3,624
Views
34
CrossRef citations to date
0
Altmetric
Review

An up-to-date overview of computational polypharmacology in modern drug discovery

, , , &
Pages 1025-1044 | Received 31 Jan 2020, Accepted 06 May 2020, Published online: 26 May 2020

References

  • Ramsay RR, Popovic-Nikolic MR, Nikolic K, et al. A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med. 2018 Jan 17;7(1):3. PubMed PMID: 29340951; PubMed Central PMCID: PMCPMC5770353.
  • Saginc G, Voellmy F, Linding R. Cancer systems biology: harnessing off-target effects. Nat Chem Biol. 2017 Nov 21;13(12):1204–1205. PubMed PMID: 29161245.
  • Klaeger S, Heinzlmeir S, Wilhelm M, et al. The target landscape of clinical kinase drugs. Science. 2017 Dec 1;358(6367):eaan4368. PubMed PMID: 29191878; PubMed Central PMCID: PMCPMC6542668.
  • Kroschinsky F, Stolzel F, von Bonin S, et al. New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care. 2017 Apr 14;21(1):89. PubMed PMID: 28407743; PubMed Central PMCID: PMCPMC5391608.
  • Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J Med Chem. 2014 Oct 9;57(19):7874–7887. PubMed PMID: 24946140.
  • Bayat Mokhtari R, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget. 2017 Jun 6;8(23):38022–38043. PubMed PMID: 28410237; PubMed Central PMCID: PMCPMC5514969.
  • Robichaux JP, Elamin YY, Tan Z, et al. Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat Med. 2018 May;24(5):638–646. PubMed PMID: 29686424; PubMed Central PMCID: PMCPMC5964608.
  • Kuenzi BM, Remsing Rix LL, Stewart PA, et al. Polypharmacology-based ceritinib repurposing using integrated functional proteomics. Nat Chem Biol. 2017 Dec;13(12):1222–1231. PubMed PMID: 28991240; PubMed Central PMCID: PMCPMC5909815.
  • Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell. 2020 Jan 13;181:102–114. PubMed PMID: 31955850.
  • Khan S, Zhang X, Lv D, et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat Med. 2019 Dec;25(12):1938–1947. PubMed PMID: 31792461.
  • Schapira M, Calabrese MF, Bullock AN, et al. Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov. 2019 Dec;18(12):949–963. PubMed PMID: 31666732.
  • Farnaby W, Koegl M, Roy MJ, et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat Chem Biol. 2019 Jul;15(7):672–680. PubMed PMID: 31178587; PubMed Central PMCID: PMCPMC6600871.
  • Labrijn AF, Janmaat ML, Reichert JM, et al. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019 Aug;18(8):585–608. PubMed PMID: 31175342.
  • Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2019 Dec;17. DOI:10.1038/s41571-019-0297-y. PubMed PMID: 31848460.
  • Majzner RG, Mackall CL. Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med. 2019 Sep;25(9):1341–1355. . PubMed PMID: 31501612.
  • Priest BT, Bell IM, Garcia ML. Role of hERG potassium channel assays in drug development. Channels (Austin). 2008 Mar-Apr;2(2):87–93. PubMed PMID: 18849661
  • Du-Cuny L, Chen L, Zhang S. A critical assessment of combined ligand- and structure-based approaches to HERG channel blocker modeling. J Chem Inf Model. 2011 Nov 28;51(11):2948–2960. PubMed PMID: 21902220; PubMed Central PMCID: PMCPMC3894065.
  • Castillo-Quan JI, Tain LS, Kinghorn KJ, et al. A triple drug combination targeting components of the nutrient-sensing network maximizes longevity. Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):20817–20819. PubMed PMID: 31570569; PubMed Central PMCID: PMCPMC6800352.
  • Yu JX, Craig AJ, Duffy ME, et al. Phenotype-based screens with conformation-specific inhibitors reveal p38 gamma and delta as targets for HCC polypharmacology. Mol Cancer Ther. 2019 Sep;18(9):1506–1519. PubMed PMID: 31213506.
  • Peng Y, McCorvy JD, Harpsoe K, et al. 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell. 2018 Feb 8;172(4):719–730 e14. PubMed PMID: 29398112; PubMed Central PMCID: PMCPMC6309861.
  • Chan JD, Cupit PM, Gunaratne GS, et al. The anthelmintic praziquantel is a human serotoninergic G-protein-coupled receptor ligand. Nat Commun. 2017 Dec 5;8(1):1910. PubMed PMID: 29208933; PubMed Central PMCID: PMCPMC5716991.
  • Hammam K, Saez-Ayala M, Rebuffet E, et al. Dual protein kinase and nucleoside kinase modulators for rationally designed polypharmacology. Nat Commun. 2017 Nov 10;8(1):1420. PubMed PMID: 29127277; PubMed Central PMCID: PMCPMC5681654.
  • Pinzi L, Rastelli G. Identification of target associations for polypharmacology from analysis of crystallographic ligands of the protein data bank. J Chem Inf Model. 2020 Jan 27;60(1):372–390. . PubMed PMID: 31800237.
  • Li X, Li Z, Wu X, et al. Deep learning enhancing kinome-wide polypharmacology profiling: model construction and experiment validation. J Med Chem. 2019 Aug 15. DOI:10.1021/acs.jmedchem.9b00855. PubMed PMID: 31364850.
  • Da C, Zhang D, Stashko M, et al. Data-driven construction of antitumor agents with controlled polypharmacology. J Am Chem Soc. 2019 Oct 2;141(39):15700–15709. PubMed PMID: 31497954; PubMed Central PMCID: PMCPMC6894422.
  • Stork C, Chen Y, Sicho M, et al. Hit Dexter 2.0: machine-learning models for the prediction of frequent hitters. J Chem Inf Model. 2019 Mar 25;59(3):1030–1043. PubMed PMID: 30624935.
  • Li Z, Li X, Liu X, et al. KinomeX: a web application for predicting kinome-wide polypharmacology effect of small molecules. Bioinformatics. 2019 Dec 15;35(24):5354–5356. PubMed PMID: 31228181.
