117
Views
4
CrossRef citations to date
0
Altmetric
Review

An update on the use of molecular modeling in dendrimers design for biomedical applications: are we using its full potential?

ORCID Icon &
Pages 1015-1024 | Received 13 Jan 2020, Accepted 12 May 2020, Published online: 26 May 2020

References

  • Buhleier E, Wehner W, VÖGtle F. “Cascade”- and “Nonskid-Chain-like” syntheses of molecular cavity topologies. Synthesis. 1978;1978(2):155–158.
  • Tomalia DA, Baker H, Dewald J, et al. A new class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17(1):117–132.
  • Pedziwiatr-Werbicka E, Milowska K, Dzmitruk V, et al. Dendrimers and hyperbranched structures for biomedical applications. Eur Polym J. 2019;119:61–73.
  • Sur S, Rathore A, Dave V, et al. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano Struct Nano Obj. 2019;20:100397.
  • Tomalia DA, Nixon LS, Hedstrand DM. The role of branch cell symmetry and other critical nanoscale design parameters in the determination of dendrimer encapsulation properties. Biomolecules. 2020;10(4):642.
  • Sandoval-Yañez C, Castro Rodriguez C. Dendrimers: amazing platforms for bioactive molecule delivery systems. Materials. 2020;13(3):570.
  • Argenta DF, Martelli SM, Caon T. Dendrimer as a platform for drug delivery in the skin. In: Holban A-M, Grumezescu AM, editors. Materials for biomedical engineering. Oxford (UK): Elsevier; 2019. p. 331–367.
  • Dias AP, da Silva Santos S, da Silva JV, et al. Dendrimers in the context of nanomedicine. Int J Pharm. 2019;573:118814.
  • Kesharwani P, Gothwal A, Iyer AK, et al. Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discov Today. 2018;23(2):300–314.
  • Moura LI, Malfanti A, Peres C, et al. Functionalized branched polymers: promising immunomodulatory tools for the treatment of cancer and immune disorders. Mater Horizons. 2019;6(10):1956–1973.
  • Santos A, Veiga F, Figueiras A. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials. 2020;13(1):65.
  • Zhu Y, Liu C, Pang Z. Dendrimer-based drug delivery systems for brain targeting. Biomolecules. 2019;9(12):790.
  • Gothwal A, Malik S, Gupta U, et al. Toxicity and biocompatibility aspects of dendrimers. In: Chauhan A, Kulhari H, editors. Pharmaceutical applications of dendrimers. Oxford (UK): Elsevier; 2020. p. 251–274.
  • Janaszewska A, Lazniewska J, Trzepiński P, et al. Cytotoxicity of dendrimers. Biomolecules. 2019;9(8):330.
  • Abola EE, Bernstein FC, Koetzle TF. The protein data bank. In: Schoenborn BP, editor. Neutrons in biology. Boston (MA): Springer; 1984. p. 441.
  • Berman H, Henrick K, Nakamura H. Announcing the worldwide protein data bank. Nat Struct Mol Biol. 2003;10(12):980.
  • Kaminskas LM, Pires DE, Ascher DB. dendPoint: a web resource for dendrimer pharmacokinetics investigation and prediction. Sci Rep. 2019;9(1):1–9.
  • Tomalia DA, Nixon LS, Hedstrand DM. 1 - Engineering critical nanoscale design parameters (CNDPs): a strategy for developing effective nanomedicine therapies and assessing quantitative nanoscale structure-activity relationships (QNSARs). In: Chauhan A, Kulhari H, editors. Pharmaceutical applications of dendrimers. Oxford (UK): Elsevier; 2020. p. 3–47.
  • Chen Z, Habib M, Zia TJ, et al. Irregularity indices of dendrimer structures used as molecular disrupter in QSAR study. J Chem. 2019;2019:5371254.
