210
Views
13
CrossRef citations to date
0
Altmetric
Review

Advances in the discovery of fatty acid amide hydrolase inhibitors: what does the future hold?

, , , , & ORCID Icon
Pages 765-778 | Received 28 Jan 2020, Accepted 31 Mar 2020, Published online: 15 Apr 2020

References

  • Maccarrone M, Guzmán M, Mackie K, et al. Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nat Rev Neurosci. 2014;15:786–801.
  • Maccarrone M, Bab I, Bíró T, et al. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol Sci. 2015;36:277–296.
  • Friedman D, French JA, Maccarrone M. Safety, efficacy, and mechanisms of action of cannabinoids in neurological disorders. Lancet Neurol. 2019;18:504–512.
  • Fezza F, Bari M, Florio R, et al. Endocannabinoids, related compounds and their metabolic routes. Molecules. 2014;19:17078–17106.
  • Cristino L, Bisogno T, Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol. 2020;16:9–29.
  • Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946–1949.
  • Fontana A, Di Marzo V, Cadas H, et al. Analysis of anandamide, an endogenous cannabinoid substance, and of other natural N-acylethanolamines. Prostaglandins Leukot Essent Fatty Acids. 1995;53:301–308.
  • Okamoto Y, Morishita J, Tsuboi K, et al. Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem. 2004;279:5298–5305.
  • Bisogno T, Howell F, Williams G, et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol. 2003;163:463–468.
  • Tsuboi K, Uyama T, Okamoto Y, et al. Endocannabinoids and related N-acylethanolamines: biological activities and metabolism. Inflamm Regen. 2018;38:28.
  • Wei BQ, Mikkelsen TS, Mckinney MK, et al. A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem. 2006;281:36569–36578.
  • Baggelaar MP, den Dulk H, Florea BI, et al. ABHD2 inhibitor identified by activity-based protein profiling reduces acrosome reaction. ACS Chem Biol. 2019;14:2943.
  • Rouzer CA, Marnett LJ. Non-redundant functions of cyclooxygenases: oxygenation of endocannabinoids. J Biol Chem. 2008;283:8065–8069.
  • Kozak KR, Crews BC, Morrow JD, et al. Metabolism of the endocannabinoids, 2-arachidonylglycerol and anandamide, into prostaglandin, thromboxane, and prostacyclin glycerol esters and ethanolamides. J Biol Chem. 2002;277:44877–44885.
  • Hermanson DJ, Hartley ND, Gamble-George J, et al. Substrate-selective COX-2 inhibition decreases anxiety via endocannabinoid activation. Nat Neurosci. 2013;16:1291–1298.
  • Van der Stelt M, Van Kuik JA, Bari M, et al. Oxygenated metabolites of anandamide and 2-arachidonoylglycerol: conformational analysis and interaction with cannabinoid receptors, membrane transporter, and fatty acid amide hydrolase. J Med Chem. 2002;45:3709–3720.
  • Snider NT, Walker VJ, Hollenberg PF. Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases : physiological and pharmacological implications. Pharmacol Rev. 2010;62:136–154.
  • Urquhart P, Nicolaou A, Woodward DF. Endocannabinoids and their oxygenation by cyclo-oxygenases, lipoxygenases and other oxygenases. Biochim Biophys Acta. 2015;1851:366–376.
  • Pertwee RG, Howlett AC, Abood ME, et al. International Union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂. Pharmacol Rev. 2010;62:588–631.
  • Maccarrone M, Brüne B. Redox regulation in acute and chronic inflammation. Cell Death Differ. 2009;16:1184–1186.
  • Solymosi K, Köfalvi A. Cannabis: a treasure trove or pandora’s box? Mini Rev Med Chem. 2017;17:1223–1291.
  • Prospéro-García O, Ruiz Contreras AE, Ortega Gómez A, et al. Endocannabinoids as therapeutic targets. Arch Med Res. 2020;50:518526.
  • Maccarrone M. Metabolism of the endocannabinoid anandamide: open questions after 25 years. Front Mol Neurosci. 2017;10:166.
  • Bisogno T, Maccarrone M. Latest advances in the discovery of fatty acid amide hydrolase inhibitors. Expert Opin Drug Discov. 2013;8:509–522.