  • Miljkovic F, Vogt M, Bajorath J. Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome. J Comput Aided Mol Des. 2019 Jun;33(6):559–572. . PubMed PMID: 30915709.
  • Jasial S, Gilberg E, Blaschke T, et al. Machine learning distinguishes with high accuracy between pan-assay interference compounds that are promiscuous or represent dark chemical matter. J Med Chem. 2018 Nov 21;61(22):10255–10264. PubMed PMID: 30422657.
  • Schneider P, Rothlisberger M, Reker D, et al. Spotting and designing promiscuous ligands for drug discovery. Chem Commun (Camb). 2016 Jan 21;52(6):1135–1138. PubMed PMID: 26602698.
  • Yang JJ, Ursu O, Lipinski CA, et al. Badapple: promiscuity patterns from noisy evidence. J Cheminform. 2016;8(1):29. . PubMed PMID: 27239230; PubMed Central PMCID: PMCPMC4884375
  • Pérez-Nueno VI, Karaboga AS, Souchet M, et al. GES polypharmacology fingerprints: A novel approach for drug repositioning. J Chem Inf Model. 2014;54(3):720–734. PubMed PMID: 24494653. DOI:
  • Chaudhari R, Tan Z, Huang B, et al. Computational polypharmacology: a new paradigm for drug discovery. Expert Opin Drug Discov. 2017 Mar;12(3):279–291. PubMed PMID: 28067061.
  • Tan Z, Chaudhai R, Zhang S. Polypharmacology in drug development: a minireview of current technologies. ChemMedChem. 2016 Jun 20;11(12):1211–1218. . PubMed PMID: 27154144.
  • Amelio I, Lisitsa A, Knight RA, et al. Polypharmacology of approved anticancer drugs. Curr Drug Targets. 2017;18(5):534–543. PubMed PMID: 26926468.
  • Bolognesi ML. Harnessing polypharmacology with medicinal chemistry. ACS Med Chem Lett. 2019 Mar 14;10(3):273–275. . PubMed PMID: 30891125; PubMed Central PMCID: PMCPMC6421528.
  • Cerisier N, Petitjean M, Regad L, et al. High impact: the role of promiscuous binding sites in polypharmacology. Molecules. 2019 Jul 10;24(14):2529. PubMed PMID: 31295958; PubMed Central PMCID: PMCPMC6680532.
  • Fang J, Liu C, Wang Q, et al. In silico polypharmacology of natural products. Brief Bioinform. 2018 Nov 27;19(6):1153–1171. PubMed PMID: 28460068.
  • Karuppasamy R, Veerappapillai S, Maiti S, et al. Current progress and future perspectives of polypharmacology: from the view of non-small cell lung cancer. Seminars in Cancer Biology. 2019 Nov 04. DOI:10.1016/j.semcancer.2019.10.019.
  • Meyers J, Chessum NEA, Ali S, et al. Privileged structures and polypharmacology within and between protein families. ACS Med Chem Lett. 2018 Dec 13;9(12):1199–1204. PubMed PMID: 30613326; PubMed Central PMCID: PMCPMC6295861.
  • Moya-Garcia A, Adeyelu T, Kruger FA, et al. Structural and functional view of polypharmacology. Sci Rep. 2017 Aug 31;7(1):10102. PubMed PMID: 28860623; PubMed Central PMCID: PMCPMC5579063.
  • Pinzi L, Caporuscio F, Rastelli G. Selection of protein conformations for structure-based polypharmacology studies. Drug Discov Today. 2018 Nov;23(11):1889–1896. . PubMed PMID: 30099123
  • Proschak E, Stark H, Merk D. Polypharmacology by design: a medicinal chemist’s perspective on multitargeting compounds. J Med Chem. 2019 Jan 24;62(2):420–444. PubMed PMID: 30035545.
  • Ravikumar B, Aittokallio T. Improving the efficacy-safety balance of polypharmacology in multi-target drug discovery. Expert Opin Drug Discov. 2018 Feb;13(2):179–192. PubMed PMID: 29233023.
  • Allen WJ, Balius TE, Mukherjee S, et al. DOCK 6: impact of new features and current docking performance. J Comput Chem. 2015;36(15):1132–1156. PubMed PMID: 25914306.
  • Chen YZ, Ung CY. Computer automated prediction of potential therapeutic and toxicity protein targets of bioactive compounds from Chinese medicinal plants. Am J Chin Med. 2002;30(1):139–154. PubMed PMID: 12067089.
  • Wang JC, Chu PY, Chen CM, et al. idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W393–9. PubMed PMID: 22649057; PubMed Central PMCID: PMCPMC3394295.
  • Li H, Gao Z, Kang L, et al. TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W219–24. PubMed PMID: 16844997; PubMed Central PMCID: PMCPMC1538869.
  • Friesner R, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739–1749. PubMed PMID: 15027865.
  • McGann M. FRED pose prediction and virtual screening accuracy. J Chem Inf Model. 2011 Mar 28;51(3):578–596. PubMed PMID: 21323318.
  • Shulman-Peleg A, Nussinov R, Wolfson HJ. SiteEngines: recognition and comparison of binding sites and protein-protein interfaces. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W337–41. PubMed PMID: 15980484; PubMed Central PMCID: PMCPMC1160242.
  • Jambon M, Imberty A, Deleage G, et al. A new bioinformatic approach to detect common 3D sites in protein structures. Proteins. 2003 Aug 1;52(2):137–145. PubMed PMID: 12833538.
  • Chartier M, Adriansen E, Najmanovich R. IsoMIF finder: online detection of binding site molecular interaction field similarities. Bioinformatics. 2016 Feb 15;32(4):621–623. PubMed PMID: 26504139; PubMed Central PMCID: PMCPMC4743630.
  • Yeturu K, Chandra N. PocketMatch: a new algorithm to compare binding sites in protein structures. PubMed PMID: 19091072; PubMed Central PMCID: PMCPMC2639437 BMC Bioinformatics. 2008;91:543.
  • ProBiS-database: precalculated binding site similarities and local pairwise alignments of PDB structures; 2012.
