234
Views
16
CrossRef citations to date
0
Altmetric
Perspective

What place does molecular topology have in today’s drug discovery?

, , &
Pages 1133-1144 | Received 30 Jan 2020, Accepted 13 May 2020, Published online: 04 Jun 2020

References

  • Zanni R, Galvez-Llompart M, García-Domenech R, et al. Latest advances in molecular topology applications for drug discovery. Expert Opin Drug Discov. 2015;10(9):945–957.
  • Blay V, García-Domenech R, Galvez J. Problem solving with molecular topology: a walkthrough. Chem Texts. 2017;3(2):1–5.
  • Wang T, Yuan XS, Wu MB, et al. The advancement of multidimensional QSAR for novel drug discovery - where are we headed? Expert Opin Drug Discov. 2017;12(8):769–784.
  • Bellera CL, Di Ianni ME, Talevi A. The application of molecular topology for ulcerative colitis drug discovery. Expert Opin Drug Discov. 2018;13(1):89–101.
  • Makhouri FR, Ghasemi JB. Combating diseases with computational strategies used for drug design and discovery. Curr Top Med Chem. 2018;18(32):2743–2773.
  • Bellera CL, Talevi A. Quantitative structure-activity relationship models for compounds with anticonvulsant activity. Expert Opin Drug Discov. 2019;14(7):653–665.
  • Neves BJ, Braga RC, Melo-Filho CC, et al. QSAR-based virtual screening: advances and applications in drug discovery. Front Pharmacol. 2018;13(9):1275.
  • Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today. 2015;20(3):318–331.
  • Gertrudes JC, Maltarollo VG, Silva RA, et al. Machine learning techniques and drug design. Curr Med Chem. 2012;19(25):4289–4297.
  • Lo YC, Rensi SE, Torng W, et al. Machine learning in chemoinformatics and drug discovery. Drug Discov Today. 2018;23(8):1538–1546.
  • Zhang L, Tan J, Han D, et al. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 1680-1685;2017; 22(11). DOI:10.1152/ajplegacy.1975.229.3.754
  • Lima AN, Philot EA, Trossini GHG, et al. Use of machine learning approaches for novel drug discovery. Expert Opin Drug Discov. 2016;11(3):225–239.
  • Gini G, Zanoli F. Machine learning and deep learning methods in ecotoxicological QSAR modeling. In: Ecotoxicological QSARs. Humana, New York, NY: Springer; 2020. p. 111–149.
  • Maltarollo VG, Gertrudes JC, Oliveira PR, et al. Applying machine learning techniques for ADME-Tox prediction: a review. Expert Opin Drug Met Toxi. 2015;11(2):259–271. .
  • Devinyak TO, Lesyk BR. 5-Year trends in QSAR and its machine learning methods. Curr Comput Aided Drug Des. 2016;12(4):265–271.
  • Simões RS, Maltarollo VG, Oliveira PR, et al. Transfer and multi-task learning in QSAR modeling: advances and challenges. Front Pharmacol. 2018;9:74.
  • Mauri A, Consonni V, Todeschini R. Molecular descriptors. In: Leszczynski J, Kaczmarek-Kedziera A, Puzyn T, et al., editors. Handbook of computational chemistry. Cham: Springer; 2017:2065–2093.
  • Amigo JM, Galvez J, Villar VM. A review on molecular topology: applying graph theory to drug discovery and design. Naturwissenschaften. 2009;96(7):749–761.
  • García-Domenech R, Galvez J, de Julian-ortiz JV, et al. Some new trends in chemical graph theory. Chem Rev. 2008;108(3):1127–1169.
  • Zanni R, Garcia-Domenech R, Galvez-Llompart M, et al. Alzheimer: a decade of drug design. Why molecular topology can be an extra edge? Curr Neuropharmacol. 2018;16(6):849–864.
  • Caboni L, Galvez-Llompart M, Galvez J, et al. Molecular topology applied to the discovery of 1-benzyl-2-(3-fluorophenyl)-4-hydroxy-3-(3-phenylpropanoyl)-2H-pyrrole-5-one as a non-ligand-binding-pocket antiandrogen. J Chem Inf Model. 2014;54(10):2953–2966.
  • Galvez-Llompart M, Cantin A, Rey F, et al. Computational screening of structure directing agents for the synthesis of zeolites. A simplified model. Crystalline Mat. 2019;234(7–8):451–460.
  • Balaban AT. Drug design, molecular descriptors in. In: Meyers R, editor. Encyclopedia of complexity and systems science. New York, NY: Springer; 2009. Available at: https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30440-3_136#howtocite
  • Arodola OA, Soliman ME. Quantum mechanics implementation in drug-design workflows: does it really help? [published correction appears in Drug Des Devel Ther. 2017 Nov 08;11:3205]. Drug Des Devel Ther. 2017;11:2551–2564.
  • Randić M, Zupan J. On interpretation of well-known topological indices. J Chem Inf Comput Sci. 2001;41(3):550–560.