  • Romero J, Hillard CJ, Calero M, et al. Fatty acid amide hydrolase localization in the human central nervous system: an immunohistochemical study. Brain Res Mol Brain Res. 2002;100:85–93.
  • Rusjan PM, Wilson AA, Mizrahi R, et al. Mapping human brain fatty acid amide hydrolase activity with PET. J Cereb Blood Flow Metab. 2013;33:407–414.
  • Battista N, Bari M, Maccarrone M. Endocannabinoids and reproductive events in health and disease. Handb Exp Pharmacol. 2015;231:341–365.
  • Szafran BN, Lee JH, Borazjani A, et al. Characterization of endocannabinoid-metabolizing enzymes in human peripheral blood mononuclear cells under inflammatory conditions. Molecules. 2018;23:E3167.
  • Schmid PC, Zuzarte-Augustin ML, Schmid HH. Properties of rat liver N-acylethanolamine amidohydrolase. J Biol Chem. 1985;260:14145–14149.
  • Giang DK, Cravatt BF. Molecular characterization of human and mouse fatty acid amide hydrolases. Proc Natl Acad Sci U S A. 1997;94:2238–2242.
  • Di Marzo V, Maccarrone M. FAAH and anandamide: is 2-AG really the odd one out? Trends Pharmacol Sci. 2008;29:229–233.
  • Min X, Thibault ST, Porter AC, et al. Discovery and molecular basis of potent noncovalent inhibitors of fatty acid amide hydrolase (FAAH). Proc Natl Acad Sci U S A. 2011;108:7379–7384.
  • Mileni M, Garfunkle J, Demartino JK, et al. Binding and inactivation mechanism of a humanized fatty acid amide hydrolase by alpha-ketoheterocycle inhibitors revealed from cocrystal structures. J Am Chem Soc. 2009;131:10497–10506.
  • Palermo G, Rothlisberger U, Cavalli A. et al. Computational insights into function and inhibition of fatty acid amide hydrolase. Eur J Med Chem Eur J Med Chem. 2015;16(91):15–26.
  • Fezza F, Simone C De, Amadio D, et al. Fatty acid amide hydrolase : a gate-keeper of the endocannabinoid system. Subcell Biochem. 2008;49:101–132.
  • Patricelli MP, Lashuel HA, Giang DK, et al. Comparative characterization of a wild type and transmembrane domain-deleted fatty acid amide hydrolase: identification of the transmembrane domain as a site for oligomerization. Biochemistry. 1998;37:15177–15187.
  • Shrestha R, Dixon RA, Chapman KD. Molecular identification of a functional homologue of the mammalian fatty acid amide hydrolase in arabidopsis thaliana. J Biol Chem. 2003;278:34990–34997.
  • Bracey MH, Hanson MA, Masuda KR, et al. Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science. 2002;298:1793–1796.
  • Palermo G, Campomanes P, Cavalli A, et al. Anandamide hydrolysis in FAAH reveals a dual strategy for e ffi cient enzyme-assisted amide bond cleavage via nitrogen inversion. J Phys Chem B. 2015;119:789–801.
  • Tripathi PKR. A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur J Med Chem. 2019;188:111953.
  • Di Venere A, Dainese E, Fezza F, et al. Rat and human fatty acid amide hydrolases : overt similarities and hidden differences. Biochim Biophys Acta. 2012;1821:1425–1433.
  • Mileni M, Johnson DS, Wang Z, et al. Structure-guided inhibitor design for human FAAH by interspecies active site conversion. Proc Natl Acad Sci U S A. 2008;105:12820–12824.
  • Chudyk EI, Dyguda-kazimierowicz E, Langner KM, et al. Nonempirical energetic analysis of reactivity and covalent inhibition of fatty acid amide hydrolase. J Phys Chem B. 2013;117:6656–6666.
  • Lodola A, Capoferri L, Rivara S, et al. Quantum mechanics/molecular mechanics modeling of fatty acid amide hydrolase reactivation distinguishes substrate from irreversible covalent inhibitors. J Med Chem. 2013;56:2500–2512.
  • Fowler CJ. The potential of inhibitors of endocannabinoid metabolism for drug development : a critical review. Handb Exp Pharmacol. 2015;231:95–128.