  • Gao M, Skolnick J. APoc: large-scale identification of similar protein pockets. Bioinformatics. 2013 Mar 1;29(5):597–604. PubMed PMID: 23335017; PubMed Central PMCID: PMCPMC3582269.
  • Krotzky T, Fober T, Hullermeier E, et al. Extended graph-based models for enhanced similarity search in cavbase. IEEE/ACM Trans Comput Biol Bioinform. 2014 Sep-Oct;11(5):878–890. PubMed PMID: 26356860.
  • Hoffmann B, Zaslavskiy M, Vert JP, et al. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction. BMC Bioinformatics. 2010;11(1):99. PubMed PMID: 20175916; PubMed Central PMCID: PMCPMC2838872. DOI:
  • Aung Z, Tong JC. BSAlign: a rapid graph-based algorithm for detecting ligand-binding sites in protein structures. Genome Inform. 2008;21:65–76. PubMed PMID: 19425148.
  • Liu X, Ouyang S, Yu B, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W609–14. PubMed PMID: 20430828; PubMed Central PMCID: PMCPMC2896160.
  • Stank A, Kokh DB, Horn M, et al. TRAPP webserver: predicting protein binding site flexibility and detecting transient binding pockets. Nucleic Acids Res. 2017 Jul 3;45(W1):W325–W330. PubMed PMID: 28431137; PubMed Central PMCID: PMCPMC5570179.
  • Dey F, Caflisch A. Fragment-based de novo ligand design by multiobjective evolutionary optimization. J Chem Inf Model. 2008 Mar;48(3):679–690. PubMed PMID: 18307332.
  • Li Y, Zhao Z, Liu Z, et al. AutoT&T v.2: an efficient and versatile tool for lead structure generation and optimization. J Chem Inf Model. 2016 Feb 22;56(2):435–453. PubMed PMID: 26799148.
  • Maass P, Schulz-Gasch T, Stahl M, et al. Recore: a fast and versatile method for scaffold hopping based on small molecule crystal structure conformations. J Chem Inf Model. 2007 Mar-Apr;47(2):390–399. PubMed PMID: 17305328.
  • Durrant JD, Lindert S, McCammon JA. AutoGrow 3.0: an improved algorithm for chemically tractable, semi-automated protein inhibitor design. J Mol Graph Model. 2013 Jul;44:104–112. PubMed PMID: 23792207; PubMed Central PMCID: PMCPMC3842281.
  • Keiser MJ, Roth BL, Armbruster BN, et al. Relating protein pharmacology by ligand chemistry. Nat Biotechnol. 2007 Feb;25(2):197–206. PubMed PMID: 17287757.
  • Nickel J, Gohlke BO, Erehman J, et al. SuperPred: update on drug classification and target prediction. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W26–31. PubMed PMID: 24878925; PubMed Central PMCID: PMCPMC4086135.
  • Gfeller D, Grosdidier A, Wirth M, et al. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W32–8. PubMed PMID: 24792161; PubMed Central PMCID: PMCPMC4086140.
  • Wang L, Ma C, Wipf P, et al. TargetHunter: an in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database. AAPS J. 2013 Apr;15(2):395–406. PubMed PMID: 23292636; PubMed Central PMCID: PMCPMC3675739.
  • Liu TP, Hsieh YY, Chou CJ, et al. Systematic polypharmacology and drug repurposing via an integrated L1000-based Connectivity Map database mining. R Soc Open Sci. 2018 Nov;5(11):181321. PubMed PMID: 30564416; PubMed Central PMCID: PMCPMC6281908.
  • Szklarczyk D, Santos A, von Mering C, et al. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016 Jan 4;44(D1):D380–4. PubMed PMID: 26590256; PubMed Central PMCID: PMCPMC4702904.
  • Duan Q, Flynn C, Niepel M, et al. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W449–60. PubMed PMID: 24906883; PubMed Central PMCID: PMCPMC4086130.
  • Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401–404. PubMed PMID: 22588877; PubMed Central PMCID: PMCPMC3956037.
  • de la Vega de Leon A, Chen B, Gillet VJ. Effect of missing data on multitask prediction methods. J Cheminform. 2018 May 22;10(1):26. PubMed PMID: 29789977; PubMed Central PMCID: PMCPMC5964064.
  • Allaway RJ, La Rosa S, Guinney J, et al. Probing the chemical-biological relationship space with the Drug Target Explorer. J Cheminform. 2018 Aug 20;10(1):41. 10.1186/s13321-018-0297-4. PubMed PMID: 30128806; PubMed Central PMCID: PMCPMC6102167.
  • Awale M, Reymond JL. Polypharmacology browser PPB2: target prediction combining nearest neighbors with machine learning. J Chem Inf Model. 2019 Jan 28;59(1):10–17. PubMed PMID: 30558418.
  • Chen C, Wu M, Cen S, et al. MTLD, a database of multiple target ligands, the updated version. Molecules. 2017 Sep 6;22(9):1375. PubMed PMID: 28878188; PubMed Central PMCID: PMCPMC6151691.
  • Sun J, Jeliazkova N, Chupakin V, et al. ExCAPE-DB: an integrated large scale dataset facilitating big data analysis in chemogenomics. J Cheminform. 2017;9(1):17. PubMed PMID: 28316655; PubMed Central PMCID: PMCPMC5340785. DOI:
  • Peon A, Li H, Ghislat G, et al. MolTarPred: A web tool for comprehensive target prediction with reliability estimation. Chem Biol Drug Des. 2019 Jul;94(1):1390–1401. PubMed PMID: 30916462.
  • Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016 Jan 4;44(D1):D1202–13. PubMed PMID: 26400175; PubMed Central PMCID: PMCPMC4702940.
  • Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012;40(D1):D1100-D1107. PubMed PMID: 21948594.
  • Gilson MK, Liu T, Baitaluk M, et al. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 2016 Jan 4;44(D1):D1045–53. PubMed PMID: 26481362; PubMed Central PMCID: PMCPMC4702793.
  • Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014 Jan;42(Database issue):D1091–7. PubMed PMID: 24203711; PubMed Central PMCID: PMCPMC3965102.
  • Wang Y, Zhang S, Li F, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2019 Nov 6. PubMed PMID: 31691823. DOI:10.1093/nar/gkz981.
