352
Views
49
CrossRef citations to date
0
Altmetric
Review

Nanonization techniques to overcome poor water-solubility with drugs

, , & ORCID Icon
Pages 853-864 | Received 16 Dec 2019, Accepted 30 Mar 2020, Published online: 15 Apr 2020

References

  • Bharti VP, Attal VR, Munde AV, et al. Strategies to enhance solubility and dissolution of a poorly water soluble drug. J Innovations Pharm Biol Sci. 2015;2(4):482–494.
  • Jindal K. Review on solubility: a mandatory tool for pharmaceuticals. Int Res J Pharm. 2017;8(11):11–15.
  • Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:195727.
  • Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19:930–934.
  • Kakran M, Li L, Müller RH. Overcoming the challenge of poor drug solubility. Pharm Eng. 2012;32(4).
  • Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015 Sep;5(5):442–453.
  • Amidon GL, Lennernas H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995 Mar;12(3):413–420.
  • Amidon GL, Yalkowsky SH, Anlk ST, et al. Solubility of nonelectrolytes in polar solvents. V. estimation of the solubility of aliphatic monofunctional compounds in water using a molecular surface area approach. J Phys Chem. 1975;79:2239–2246.
  • Valvani SC, Yalkowsky SH, Amidon GL. Solubility of nonelectrolytes in polar solvents. VI. Refinements in molecular surface area computations. J Phys Chem. 1976;80:829–835.
  • Martin A. Martin: físico-farmácia e ciências farmacêuticas. Porto Alegre: Artmed; 2008.
  • Cook J, Addicks W, Wu YH. Application of the biopharmaceutical classification system in clinical drug development–an industrial view. Aaps J. 2008 Jun;10(2):306–310.
  • Emami J. In vitro - in vivo correlation: from theory to applications. J Pharm Pharm Sci. 2006;9(2):169–189.
  • Butler JM, Dressman JB. The developability classification system: application of biopharmaceutics concepts to formulation development. J Pharm Sci. 2010 Dec;99(12):4940–4954.
  • Kasim NA, Whitehouse M, Ramachandran C, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm. 2004 Jan 12;1(1):85–96.
  • Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005 Jan;22(1):11–23.
  • Charalabidis A, Sfouni M, Bergstrom C, et al. The biopharmaceutics classification system (BCS) and the biopharmaceutics drug disposition classification system (BDDCS): beyond guidelines. Int J Pharm. 2019 Jul;20(566):264–281.
  • Yamashita F, Hashida M. Pharmacokinetic considerations for targeted drug delivery. Adv Drug Deliv Rev. 2013 Jan;65(1):139–147.
  • Lucas AJ, Sproston JL, Barton P, et al. Estimating human ADME properties, pharmacokinetic parameters and likely clinical dose in drug discovery. Expert Opin Drug Discov. 2019 Dec;14(12):1313–1327.
  • Leucuta SE. Selecting oral bioavailability enhancing formulations during drug discovery and development. Expert Opin Drug Discov. 2014 Feb;9(2):139–150.
  • Lumry R, Rajender S. Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers. 1970;9(10):1125–1227.
  • Descamps M. Disordered pharmaceutical materials. Weinheim: Wiley-VCH; 2016.
  • Chervenak MC, Toone EJ. A direct measure of the contribution of solvent reorganization to the enthalpy of ligand binding. J Am Chem Soc. 1994;116:10533–10539.
  • Langmuir I. Third Colloid Symp. Monograph. New York: Chemical Catalog. Co.; 1925.
  • Vandana KR, Prasanna Raju Y, Harini Chowdary V, et al. An overview on in situ micronization technique - An emerging novel concept in advanced drug delivery. Saudi Pharm J. 2014 Sep;22(4):283–289.
  • Jain S, Patel N, Lin S. Solubility and dissolution enhancement strategies: current understanding and recent trends. Drug Dev Ind Pharm. 2015 Jun;41(6):875–887.