  • Metwally AA, Hathout RM. Computer-assisted drug formulation design: novel approach in drug delivery. Mol Pharm. 2015 Aug 3;12(8):2800–2810.
  • Mehta CH, Narayan R, Nayak UY. Computational modeling for formulation design. Drug Discov Today. 2019 Mar 01;24(3):781–788.
  • Jain V, Bharatam PV. Pharmacoinformatic approaches to understand complexation of dendrimeric nanoparticles with drugs [10.1039/C3NR05400D]. Nanoscale. 2014;6(5):2476–2501.
  • Bello M, Fragoso-Vuez J, Correa-Basurto J. Theoretical studies for dendrimer-based drug delivery. Curr Pharm Des. 2017;23(21):3048–3061.
  • Ahmed S, Vepuri SB, Kalhapure RS, et al. Interactions of dendrimers with biological drug targets: reality or mystery–a gap in drug delivery and development research. Biomater Sci. 2016;4(7):1032–1050.
  • Marquez-Miranda V, Araya-Duran I, Danilo Gonzalez-Nilo F. Multiscale molecular simulations applied to nucleic acid-dendrimer interactions studies. Curr Pharm Des. 2017;23(21):3062–3075.
  • Martínez-Muñoz A, Bello M, Romero-Castro A, et al. Binding free energy calculations using MMPB/GBSA approaches for PAMAM-G4-drug complexes at neutral, basic and acid pH conditions. J Mol Graphics Modell. 2017;76:330–341.
  • Charlmers D, Roberts B Silico—a perl molecular modeling toolkit. 2011 [cited 2020 Apr 25]. Available from: http://silico.sourceforge.net
  • Naylor AM, Goddard III WA, Kiefer GE, et al. Starburst dendrimers. 5. Molecular shape control. J Am Chem Soc. 1989;111(6):2339–2341.
  • Maingi V, Jain V, Bharatam PV, et al., Dendrimer building toolkit: model building and characterization of various dendrimer architectures. J Comput Chem. 2012;33(25):1997–2011.
  • Vacas-Cordoba E, Maly M, De la Mata FJ, et al. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1. Int J Nanomedicine. 2016;11:1281.
  • Yu C, Ma L, Li S, et al. HBP Builder: a tool to generate hyperbranched polymers and hyperbranched multi-arm copolymers for coarse-grained and fully atomistic molecular simulations. Sci Rep. 2016;6:26264.
  • Barata TS, Brocchini S, Teo I, et al. From sequence to 3D structure of hyperbranched molecules: application to surface modified PAMAM dendrimers. J Mol Model. 2011;17(11):2741–2749.
  • Martinho N, Silva LC, Florindo HF, et al., Practical computational toolkits for dendrimers and dendrons structure design. J Comput Aided Mol Des. 2017;31(9):817–827.
  • Shen Z-L, Chen K, Ma Y-Q. Molecular dynamics simulation of G-actin interacting with PAMAM dendrimers. J Mol Graphics Modell. 2018;84:145–151.
  • Ramos MC, Horta VA, Horta BA. Molecular dynamics simulations of PAMAM and PPI dendrimers using the GROMOS-compatible 2016H66 force field. J Chem Inf Model. 2019;59(4):1444–1457.
  • Szymkuć S, Gajewska EP, Klucznik T, et al. Computer‐assisted synthetic planning: the end of the beginning. Angew Chem. 2016;55(20):5904–5937.
  • Barata TS, Shaunak S, Teo I, et al. Structural studies of biologically active glycosylated polyamidoamine (PAMAM) dendrimers. J Mol Model. 2011;17(8):2051–2060.
  • Ma Y-Q. Insights into the endosomal escape mechanism via investigation of dendrimer–membrane interactions. Soft Matter. 2012;8(23):6378–6384.
  • Quintana A, Raczka E, Piehler L, et al. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res. 2002;19(9):1310–1316.
  • Liu Y, Bryantsev VS, Diallo MS, et al. PAMAM dendrimers undergo pH responsive conformational changes without swelling. J Am Chem Soc. 2009;131(8):2798–2799.