  • Gunther S, Kuhn M, Dunkel M, et al. SuperTarget and matador: resources for exploring drug-target relationships. Nucleic Acids Res. 2008 Jan;36(Database issue):D919–22. PubMed PMID: 17942422; PubMed Central PMCID: PMCPMC2238858.
  • Reddy AS, Tan Z, Zhang S. Curation and analysis of multitargeting agents for polypharmacological modeling. J Chem Inf Model. 2014 Sep 22;54(9):2536–2543. . PubMed PMID: 25133604; PubMed Central PMCID: PMCPMC4170814.
  • Hu Z, Chang YC, Wang Y, et al. VisANT 4.0: integrative network platform to connect genes, drugs, diseases and therapies. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W225–31. PubMed PMID: 23716640; PubMed Central PMCID: PMCPMC3692070.
  • Kringelum J, Kjaerulff SK, Brunak S, et al. ChemProt-3.0: a global chemical biology diseases mapping. Database (Oxford). 2016;2016:bav123. PubMed PMID: 26876982; PubMed Central PMCID: PMCPMC4752971.
  • Hu Q-N, Deng Z, Tu W, et al. VNP: interactive visual network pharmacology of diseases, targets, and drugs. CPT Pharmacometrics Syst Pharmacol. 2014 Mar 12;3(3):e105. PubMed PMID: 24622768; PubMed Central PMCID: PMCPMC4039393.
  • Wang Z, Li J, Dang R, et al. PhIN: a protein pharmacology interaction network database. CPT Pharmacometrics Syst Pharmacol. 2015 Mar;4(3):e00025. PubMed PMID: 26225242; PubMed Central PMCID: PMCPMC4394615.
  • von Eichborn J, Murgueitio MS, Dunkel M, et al. PROMISCUOUS: a database for network-based drug-repositioning. Nucleic Acids Res. 2011 Jan;39(Database issue):D1060–6. PubMed PMID: 21071407; PubMed Central PMCID: PMCPMC3013657.
  • Betts KS. Tox21 to date: steps toward modernizing human hazard characterization. Environ Health Perspect. 2013 Jul;121(7):A228. PubMed PMID: 23816934; PubMed Central PMCID: PMCPMC3702009.
  • Papatheodorou I, Moreno P, Manning J, et al. Expression Atlas update: from tissues to single cells. Nucleic Acids Res. 2019 Oct 30. PubMed PMID: 31665515. DOI:10.1093/nar/gkz947.
  • Stelzer G, Rosen N, Plaschkes I, et al. The genecards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016 Jun 20;54(1):1 30 1–1 30 33. PubMed PMID: 27322403.
  • Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002 Jan 1;30(1):207–210. PubMed PMID: 11752295; PubMed Central PMCID: PMCPMC99122.
  • Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(90001):D277–80. PubMed PMID: 14681412. DOI:
  • Hess JL. The cancer genome anatomy project: power tools for cancer biologists. Cancer Invest. 2003 Apr;21(2):325–326. . PubMed PMID: 12743998.
  • Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013 Oct;45(10):1113–1120. PubMed PMID: 24071849; PubMed Central PMCID: PMCPMC3919969.
  • Genomes Project C, Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature 2015 Oct 1;526(7571):68–74. PubMed PMID: 26432245; PubMed Central PMCID: PMCPMC4750478.
  • Liu H, Zhang W, Zou B, et al. DrugCombDB: a comprehensive database of drug combinations toward the discovery of combinatorial therapy. Nucleic Acids Res. 2020 Jan 8;48(D1):D871–D881. PubMed PMID: 31665429.
  • Coker EA, Mitsopoulos C, Tym JE, et al. canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Res. 2019 Jan 8;47(D1):D917–D922. PubMed PMID: 30496479; PubMed Central PMCID: PMCPMC6323893.
  • Lee K, Lee M, Kim D. Utilizing random Forest QSAR models with optimized parameters for target identification and its application to target-fishing server. BMC Bioinformatics. 2017 Dec 28;18(Suppl 16):567. PubMed PMID: 29297315; PubMed Central PMCID: PMCPMC5751401.
  • Schneider P, Schneider G. Privileged structures revisited. Angew Chem Int Ed Engl. 2017 Jun 26;56(27):7971–7974. . PubMed PMID: 28558125; PubMed Central PMCID: PMCPMC5502582.
  • Monteleone S, Fuchs JE, Liedl KR. Molecular connectivity predefines polypharmacology: aliphatic rings, chirality, and sp(3) centers enhance target selectivity. Front Pharmacol. 2017;8:552. PubMed PMID: 28894419; PubMed Central PMCID: PMCPMC5581349.
  • Duran-Frigola M, Siragusa L, Ruppin E, et al. Detecting similar binding pockets to enable systems polypharmacology. PLoS Comput Biol. 2017 Jun;13(6):e1005522. PubMed PMID: 28662117; PubMed Central PMCID: PMCPMC5490940.
  • Ehrt C, Brinkjost T, Koch O. Binding site characterization - similarity, promiscuity, and druggability. Medchemcomm. 2019 Jul 1;10(7):1145–1159. . PubMed PMID: 31391887; PubMed Central PMCID: PMCPMC6644390.
  • Naderi M, Lemoine JM, Govindaraj RG, et al. Binding site matching in rational drug design: algorithms and applications. Brief Bioinform. 2018 Aug 31. PubMed PMID: 30169563. DOI: 10.1093/bib/bby078
  • Gilberg E, Gutschow M, Bajorath J. Promiscuous ligands from experimentally determined structures, binding conformations, and protein family-dependent interaction hotspots. ACS Omega. 2019 Jan 31;4(1):1729–1737. . PubMed PMID: 31459430; PubMed Central PMCID: PMCPMC6648413.
  • Lim H, Xie L. Omics data integration and analysis for systems pharmacology. Methods Mol Biol. 2019;1939:199–214. PubMed PMID: 30848463.
  • Moya-García AA, Ranea JAG. Insights into polypharmacology from drug-domain associations. PubMed PMID: 23740740 Bioinformatics. 2013;2916:1934–1937.