  • Censi R, Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules. 2015 Oct 15;20(10):18759–18776.
  • Gao S, Jiang JY, Liu YY, et al. Enhanced solubility, stability, and herbicidal activity of the herbicide diuron by complex formation with beta-cyclodextrin. Polymers (Basel). 2019 Aug 25;11(9).
  • Chaudhary VB, Patel JK. Cyclodextrin inclusion complex to enhance solubility of poorly water soluble drugs: a review. IJPSR. 2013;4(1):68–76.
  • Araya-Sibaja AM, Vega-Baudrit JR, Guillen-Giron T, et al. Drug solubility enhancement through the preparation of multicomponent organic materials: eutectics of lovastatin with carboxylic acids. Pharmaceutics. 2019 Mar 9;11(3):112.
  • Huang Y, Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014 Feb;4(1):18–25.
  • Kapsi SG, Ayres JW. Processing factors in development of solid solution formulation of itraconazole for enhancement of drug dissolution and bioavailability. Int J Pharm. 2001 Oct 23;229(1–2):193–203.
  • Shamshina JL, Barber PS, Rogers RD. Ionic liquids in drug delivery. Expert Opin Drug Deliv. 2013 Oct;10(10):1367–1381.
  • Rajabalaya R, Musa MN, Kifli N, et al. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals. Drug Des Devel Ther. 2017;11:393–406.
  • Taniguchi C, Kawabata Y, Wada K, et al. Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility. Expert Opin Drug Deliv. 2014 Apr;11(4):505–516.
  • Lohar V, Singhal S, Arora V. Prodrug: approach to better drug delivery. Int J Pharm Res. 2012;4(1):15–21.
  • Serajuddin AT. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007 Jul 30;59(7):603–616.
  • Sathisaran I, Dalvi SV. Engineering cocrystals of poorlywater-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics. 2018 Jul 31;10(3):108.
  • Nayak AK, Panigrahi PP. solubility enhancement of etoricoxib by cosolvency approach. ISRN Phys Chem. 2012;2012:1–5.
  • Choudhary AN, Nayal S. A review: hydrotropy a solubility enhancing technique. Pharma Innovation J. 2019;8(4):1149–1153.
  • Saifee M, Inamda N, Dhamecha D, et al. Drug polymorphism: a review. Int J Health Res. 2010;2:4.
  • Kumar VS, Raja C, Jayakumar C. A review on solubility enhancement using hydrotropic phenomena. Int J Pharm Pharm Sci. 2014;6(4):1–7.
  • Saokham P, Muankaew C, Jansook P, et al. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules. 2018 May 11;23(5):1161.
  • Figueiredo CBM, Nadvorny D, de Medeiros Vieira ACQ, et al. Enhancement of dissolution rate through eutectic mixture and solid solution of posaconazole and benznidazole. Int J Pharm. 2017 Jun 15;525(1):32–42.
  • Rangel-Yagui CO, Pessoa A Jr., Tavares LC. Micellar solubilization of drugs. J Pharm Pharm Sci. 2005 Jul 8;8(2):147–165.
  • Seedher N, Kanojia M. Micellar solubilization of some poorly soluble antidiabetic drugs: a technical note. AAPS PharmSciTech. 2008;9(2):431–436.
  • Majeed A, Raza SN, Khan NA. Hydrotrophy: novel solubility enhancement technique: a review. Int J Pharm Sci Res. 2019;10(3):1025–1036.
  • Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9(6):304–316.
  • European Commission. Second regulatory review on nanomaterials: communication from the commission to the european parliament, the council and the european economic and social committee. Brussels: European Comission; 2012 [cited 2020 Mar 30]. Available at ec.europa.eu/research/industrial_technologies/pdf/policy/communication-from-the-commission-second-regulatory-review-on-nanomaterials_en.pdf
  • Food and drug administration. Guidance for industry: considering whether an FDA-regulated product involves the application of nanotechnology. Silver Spring, MD: FDA/Office of the Commissioner; 2014 [cited 2020 Mar 30]. Available at www.fda.gov/RegulatoryInformation/Guidances/ucm257698.htm
  • Kutscher HL, Chao P, Deshmukh M, et al. Threshold size for optimal passive pulmonary targeting and retention of rigid microparticles in rats. J Control Release. 2010 Apr 2;143(1):31–37.