  • Javor S, Reymond J-L. Molecular dynamics and docking studies of single site esterase peptide dendrimers. J Org Chem. 2009;74(10):3665–3674.
  • Maingi V, Kumar MVS, Maiti PK. PAMAM dendrimer–drug interactions: effect of pH on the binding and release pattern. J Phys Chem A. 2012;116(14):4370–4376.
  • Razmimanesh F, Amjad-Iranagh S, Modarress H. Molecular dynamics simulation study of chitosan and gemcitabine as a drug delivery system. J Mol Model. 2015;21(7):165.
  • Roberts BP, Krippner GY, Scanlon MJ, et al. Molecular dynamics of variegated polyamide dendrimers. Macromolecules. 2009;42(7):2784–2794.
  • Schwaller P, Laino T. Data-driven learning systems for chemical reaction prediction: an analysis of recent approaches. In: Pyzer-Knapp EO, Laino T. editors. Machine learning in chemistry: data-driven algorithms, learning systems, and predictions. Washington (DC): ACS Publications; 2019. p. 61–79.
  • Cagin T, Wang G, Martin R, et al. Multiscale modeling and simulation methods with applications to dendritic polymers. Comput Theor Polym Sci. 2001;11(5):345–356.
  • Sadanobu J, Goddard WA III. The continuous configurational Boltzmann biased direct Monte Carlo method for free energy properties of polymer chains. J Chem Phys. 1997;106(16):6722–6729.
  • Yu S, Larson RG. Monte-Carlo simulations of PAMAM dendrimer–DNA interactions. Soft Matter. 2014;10(29):5325–5336.
  • Aouini S, Ziti S, Labrim H, et al. Monte Carlo study of the magnetic order-disorder layering transitions in a polyamidoamine (PAMAM) dendrimer nanostructure. J Superconductivity Novel Magnetism. 2017;30(6):1557–1563.
  • Freire JJ, Rubio AM, McBride C. Calculation of conformational properties and rouse relaxation times of PAMAM‐EDA dendrimers under different pH conditions. Macromol Theory Simul. 2016;25(4):403–412.
  • Workineh ZG. Effect of surface functionalization on the structural properties of single dendrimers: Monte Carlo simulation study. Comput Mater Sci. 2019;168:40–47.
  • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers. 1983;22(12):2577–2637.
  • Touw WG, Baakman C, Black J, et al. A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 2015;43(D1):D364–D368.
  • Deriu MA, Tsapis N, Noiray M, et al. Elucidating the role of surface chemistry on cationic phosphorus dendrimer–siRNA complexation. Nanoscale. 2018;10(23):10952–10962.
  • Bohr A, Tsapis N, Andreana I, et al. Anti-inflammatory effect of anti-TNF-α SiRNA cationic phosphorus dendrimer nanocomplexes administered intranasally in a murine acute lung injury model. Biomacromolecules. 2017;18(8):2379–2388.
  • Smeijers A, Markvoort A, Pieterse K, et al. Coarse-grained modelling of urea-adamantyl functionalised poly (propylene imine) dendrimers. Mol Simulat. 2016;42(11):882–895.
  • Hermans TM, Broeren MA, Gomopoulos N, et al. Self-assembly of soft nanoparticles with tunable patchiness. Nat Nanotechnol. 2009;4(11):721.
  • Smeijers A, Markvoort AJ, Pieterse K, et al. A detailed look at vesicle fusion. J Phys Chem A. 2006;110(26):13212–13219.
  • Smeijers A, Pieterse K, Hilbers PA, et al. Multivalency in a dendritic host–guest system. Macromolecules. 2019;52(7):2778–2788.
  • Markvoort AJ, Pieterse K, Steijaert M, et al. The bilayer− vesicle transition is entropy driven. J Phys Chem A. 2005;109(47):22649–22654.