  • Wu Z, Li W, Liu G, et al. Network-based methods for prediction of drug-target interactions. Front Pharmacol. 2018;9:1134. PubMed PMID: 30356768; PubMed Central PMCID: PMCPMC6189482.
  • Cheng F, Kovacs IA, Barabasi AL. Network-based prediction of drug combinations. Nat Commun. 2019 Mar 13;10(1):1197. PubMed PMID: 30867426; PubMed Central PMCID: PMCPMC6416394.
  • Hafner M, Mills CE, Subramanian K, et al. Multiomics profiling establishes the polypharmacology of FDA-approved CDK4/6 inhibitors and the potential for differential clinical activity. Cell Chem Biol. 2019 Aug 15;26(8):1067–1080 e8. PubMed PMID: 31178407.
  • Davis MI, Hunt JP, Herrgard S, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011 Oct 30;29(11):1046–1051. PubMed PMID: 22037378.
  • Sakamoto KM, Kim KB, Kumagai A, et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8554–8559. PubMed PMID: 11438690; PubMed Central PMCID: PMCPMC37474.
  • Konstantinidou M, Li J, Zhang B, et al. PROTACs- a game-changing technology. Expert Opin Drug Discov. 2019 Dec;14(12):1255–1268. PubMed PMID: 31538491.
  • Bondeson DP, Smith BE, Burslem GM, et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem Biol. 2018 Jan 18;25(1):78–87 e5. PubMed PMID: 29129718; PubMed Central PMCID: PMCPMC5777153.
  • Huang HT, Dobrovolsky D, Paulk J, et al. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem Biol. 2018 Jan 18;25(1):88–99 e6. PubMed PMID: 29129717; PubMed Central PMCID: PMCPMC6427047.
  • Vij R, Nath R, Afar DEH, et al. First-in-human phase 1 study of ABBV-838, an antibody-drug conjugate targeting SLAMF7/CS1 in patients with relapsed and refractory multiple myeloma. Clin Cancer Res. 2020 Jan 22. DOI: 10.1158/1078-0432.CCR-19-1431. PubMed PMID: 31969330.
  • Gerber DE, Infante JR, Gordon MS, et al. Phase Ia study of anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin DNIB0600A in patients with non-small cell lung cancer and platinum-resistant ovarian cancer. Clin Cancer Res. 2020 Jan 15;26(2):364–372. PubMed PMID: 31540980.
  • Narayan R, Blonquist TM, Emadi A, et al. A phase 1 study of the antibody-drug conjugate brentuximab vedotin with re-induction chemotherapy in patients with CD30-expressing relapsed/refractory acute myeloid leukemia. Cancer. 2019 Dec 20. PubMed PMID: 31860140. DOI: 10.1002/cncr.32657.
  • Danila DC, Szmulewitz RZ, Vaishampayan U, et al. Phase I study of DSTP3086S, an antibody-drug conjugate targeting six-transmembrane epithelial antigen of prostate 1, in metastatic castration-resistant prostate cancer. J Clin Oncol. 2019 Dec 20;37(36):3518–3527. PubMed PMID: 31689155.
  • Kahl BS, Hamadani M, Radford J, et al. A phase I study of ADCT-402 (loncastuximab tesirine), a novel pyrrolobenzodiazepine-based antibody-drug conjugate, in relapsed/refractory B-cell non-hodgkin lymphoma. Clin Cancer Res. 2019 Dec 1;25(23):6986–6994. PubMed PMID: 31685491.
  • Kopp LM, Malempati S, Krailo M, et al. Phase II trial of the glycoprotein non-metastatic B-targeted antibody-drug conjugate, glembatumumab vedotin (CDX-011), in recurrent osteosarcoma AOST1521: A report from the Children’s Oncology Group. Eur J Cancer. 2019 Nov;121:177–183. PubMed PMID: 31586757; PubMed Central PMCID: PMCPMC6952063.
  • Kim SB, Meric-Bernstam F, Kalyan A, et al. First-in-human phase I study of aprutumab ixadotin, a fibroblast growth factor receptor 2 antibody-drug conjugate (BAY 1187982) in patients with advanced cancer. Target Oncol. 2019 Oct;14(5):591–601. 10.1007/s11523-019-00670-4. PubMed PMID: 31502117; PubMed Central PMCID: PMCPMC6797631.
  • Sandhu S, McNeil CM, LoRusso P, et al. Phase I study of the anti-endothelin B receptor antibody-drug conjugate DEDN6526A in patients with metastatic or unresectable cutaneous, mucosal, or uveal melanoma. Invest New Drugs. 2019 Aug 5. DOI: 10.1007/s10637-019-00832-1. PubMed PMID: 31385109.
  • Massard C, Soria JC, Krauss J, et al. First-in-human study to assess safety, tolerability, pharmacokinetics, and pharmacodynamics of the anti-CD27L antibody-drug conjugate AMG 172 in patients with relapsed/refractory renal cell carcinoma. Cancer Chemother Pharmacol. 2019 Jun;83(6):1057–1063. PubMed PMID: 30915497.
  • Collins DM, Bossenmaier B, Kollmorgen G, et al. Acquired resistance to antibody-drug conjugates. Cancers (Basel). 2019 Mar 20;11(3):394. PubMed PMID: 30897808; PubMed Central PMCID: PMCPMC6468698.
  • Nejadmoghaddam MR, Minai-Tehrani A, Ghahremanzadeh R, et al. Antibody-drug conjugates: possibilities and challenges. Avicenna J Med Biotechnol. 2019 Jan-Mar;11(1):3–23. PubMed PMID: 30800238; PubMed Central PMCID: PMCPMC6359697.
  • Lamb YN. Inotuzumab ozogamicin: first global approval. Drugs. 2017 Sep;77(14):1603–1610. . PubMed PMID: 28819740.
  • Traynor K. Ado-trastuzumab emtansine approved for advanced breast cancer. Am J Health Syst Pharm. 2013 Apr 1;70(7):562. . PubMed PMID: 23515502.
  • Teicher BA, Doroshow JH. The promise of antibody-drug conjugates. N Engl J Med. 2012 Nov 8;367(19):1847–1848. PubMed PMID: 23134386.