  • Blankman JL, Cravatt BF. Chemical probes of endocannabinoid metabolism. Pharmacol Rev. 2013;65:849–871.
  • Zhao D, Wang H, Lian Z, et al. Pharmacophore modeling and virtual screening for the discovery of new fatty acid amide hydrolase inhibitors. Acta Pharm Sin B. 2011;1:27–35.
  • Bowman AL, Makriyannis A. Approximating protein flexibility through dynamic pharmacophore models: application to fatty acid amide hydrolase (FAAH). J Chem Inf Model. 2011;51:3247–3253.
  • Di Marzo V. Targeting the endocannabinoid system : to enhance or reduce? Nat Rev Drug Discov. 2008;7:438–455.
  • Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12:56–68.
  • Prati F, Cavalli A, et al. Navigating the chemical space of multitarget-directed ligands : from hybrids to fragments in alzheimer ’ s disease. Molecules. 2016;21:466.
  • Brodie JS, Di Marzo V, Guy GW. Polypharmacology shakes hands with complex aetiopathology. Trends Pharmacol Sci. 2015; 36(12):802–821.
  • Malek N, Starowicz K. Dual-acting compounds targeting endocannabinoid and endovanilloid systems-a novel treatment option for chronic pain management. Front Pharmacol. 2016;7:257.
  • Palermo G, Favia AD, Convertino M, et al. The molecular basis for dual fatty acid amide hydrolase (FAAH)/cyclooxygenase (COX) inhibition. ChemMedChem. 2016;11:1252–1258.
  • Tabrizi MA, Baraldi PG, Ruggiero E, et al. Pyrazole phenylcyclohexylcarbamates as inhibitors of human fatty acid amide hydrolases (FAAH). Eur J Med Chem. 2015;97:289–305.
  • Qiu Y, Zhang Y, Li Y, et al. Discovery of uracil derivatives as potent inhibitors of fatty acid amide hydrolase. Molecules. 2016;21:2.
  • Qiu Y, Ren J, Ke H, et al. Design and synthesis of uracil urea derivatives as potent and selective fatty acid amide hydrolase. RSC Adv. 2017;37:22699–22705.
  • Tuo W, Leleu-chavain N, Barczyk A, et al. Bioorganic & medicinal chemistry letters design, synthesis and biological evaluation of potent FAAH inhibitors. Bioorg Med Chem Lett. 2016;26:2701–2705.
  • Watabiki T, Tsuji N, Kiso T, et al. In vitro and in vivo pharmacological characterization of ASP8477: A novel highly selective fatty acid amide hydrolase inhibitor. Eur J Pharmacol. 2017;815:42–48.
  • Jaiswal S, Kailash R, Tripathi P, et al. Biomedicine & pharmacotherapy scaffold hopping-guided design of some isatin based rigid analogs as fatty acid amide hydrolase inhibitors : synthesis and evaluation. Biomed Pharmacother. 2018;107:1611–1623.
  • Bhuniya D, Kharul RK, Hajare A, et al. Bioorganic & medicinal chemistry letters discovery and evaluation of novel FAAH inhibitors in neuropathic pain model. Bioorg Med Chem Lett. 2019;29:238–243.
  • Lamani M, Malamas MS, Farah SI, et al. Piperidine and piperazine inhibitors of fatty acid amide hydrolase targeting excitotoxic pathology. Bioorg Med Chem Bioorg Med Chem. 2019;27:115096.
  • Gouveia-figueira S, Karlsson J, Deplano A, et al. Characterisation of (R) −2- (2-Fluorobiphenyl-4- yl) - N - (3-Methylpyridin-2-yl) propanamide as a dual fatty acid amide hydrolase: cyclooxygenase inhibitor. Plos One. 2015;1:1–21.
  • Forster L, Ludwig J, Kaptur M, et al. Bioorganic & medicinal chemistry 1-indol-1-yl-propan-2-ones and related heterocyclic compounds as dual inhibitors of cytosolic phospholipase A 2 a and fatty acid amide hydrolase. Bioorg Med Chem. 2010;18:945–952.
  • Zahov S, Drews A, Hess M, et al. Related compounds as dual inhibitors of human cytosolic phospholipase A 2 a and fatty acid amide hydrolase. ChemMedChem. 2011;6:544–549.