  • Bertrand N, Leroux JC. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release. 2012 Jul 20; 161(2):152–163.
  • Kedar U, Phutane P, Shidhaye S, et al. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine. 2010 Dec;6(6):714–729.
  • Adjei IM, Sharma B, Labhasetwar V. Nanoparticles: cellular uptake and cytotoxicity. Adv Exp Med Biol. 2014;811:73–91.
  • Roy R, Kumar S, Tripathi A, et al. Interactive threats of nanoparticles to the biological system. Immunol Lett. 2014 Mar-Apr;158(1–2):79–87.
  • Al-Kassas R, Bansal M, Shaw J. Nanosizing techniques for improving bioavailability of drugs. J Control Release. 2017 Aug;28(260):202–212.
  • Dizaj SM, Vazifehasl Z, Salatin S, et al. Nanosizing of drugs: effect on dissolution rate. Res Pharm Sci. 2015 Mar-Apr;10(2):95–108.
  • Zeng C, Zheng R, Yang X, et al. Improved oral delivery of tilianin through lipid-polymer hybrid nanoparticles to enhance bioavailability. Biochem Biophys Res Commun. 2019 Nov 5;519(2):316–322.
  • Bi Y, Lv B, Li L, et al. A liposomal formulation for improving solubility and oral bioavailability of nifedipine. Molecules. 2020 Jan 14;25:2.
  • Paredes AJ, Bruni S, Allemandi D, et al. Albendazole nanocrystals with improved pharmacokinetic performance in mice. Ther Deliv. 2018;9(2):89–97.
  • Karami Z, Saghatchi Zanjani MR, Nasihatsheno N, et al. Improved oral bioavailability of repaglinide, a typical BCS Class II drug, with a chitosan-coated nanoemulsion. J Biomed Mater Res B Appl Biomater. 2020 Apr;108(3):717–728.
  • Dong Z, Iqbal S, Zhao Z. Preparation of ergosterol-loaded nanostructured lipid carriers for enhancing oral bioavailability and antidiabetic nephropathy effects. AAPS PharmSciTech. 2020 Jan 13;21(2):64.
  • Choi JS, Cho NH, Kim DH, et al. Comparison of paclitaxel solid dispersion and polymeric micelles for improved oral bioavailability and in vitro anti-cancer effects. Mater Sci Eng C Mater Biol Appl. 2019 Jul;100:247–259.
  • Ahmad N, Ahmad R, Alam MA, et al. Daunorubicin oral bioavailability enhancement by surface coated natural biodegradable macromolecule chitosan based polymeric nanoparticles. Int J Biol Macromol. 2019 May;1(128):825–838.
  • Ban C, Jo M, Park YH, et al. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chem. 2020 Jan 1;302:125328.
  • Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int. 2015 Aug;39(8):881–890.
  • Malamatari M, Taylor KMG, Malamataris S, et al. Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discov Today. 2018 Mar;23(3):534–547.
  • Fan M, Geng S, Liu Y, et al. Nanocrystal technology as a strategy to improve drug bioavailability and antitumor efficacy for the cancer treatment. Curr Pharm Des. 2018;24(21):2416–2424.
  • Sala M, Diab R, Elaissari A, et al. Lipid nanocarriers as skin drug delivery systems: properties, mechanisms of skin interactions and medical applications. Int J Pharm. 2018 Jan 15;535(1–2):1–17.
  • Sherry M, Charcosset C, Fessi H, et al. Essential oils encapsulated in liposomes: a review. J Liposome Res. 2013 Dec;23(4):268–275.