  • Fan G, Wang Z, Hao M, et al. Bispecific antibodies and their applications. J Hematol Oncol. 2015 Dec 21;8(1):130. 10.1186/s13045-015-0227-0. PubMed PMID: 26692321; PubMed Central PMCID: PMCPMC4687327.
  • Muller D, Kontermann RE. Bispecific antibodies for cancer immunotherapy: current perspectives. BioDrugs. 2010 Apr 1;24(2):89–98. PubMed PMID: 20199124.
  • Jensen TI, Axelgaard E, Bak RO. Therapeutic gene editing in haematological disorders with CRISPR/Cas9. Br J Haematol. 2019 Jun;185(5):821–835. PubMed PMID: 30864164.
  • Srivastava S, Riddell SR. Engineering CAR-T cells: design concepts. Trends Immunol. 2015 Aug;36(8):494–502. PubMed PMID: 26169254; PubMed Central PMCID: PMCPMC4746114.
  • Ledford H. Engineered cell therapy for cancer gets thumbs up from FDA advisers. Nature. 2017 Jul 12;547(7663):270. PubMed PMID: 28726836.
  • Xin Yu J, Hubbard-Lucey VM, Tang J. The global pipeline of cell therapies for cancer. Nat Rev Drug Discov. 2019 Oct;18(11):821–822. 10.1038/d41573-019-00090-z. PubMed PMID: 31673124.
  • Avram S, Curpan R, Bora A, et al. Enhancing molecular promiscuity evaluation through assay profiles. Pharm Res. 2018 Oct 18;35(11):240. 10.1007/s11095-018-2523-1. PubMed PMID: 30338400.
  • Hu Y, Bajorath J. Polypharmacology directed compound data mining: identification of promiscuous chemotypes with different activity profiles and comparison to approved drugs. J Chem Inf Model. 2010 Dec 27;50(12):2112–2118. PubMed PMID: 21070069.
  • Hu Y, Bajorath J. Molecular scaffolds with high propensity to form multi-target activity cliffs. J Chem Inf Model. 2010 Apr 26;50(4):500–510. PubMed PMID: 20361784.
  • Zhang J, Mucs D, Norinder U, et al. LightGBM: an effective and scalable algorithm for prediction of chemical toxicity-application to the Tox21 and mutagenicity data sets. J Chem Inf Model. 2019 Oct 28;59(10):4150–4158. PubMed PMID: 31560206.
  • Rendleman MC, Buatti JM, Braun TA, et al. Machine learning with the TCGA-HNSC dataset: improving usability by addressing inconsistency, sparsity, and high-dimensionality. BMC Bioinformatics. 2019 Jun 17;20(1):339. PubMed PMID: 31208324; PubMed Central PMCID: PMCPMC6580485.
  • Jones D, Bopaiah J, Alghamedy F, et al. Polypharmacology within the full kinome: a machine learning approach. AMIA Joint Summits Trans Sci. 2018 May 18;2017:98–107. PubMed Central PMCID: PMCPMC5961802.
  • Chua HE, Bhowmick SS, Tucker-Kellogg L. Synergistic target combination prediction from curated signaling networks: machine learning meets systems biology and pharmacology. Methods. 2017 Oct 1;129:60–80.
  • Senior AW, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020 Jan 15;577(7792):706–710. PubMed PMID: 31942072.
  • Pereira JC, Caffarena ER, Dos Santos CN. Boosting docking-based virtual screening with deep learning. J Chem Inf Model. 2016 Dec 27;56(12):2495–2506. . PubMed PMID: 28024405.
  • Mysinger MM, Carchia M, Irwin JJ, et al. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem. 2012 Jul 26;55(14):6582–6594. PubMed PMID: 22716043; PubMed Central PMCID: PMCPMC3405771.
  • Li Z, Li X, Liu X, et al. KinomeX: a web application for predicting kinome-wide polypharmacology effect of small molecules. Bioinformatics. 2019 Jun 22;35(24):5354–5356. PubMed PMID: 31228181.
  • Li H, Sze K-H, Lu G, et al. Machine-learning scoring functions for structure-based drug lead optimization. Wiley Interdiscip Rev Comput Mol Sci. 2020 Feb 5:e1465.
  • Shen C, Ding J, Wang Z, et al. From machine learning to deep learning: advances in scoring functions for protein–ligand docking. Wiley Interdiscip Rev Comput Mol Sci. 2020;10(1):e1429.
  • Strickland E. IBM Watson, heal thyself: how IBM overpromised and underdelivered on AI health care. IEEE Spectrum. 2019;56(4):24–31.
  • Luo H, Chen J, Shi L, et al. DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W492–8. PubMed PMID: 21558322; PubMed Central PMCID: PMCPMC3125745.
  • LaBute MX, Zhang X, Lenderman J, et al. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines. PLoS One. 2014;9(9):e106298. PubMed PMID: 25191698; PubMed Central PMCID: PMCPMC4156361.
  • Ji ZL, Wang Y, Yu L, et al. In silico search of putative adverse drug reaction related proteins as a potential tool for facilitating drug adverse effect prediction. Toxicol Lett. 2006 Jul 1;164(2):104–112. PubMed PMID: 16563668.
  • de Anda-jauregui G, Guo K, Hur J. Network-based assessment of adverse drug reaction risk in polypharmacy using high-throughput screening data. Int J Mol Sci. 2019 Jan 17;20(2):386. PubMed PMID: 30658437; PubMed Central PMCID: PMCPMC6358820.
  • Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics. 2018 Jul 1;34(13):i457–i466. PubMed PMID: 29949996; PubMed Central PMCID: PMCPMC6022705.
  • Zhou H, Gao M, Skolnick J. Comprehensive prediction of drug-protein interactions and side effects for the human proteome. Sci Rep. 2015 Jun 9;5(1):11090. PubMed PMID: 26057345; PubMed Central PMCID: PMCPMC4603786.
  • Uner OC, Gokberk Cinbis R, Tastan O, et al. DeepSide: a deep learning framework for drug side effect prediction. bioRxiv. 2019;843029. DOI: 10.1101/843029.