  • Thompson MA. Molecular docking using ArgusLab, an efficient shape-based search algorithm and the AScore scoring function. In: Proceedings of the ACS Meeting. Philadelphia: ASC Publishing; 2004;172: CINF 42.
  • Sanyakamdhorn S, Bekale L, Agudelo D, et al. Structural analysis of doxorubicin-polymer conjugates. Colloids Surf B Biointerfaces. 2015;135:175–182.
  • Chanphai P, Tajmir-Riahi H. Thermodynamic analysis of biogenic and synthetic polyamines conjugation with PAMAM-G4 nanoparticles. J Photochem Photobiol B Biol. 2016;155:13–19.
  • Chanphai P, Tajmir-Riahi H. Encapsulation of micronutrients resveratrol, genistein, and curcumin by folic acid-PAMAM nanoparticles. Mol Cell Biochem. 2018;449(1–2):157–166.
  • Chanphai P, Tajmir-Riahi H. Binding analysis of antioxidant polyphenols with PAMAM nanoparticles. J Biomol Struct Dyn. 2018;36(13):3487–3495.
  • Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94(26):8897–8909.
  • Bellini RG, Guimarães AP, Pacheco MA, et al. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graphics Modell. 2015;60:34–42.
  • Oztuna A, Nazir H. Pentafluoropropionic anhydride functionalized PAMAM dendrimer as miRNA delivery reagent. J Turk Chem Soc Sect A. 2018;5(3):1295–1302.
  • Mehrizi TZ, Khamesipour A, Ardestani MS, et al. Comparative analysis between four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: real-time PCR assay plus. Int J Nanomedicine. 2019;14:7593.
  • Rodríguez-Fonseca RA, Bello M, de Los Muñoz-fernández MÁ, et al. In silico search, chemical characterization and immunogenic evaluation of amino-terminated G4-PAMAM-HIV peptide complexes using three-dimensional models of the HIV-1 gp120 protein. Colloids Surf B Biointerfaces. 2019;177:77–93.
  • Ahmed S, Vepuri SB, Ramesh M, et al. In Silico characterization of the binding affinity of dendrimers to Penicillin-Binding Proteins (PBPs): can PBPs be potential targets for antibacterial dendrimers? Appl Biochem Biotechnol. 2016;178(8):1546–1566.
  • Savithri JS, Rajakumar P. Synthesis, photophysical, antibacterial and molecular docking studies on aromatic ring core-containing rhodamine B decorated triazole bridged dendrimers. New J Chem. 2018;42(24):19390–19399.
  • Martinho N, Silva LC, Florindo HF, et al. Rational design of novel, fluorescent, tagged glutamic acid dendrimers with different terminal groups and in silico analysis of their properties. Int J Nanomedicine. 2017;12:7053.
  • Moura L, Martinho N, Silva L, et al., Poly-glutamic dendrimer-based conjugates for cancer vaccination–a computational design for targeted delivery of antigens. J Drug Target. 2017;25(9–10):873–880.
  • Jain V, Maiti PK Dendrimer Library. 2020 [cited 2020 Apr 25]. Available from: https://sites.google.com/site/dendrimerlibrary/home.
  • Wei Q, Ge Z, Voit B. Thermally activated delayed fluorescent polymers: structures, properties, and applications in OLED devices. Macromol Rapid Commun. 2019;40(1):1800570.
  • Maiti S, Mahajan G, Phadke S, et al. Application of polyamidoamine dendrimer in reactive dyeing of cotton. J Tex Inst. 2018;109(6):823–831.
  • Nonahal M, Rastin H, Saeb MR, et al. Epoxy/PAMAM dendrimer-modified graphene oxide nanocomposite coatings: nonisothermal cure kinetics study. Prog Org Coat. 2018;114:233–243.
  • Sajid M. Dendrimers based sorbents: promising materials for analytical extractions. Trends Analyt Chem. 2018;98:114–127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.