM, Han XR, Wen X, et al. Salidroside protection against oxidative stress injury through the Wnt/beta-catenin signaling pathway in rats with Parkinson’s disease. Cell Physiol Biochem. 2018;46(5):1793–1806.
  • Tapia-Rojas C, Schuller A, Lindsay CB, et al. Andrographolide activates the canonical Wnt signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of GSK-3beta: autoregulation of GSK-3beta in vivo. Biochem J. 2015 Mar 1;466(2):415–430.
  • Rong Y, Liu W, Zhou Z, et al. Harpagide inhibits neuronal apoptosis and promotes axonal regeneration after spinal cord injury in rats by activating the Wnt/beta-catenin signaling pathway. Brain Res Bull. 2019 May;148:91–99.
  • Bagli E, Goussia A, Moschos MM, et al. Natural compounds and neuroprotection: mechanisms of action and novel delivery systems. In Vivo. 2016;30(5):535–547. 09-10.
  • DeKosky ST, Williamson JD, Fitzpatrick AL, et al. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA. 2008 Nov 19;300(19):2253–2262. Trial NCT00010803.
  • Kuller LH, Ives DG, Fitzpatrick AL, et al. Does Ginkgo biloba reduce the risk of cardiovascular events? Circ Cardiovasc Qual Outcomes. 2010 Jan 3;1:41–47. Trial NCT00010803. doi:10.1161/CIRCOUTCOMES.109.871640
  • Snitz BE, O’Meara ES, Carlson MC, et al. Ginkgo biloba for preventing cognitive decline in older adults: a randomized trial. JAMA. 2009 Dec 23;302(24):2663–2670. Trial NCT00010803.
  • Vellas B, Coley N, Ousset PJ, et al. Long-term use of standardised Ginkgo biloba extract for the prevention of Alzheimer’s disease (GuidAge): a randomised placebo-controlled trial. Lancet Neurol. 2012 Oct;11(10):851–859. Trial NCT00276510.
  • Chimento A, De Amicis F, Sirianni R, et al. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int J Mol Sci. 2019 Mar 19;20:6.
  • Pallas M, Porquet D, Vicente A, et al. Resveratrol: new avenues for a natural compound in neuroprotection. Curr Pharm Des. 2013;19(38):6726–6731.
  • Vingtdeux V, Dreses-Werringloer U, Zhao H, et al. Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci. 2008 Dec 3;9(Suppl 2):S6.
  • Porquet D, Casadesus G, Bayod S, et al. Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Dordr). 2013 Oct;35(5):1851–1865.
  • Sferrazza GCM, Brusotti G, Pierimarchi P, et al. Nature-derived compounds modulating Wnt/β-catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm Sin B. 2020;IN PRESS. doi:10.1016/j.apsb.2019.12.019.
  • Kahkhaie KR, Mirhosseini A, Aliabadi A, et al. Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology. 2019 Oct;27(5):885–900.
  • Abrahams S, Haylett WL, Johnson G, et al. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience. 2019 May;15(406):1–21.
  • Ferreira N, Saraiva MJ, Almeida MR. Uncovering the neuroprotective mechanisms of curcumin on transthyretin amyloidosis. Int J Mol Sci. 2019 Mar 14;20(6):1287.
  • Farkhondeh T, Samarghandian S, Pourbagher-Shahri AM, et al. The impact of curcumin and its modified formulations on Alzheimer’s disease. J Cell Physiol. 2019 Aug;234(10):16953–16965.
  • Sanei M, Saberi-Demneh A. Effect of curcumin on memory impairment: A systematic review. Phytomedicine. 2019 Jan;52:98–106.
  • Zhang X, Yin WK, Shi XD, et al. Curcumin activates Wnt/beta-catenin signaling pathway through inhibiting the activity of GSK-3beta in APPswe transfected SY5Y cells. Eur J Pharm Sci. 2011 Apr 18;42(5):540–546.
  • Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/beta-catenin pathway. ACS Nano. 2014 Jan 28;8(1):76–103.
  • Ardah MT, Paleologou KE, Lv G, et al. Ginsenoside Rb1 inhibits fibrillation and toxicity of alpha-synuclein and disaggregates preformed fibrils. Neurobiol Dis. 2015 Feb;74:89–101.
  • Mazza M, Capuano A, Bria P, et al. Ginkgo biloba and donepezil: a comparison in the treatment of Alzheimer’s dementia in a randomized placebo-controlled double-blind study. Eur J Neurol. 2006 Sep;13(9):981–985.
  • Silberstein RB, Pipingas A, Song J, et al. Examining brain-cognition effects of ginkgo biloba extract: brain activation in the left temporal and left prefrontal cortex in an object working memory task. Evid Based Complement Alternat Med. 2011;2011:164139.
  • Stackman RW, Eckenstein F, Frei B, et al. Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer’s disease by chronic Ginkgo biloba treatment. Exp Neurol. 2003 Nov;184(1):510–520.
  • Shif O, Gillette K, Damkaoutis CM, et al. Effects of Ginkgo biloba administered after spatial learning on water maze and radial arm maze performance in young adult rats. Pharmacol Biochem Behav. 2006 May;84(1):17–25.
  • Doi H, Sato K, Shindou H, et al. Blood-brain barrier permeability of ginkgolide: comparison of the behavior of PET probes 7alpha-[(18)F]fluoro- and 10-O-p-[(11)C]methylbenzyl ginkgolide B in monkey and rat brains. Bioorg Med Chem. 2016 Nov 1;24(21):5148–5157.
  • Sun P, Song SZ, Jiang S, et al. Salidroside regulates inflammatory response in raw 264.7 macrophages via TLR4/TAK1 and ameliorates inflammation in alcohol binge drinking-induced liver injury. Molecules. 2016 Nov 9;21(11). doi:10.3390/molecules21111490.
  • Cheung HY, Cheung CS, Kong CK. Determination of bioactive diterpenoids from Andrographis paniculata by micellar electrokinetic chromatography. J Chromatogr A. 2001 Sep 28;930(1–2):171–176.
  • Zolezzi JM, Lindsay CB, Serrano FG, et al. Neuroprotective effects of ferruginol, jatrophone, and junicedric acid against amyloid-beta injury in hippocampal neurons. J Alzheimers Dis. 2018;63(2):705–723.
  • Herrera-Arozamena C, Marti-Mari O, Estrada M, et al. Recent advances in neurogenic small molecules as innovative treatments for neurodegenerative diseases. Molecules. 2016 Sep 1;21(9):1165.
  • Toledo EM, Gyllborg D, Arenas E. Translation of WNT developmental programs into stem cell replacement strategies for the treatment of Parkinson’s disease. Br J Pharmacol. 2017 Dec;174(24):4716–4724.
  • Gulati K, Aw MS, Losic D. Nanoengineered drug-releasing Ti wires as an alternative for local delivery of chemotherapeutics in the brain. Int J Nanomedicine. 2012;7:2069–2076.
  • Fernandez-Serra R, Gallego R, Lozano P, et al. Hydrogels for neuroprotection and functional rewiring: a new era for brain engineering. Neural Regen Res. 2020 May;15(5):783–789.
  • Sakata T, Chen JK. Chemical ‘Jekyll and Hyde’s: small-molecule inhibitors of developmental signaling pathways. Chem Soc Rev. 2011 Aug;40(8):4318–4331.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.