  • Kim D, Lee J, Lee S, et al. Predicting unintended effects of drugs based on off-target tissue effects. Biochem Biophys Res Commun. 2016 Jan 15;469(3):399–404. PubMed PMID: 26626077.
  • Le P, Kunold E, Macsics R, et al. Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant Staphylococcus aureus, persisters and biofilms. Nat Chem. 2019 Dec 16. PubMed PMID: 31844194. DOI: 10.1038/s41557-019-0378-7
  • Noronha V, Choughule A, Patil VM, et al. Epidermal growth factor receptor exon 20 mutation in lung cancer: types, incidence, clinical features and impact on treatment. Onco Targets Ther. 2017;10:2903–2908. PubMed PMID: 28652772; PubMed Central PMCID: PMCPMC5476719.
  • Tu HY, Ke EE, Yang JJ, et al. A comprehensive review of uncommon EGFR mutations in patients with non-small cell lung cancer. Lung Cancer. 2017 Dec;114:96–102. PubMed PMID: 29173773.
  • Tsao AS, Wistuba I, Xia D, et al. Germline and somatic smoothened mutations in non–small-cell lung cancer are potentially responsive to hedgehog inhibitor vismodegib. JCO Precis Oncol. 2017;(1):1–10. DOI: 10.1200/po.17.00149
  • Tan Z, Chen L, Zhang S. Comprehensive modeling and discovery of mebendazole as a novel TRAF2- and NCK-interacting kinase inhibitor. Sci Rep. 2016 Sep 21;6(1):33534. PubMed PMID: 27650168; PubMed Central PMCID: PMCPMC5030704.
  • Pantziarka P, Bouche G, Meheus L, et al. The repurposing drugs in oncology (ReDO) project. Ecancermedicalscience. 2014;8:442. PubMed PMID: 25075216; PubMed Central PMCID: PMCPMC4096030.
  • Janes J, Young ME, Chen E, et al. The ReFRAME library as a comprehensive drug repurposing library and its application to the treatment of cryptosporidiosis. Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):10750–10755. PubMed PMID: 30282735; PubMed Central PMCID: PMCPMC6196526.
  • Ferraro M, Decherchi S, De Simone A, et al. Multi-target dopamine D3 receptor modulators: actionable knowledge for drug design from molecular dynamics and machine learning. Eur J Med Chem. 2020 Feb 15;188:111975. PubMed PMID: 31940507.
  • Xue W, Wang P, Tu G, et al. Computational identification of the binding mechanism of a triple reuptake inhibitor amitifadine for the treatment of major depressive disorder. Phys Chem Chem Phys. 2018 Feb 28;20(9):6606–6616. PubMed PMID: 29451287.
  • Zhou J, Jiang X, He S, et al. Rational design of multitarget-directed ligands: strategies and emerging paradigms. J Med Chem. 2019 Oct 24;62(20):8881–8914. PubMed PMID: 31082225.
  • Lim H, He D, Qiu Y, et al. Rational discovery of dual-indication multi-target PDE/Kinase inhibitor for precision anti-cancer therapy using structural systems pharmacology. PLoS Comput Biol. 2019 Jun;15(6):e1006619. PubMed PMID: 31206508; PubMed Central PMCID: PMCPMC6576746.
  • Tan H, Ge X, Xie L. Structural systems pharmacology: a new frontier in discovering novel drug targets. Curr Drug Targets. 2013 Aug;14(9):952–958. . PubMed PMID: 23597016.
  • Tolcher AW, Peng W, Calvo E. Rational approaches for combination therapy strategies targeting the map kinase pathway in solid tumors. Mol Cancer Ther. 2018 Jan;17(1):3–16. PubMed PMID: 29295962.
  • Ortiz-Orendain J, Castiello-de Obeso S, Colunga-Lozano LE, et al. Antipsychotic combinations for schizophrenia. Cochrane Database Syst Rev. 2017 Jun 28;6:CD009005. PubMed PMID: 28658515; PubMed Central PMCID: PMCPMC6481822.
  • Siragusa L, Cross S, Baroni M, et al. BioGPS: navigating biological space to predict polypharmacology, off-targeting, and selectivity. Proteins. 2015 Mar;83(3):517–532. PubMed PMID: 25556939.
  • Sheng Z, Sun Y, Yin Z, et al. Advances in computational approaches in identifying synergistic drug combinations. Brief Bioinform. 2018 Nov 27;19(6):1172–1182. PubMed PMID: 28475767.
  • Ryall KA, Tan AC. Systems biology approaches for advancing the discovery of effective drug combinations. PubMed PMID: 25741385; PubMed Central PMCID: PMCPMC4348553 J Cheminform. 2015;71:7.
  • Identification of similar binding sites to detect distant polypharmacology; 2013.
  • Al-Ali H, Lee DH, Danzi MC, et al. Rational Polypharmacology: systematically Identifying and Engaging Multiple Drug Targets To Promote Axon Growth. ACS Chem Biol. 2015 Aug 21;10(8):1939–1951. PubMed PMID: 26056718; PubMed Central PMCID: PMCPMC4899818.
  • Somayaji MR, Przekwas AJ, Gupta RK. Combination therapy for multi-target manipulation of secondary brain injury mechanisms. Curr Neuropharmacol. 2018;16(4):484–504. PubMed PMID: 28847295; PubMed Central PMCID: PMCPMC6018188.
  • Fancellu G, Chand K, Tomas D, et al. Novel tacrine-benzofuran hybrids as potential multi-target drug candidates for the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem. 2020 Dec;35(1):211–226. PubMed PMID: 31760822.
  • Zeng M, Xiong Y, Safaee N, et al. Exploring targeted degradation strategy for oncogenic KRAS(G12C). Cell Chem Biol. 2020 Jan 16;27(1):19–31 e6. PubMed PMID: 31883964.
  • Jerabek J, Uliassi E, Guidotti L, et al. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur J Med Chem. 2017 Feb 15;127:250–262. PubMed PMID: 28064079.