  • Althaus J, Hake T, Hanekamp W, et al. 1-(5-Carboxyindazol-1-yl)propan-2-ones as dual inhibitors of cytosolic phospholipase A2α and fatty acid amide hydrolase: bioisosteric replacement of the carboxylic acid moiety. J Enzyme Inhib Med Chem. 2016;31:131–140.
  • Migliore M, Habrant D, Sasso O, et al. Potent multitarget FAAH-COX inhibitors: design and structure-activity relationship studies. Eur J Med Chem. 2016;109:216–237.
  • Goodman MC, Xu S, Rouzer CA, et al. Dual cyclooxygenase-fatty acid amide hydrolase inhibitor exploits novel binding interactions in the cyclooxygenase active site. J Biol Chem. 2018;293:3028–3038.
  • Kodani SD, Wan D, Wagner KM, et al. Design and potency of dual soluble epoxide hydrolase/fatty acid amide hydrolase inhibitors. ACS Omega. 2018;3:14076–14086.
  • Kodani SD, Bhakta S, Hwang SH, et al. Identification and optimization of soluble epoxide hydrolase inhibitors with dual potency towards fatty acid amide hydrolase. Bioorg Med Chem Lett. 2018;28:762–768.
  • Holt S, Paylor B, Boldrup L, et al. Inhibition of fatty acid amide hydrolase, a key endocannabinoid metabolizing enzyme, by analogues of ibuprofen and indomethacin. Eur J Pharmacol. 2007;565:26–36.
  • Fowler CJ, Björklund E, Lichtman AH, et al. Inhibitory properties of ibuprofen and its amide analogues towards the hydrolysis and cyclooxygenation of the endocannabinoid anandamide. J Enzyme Inhib Med Chem. 2013;28:172–182.
  • Deplano A, Marco C, Demurtas M, et al. Novel propanamides as fatty acid amide hydrolase inhibitors. Eur J Med Chem. 2017;136:523–542.
  • Deplano A, Cipriano M, Moraca F, et al. Benzylamides and piperazinoarylamides of ibuprofen as fatty acid amide hydrolase inhibitors. J Enzyme Inhib Med Chem. 2019;34:562–576.
  • Gado F, Arena C, La C. et al. Modification on the 1, 2-dihydro-2-oxo-pyridine-3-carboxamide core to obtain multi-target modulators of endocannabinoid system. Bioorg Chem. 2019;94:103353.
  • Grillo A, Chemi G, Brogi S, et al. european journal of medicinal chemistry development of novel multipotent compounds modulating endocannabinoid and dopaminergic systems. Eur J Med Chem. 2019;183:111674.
  • Kerbrat A, Ferré JC, Fillatre P, et al. Acute neurologic disorder from an inhibitor of fatty acid amide hydrolase. N Engl J Med. 2016;375:1717–1725.
  • van Esbroeck ACM, Janssen APA, Cognetta AB, et al. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474. Science. 2017;356:1084–1087.
  • Kiss E, Beliaev A, Ferreira HS, et al. Discovery of a potent, long-acting, and CNS-active inhibitor (BIA 10-2474) of fatty acid amide hydrolase. Chem Med Chem. 2018;6:2177–2188.
  • Dainese E, De Fabritiis G, Sabatucci A, et al. Membrane lipids are key modulators of the endocannabinoid-hydrolase FAAH. Biochem J. 2014;472:463–472.
  • Sabatucci A, Simonetti M, Tortolani D, et al. Role of Steroids on the Membrane Binding Ability of Fatty Acid Amide Hydrolase. Cannabis Cannabinoid Res. 2019;4:42–50.
  • Dainese E, Oddi S, Simonetti M, et al. The endocannabinoid hydrolase FAAH is an allosteric enzyme. Sci Rep. 2020;10:2292.
  • Giacovazzo G, Bisogno T, Piscitelli F, et al. Different routes to inhibit fatty acid amide hydrolase: do all roads lead to the same place? Int J Mol Sci. 2019;20:4503.
  • Maccarrone M. Missing pieces to the endocannabinoid puzzle. Trends Mol Med. 2020;26:263–272.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.