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.
  • Hua S, Wu SY. The use of lipid-based nanocarriers for targeted pain therapies. Front Pharmacol. 2013 Nov;21(4):143.
  • Benita S, Levy MY. Submicron emulsions as colloidal drug carriers for intravenous administration: comprehensive physicochemical characterization. J Pharm Sci. 1993 Nov;82(11):1069–1079.
  • Solans C, Izquierdo P, Nolla J, et al. Nano-emulsions. Curr Opin Colloid Interface Sci. 2005;10(3–4):102–110.
  • Singhal GB, Patel RP, Prajapati BG, et al. Solid lipid nanoparticles and nano lipid carriers: as novel solid lipid based drug carrier. Int Res J Pharm. 2011;2(2):40–52.
  • Silva AC, Santos D, Ferreira D, et al. Lipid-based nanocarriers as an alternative for oral delivery of poorly watersoluble drugs: peroral and mucosal routes. Curr Med Chem. 2012;19:4495–4510.
  • Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004 Apr;58(3):173–182.
  • Rehman FU, Shah KU, Shah SU, et al. From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS). Expert Opin Drug Deliv. 2017 Nov;14(11):1325–1340.
  • Rahman MA, Hussain A, Hussain MS, et al. Role of excipients in successful development of self-emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS). Drug Dev Ind Pharm. 2013 Jan;39(1):1–19.
  • Wadhwa J, Nair A, Kumria R. Emulsion forming drug delivery system for lipophilic drugs. Acta Poloniae Pharm Drug Res. 2012;69(2):179–191.
  • Rani S, Rana R, Saraogi GK, et al. Self-emulsifying oral lipid drug delivery systems: advances and challenges. AAPS PharmSciTech. 2019 Feb 27;20(3):129.
  • Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm. 2017 Apr;113:211–228.
  • Yokoyama M. Polymeric micelles as drug carriers: their lights and shadows. J Drug Target. 2014 Aug;22(7):576–583.
  • Mahmud A, Xiong XB, Aliabadi HM, et al. Polymeric micelles for drug targeting. J Drug Target. 2007 Nov;15(9):553–584.
  • Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv. 2010;7:2.
  • Corrias F, Lai F. New methods for lipid nanoparticles preparation. Recent Pat Drug Deliv Formul. 2011;5:201–213.
  • Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012 Aug 30;47(1):139–151.
  • Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–S55.
  • Beloqui A, Solinis MA, Rodriguez-Gascon A, et al. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine. 2016 Jan;12(1):143–161.
  • Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004 May 7;56(9):1257–1272.
  • Negi LM, Jaggi M, Talegaonkar S. Development of protocol for screening the formulation components and the assessment of common quality problems of nano-structured lipid carriers. Int J Pharm. 2014 Jan 30;461(1–2):403–410.
  • Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv. 2012;9(5):497–508.
  • Teixeira MC, Carbone C, Souto EB. Beyond liposomes: recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog Lipid Res. 2017 Oct;68:1–11.
  • Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther. 2016;10:483–507.
  • Naskar S, Koutsu K, Sharma S. Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. J Drug Target. 2019 Apr;27(4):379–393.
  • Karimi M, Bahrami S, Ravari SB, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv. 2016 Nov;13(11):1609–1623.
  • Mariam J, Sivakami S, Dongre PM. Albumin corona on nanoparticles - a strategic approach in drug delivery. Drug Deliv. 2016 Oct;23(8):2668–2676.
  • Zhang Y, Wang S, Dai M, et al. Solubility and bioavailability enhancement of oridonin: a review. Molecules. 2020 Jan 14;25(2):332.
  • Battaglia L, Ugazio E. Lipid nano- and microparticles: an overview of patent-related research. J Nanomater. 2019;2019:1–22.
  • Choi YH, Han HK. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig. 2018;48(1):43–60.
  • Farjadian F, Ghasemi A, Gohari O, et al. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond). 2019;14(1):93–126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.