  • Sheng R, Tang L, Jiang L, et al. Novel 1-phenyl-3-hydroxy-4-pyridinone derivatives as multifunctional agents for the therapy of Alzheimer’s disease. ACS Chem Neurosci. 2016 Jan 20;7(1):69–81. PubMed PMID: 26479744.
  • Wu J, Brown M. Chapter 2 - Epigenetics and Epigenomics. In: Hoffman R, Benz EJ, Silberstein LE, editors. Hematology. Seventh ed. Philadelphia, PA: Elsevier, 17–24, 2018.
  • de Lera AR, Ganesan A. Epigenetic polypharmacology: from combination therapy to multitargeted drugs. PubMed PMID: 27752293; PubMed Central PMCID: PMCPMC5062873 Clin Epigenetics. 2016;81:105.
  • Singh AN, Sharma N. Epigenetic modulators as potential multi-targeted drugs against hedgehog pathway for treatment of cancer. Protein J. 2019;38(5):537–550. PubMed PMID: 30993446; eng. .
  • Tomaselli D, Lucidi A, Rotili D, et al. Epigenetic polypharmacology: A new frontier for epi-drug discovery. Med Res Rev. 2020 Jan;40(1):190–244. PubMed PMID: 31218726; PubMed Central PMCID: PMCPMC6917854.
  • Cuadrado-Tejedor M, Garcia-Barroso C, Sanchez-Arias JA, et al. A first-in-class small-molecule that acts as a dual inhibitor of HDAC and PDE5 and that rescues hippocampal synaptic impairment in Alzheimer’s disease mice. Neuropsychopharmacology. 2017 Jan;42(2):524–539. PubMed PMID: 27550730; PubMed Central PMCID: PMCPMC5399234.
  • De Simone A, Milelli A. Histone deacetylase inhibitors as multitarget ligands: new players in Alzheimer’s disease drug discovery? ChemMedChem. 2019 Jun 5;14(11):1067–1073. PubMed PMID: 30958639.
  • Grisoni F, Merk D, Friedrich L, et al. Design of natural-product-inspired multitarget ligands by machine learning. ChemMedChem. 2019 Jun 18;14(12):1129–1134. PubMed PMID: 30973672.
  • Allison M. NCATS launches drug repurposing program. Nat Biotechnol. 2012 Jul 10;30(7):571–572. PubMed PMID: 22781662.
  • Chiotos K, Hayes M, Kimberlin DW, et al. Multicenter initial guidance on use of antivirals for children with COVID-19/SARS-CoV-2. J Pediatric Infect Dis Soc. 2020 Apr 22. PubMed PMID: 32318706. DOI: 10.1093/jpids/piaa045.
  • Harrison C. Coronavirus puts drug repurposing on the fast track. Nat Biotechnol. 2020 Apr; 38(4):379–381. PubMed PMID: 32205870
  • Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017 Jan;16(1):19–34. PubMed PMID: 27910877; PubMed Central PMCID: PMCPMC6314433.
  • Hu Y, Bajorath J. Growth of ligand-target interaction data in ChEMBL is associated with increasing and activity measurement-dependent compound promiscuity. J Chem Inf Model. 2012 Oct 22;52(10):2550–2558. PubMed PMID: 22978710.
  • Southan C, Sitzmann M, Muresan S. Comparing the chemical structure and protein content of ChEMBL, DrugBank, human metabolome database and the therapeutic target database. Mol Inform. 2013 Dec;32(11–12):881–897. PubMed PMID: 24533037; PubMed Central PMCID: PMCPMC3916886.
  • Kim S. Getting the most out of PubChem for virtual screening. Expert Opin Drug Discov. 2016 Sep;11(9):843–855. . PubMed PMID: 27454129; PubMed Central PMCID: PMCPMC5045798.
  • Wassermann AM, Lounkine E, Hoepfner D, et al. Dark chemical matter as a promising starting point for drug lead discovery. Nat Chem Biol. 2015 Dec;11(12):958–966. PubMed PMID: 26479441.
  • Bantscheff M, Eberhard D, Abraham Y, et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol. 2007 Sep;25(9):1035–1044. PubMed PMID: 17721511.
  • Lomenick B, Hao R, Jonai N, et al. Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21984–21989. PubMed PMID: 19995983; PubMed Central PMCID: PMCPMC2789755.
  • Martinez Molina D, Jafari R, Ignatushchenko M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013 Jul 5;341(6141):84–87. PubMed PMID: 23828940.
  • Ernsberger P, Koletsky RJ, Kline DD, et al. The SHROB model of syndrome X: effects of excess dietary sucrose. Ann N Y Acad Sci. 1999 Nov 18;892(1 THE METABOLIC):315–318. PubMed PMID: 10842673.
  • Hye Khan MA, Kolb L, Skibba M, et al. A novel dual PPAR-gamma agonist/sEH inhibitor treats diabetic complications in a rat model of type 2 diabetes. Diabetologia. 2018 Oct;61(10):2235–2246. PubMed PMID: 30032428; PubMed Central PMCID: PMCPMC6563928.
  • Imig JD, Walsh KA, Hye Khan MA, et al. Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor gamma agonist improve vascular function and decrease renal injury in hypertensive obese rats. Exp Biol Med (Maywood). 2012 Dec;237(12):1402–1412. PubMed PMID: 23354399; PubMed Central PMCID: PMCPMC3613242.
  • Bezard E, Imbert C, Gross CE. Experimental models of Parkinson’s disease: from the static to the dynamic. Rev Neurosci. 1998;9(2):71–90. PubMed PMID: 9711900.
  • Schlegel A, Stainier DYR, MacDonald ME. Lessons from “lower” organisms: what worms, flies, and zebrafish can teach us about human energy metabolism. PLoS Genet. 2007 Nov;3(11):e199. PubMed PMID: 18081423; PubMed Central PMCID: PMCPMC2098794.
  • Da C, Zhang D, Stashko M, et al. Data-driven construction of antitumor agents with controlled polypharmacology. J Am Chem Soc. 2019;141(39):15700–15709. PubMed PMID: 31497954; eng.
  • Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of Go without human knowledge. Nature. 2017 Oct 18;550(7676):354–359. PubMed PMID: 29052630.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.