  • Randić M, Zupan J. Topology in chemistry discrete mathematics of molecules. In: Dennis H. Rouvray and R. Bruce King, editor. Horwood Publishing Series in Chemical Science. Chapter 9 - On the structural interpretation of topological indices. 2002. pp. 249–291.
  • Sauvage JP, Stoddart JF, Feringa BL The nobel prize in chemistry; 2016 [cited 2020 January 20]. Available at: https://www.nobelprize.org/prizes/chemistry/2016/summary/
  • Sauvage JP, Dietrich‐Buchecker C, eds. Molecular catenanes, rotaxanes and knots: a journey through the world of molecular topology. Weinheim, Germany: WILEY ‐ VCH Verlag GmbH; 2008.
  • Thouless DJ, Haldane FDM, Kosterlitz JM The Nobel Prize in physics; 2016. [cited 2020 Jan 20]. Available at: https://www.nobelprize.org/prizes/physics/2016/summary/
  • Estrada E, Molina E, Perdomo-Lopez I. Can 3D structural parameters be predicted from 2D (topological) molecular descriptors? J Chem Inf Comput Sci. 2001;41(4):1015–1021.
  • Zanni R, Galvez-Llompart M, Garcia-Domenech R, et al. The role of charge indices and other pure topological descriptors at predicting 3D molecular features. Work in Progress. 2020.
  • Speck-Planche A. Recent advances in fragment-based computational drug design: tackling simultaneous targets/biological effects. Future Med Chem. 2018;10:2021–2024.
  • Isayev O, Oses C, Toher C, et al. Universal fragment descriptors for predicting properties of inorganic crystals. Nat Commun. 2017;8(1):1–12.
  • Galvez J, Garcia R, Salabert MT, et al. Charge Indexes. New Topological Descriptors J Chem Inf Comput Sci. 1994;34(3):520–525.
  • Jie J, Hu Z, Qian G, et al. Discovering unusual structures from exception using big data and machine learning techniques. Sci Bull. 2019;64:612.
  • Bajusz D, Rácz A, Héberger K. Chemical data formats, fingerprints, and other molecular descriptions for database analysis and searching. Comprehensive Med Chem III. 2017;3:329–378.
  • Lipkus AH, Yuan Q, Lucas KA, et al. CAS Registry. Structural diversity of organic chemistry. A scaffold analysis of the CAS Registry. J Org Chem. 2008;73(12):4443–4451.
  • Pérez-García A, Martínez-Cruz J, Zanni R, et al. Chitin deacetylase inhibitors and their use as agricultural fungicides, arthropocides and nematicides. P201930440. 2019. Spain.
  • Cherkasov A, Muratov EN, Fourches D, et al. QSAR modeling: where have you been? Where are you going to? J Med Chem. 2014;57(12):4977–5010.
  • Paucar R, Moreno-Viguri E, Pérez-Silanes S. Challenges in chagas disease drug discovery: a review. Curr Med Chem. 2016;23(28):3154–3170.
  • Zanni R, Galvez-Llompart M, Machuca J, et al. Molecular topology: A new strategy for antimicrobial resistance control. Eur J Med Chem. 2017;137:233–246.
  • Faidallah HM, Girgis AS, Tiwari AD, et al. Synthesis, antibacterial properties and 2D-QSAR studies of quinolone-triazole conjugates. Eur J Med Chem. 2018;143:1524–1534.
  • Speck-Planche A, Cordeiro MN. De novo computational design of compounds virtually displaying potent antibacterial activity and desirable in vitro ADMET profiles. Med Chem Res. 2017;26(10):2345.
  • Panda SS, Detistov OS, Girgis AS, et al. Synthesis and molecular modeling of antimicrobial active fluoroquinolone-pyrazine conjugates with amino acid linkers. Bioorg Med Chem Lett. 2016;26(9):2198–2205.
  • Castillo-Garit JA, Marrero-Ponce Y, Barigye SJ, et al. In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach. J Braz Chem Soc. 2015;26(6):1218–1226.
  • Panda SS, Liaqat S, Girgis AS, et al. Novel antibacterial active quinolone-fluoroquinolone conjugates and 2D-QSAR studies. Bioorg Med Chem Lett. 2015;25(18):3816–3821.
  • Speck-Planche A, Cordeiro MN. Computer-aided discovery in antimicrobial research: in silico model for virtual screening of potent and safe anti-pseudomonas agents. Comb Chem High Throughput Screen. 2015;18(3):305–314.
  • Nocedo-Mena D, Cornelio C, Camacho-Corona MDR, et al. Modeling antibacterial activity with machine learning and fusion of chemical structure information with microorganism metabolic networks. J Chem Inf Model. 2019;59(3):1109–1120.
  • Speck-Planche A, Cordeiro MN. Multi-target QSAR approaches for modeling protein inhibitors. Simultaneous prediction of activities against biomacromolecules present in gram-negative bacteria. Curr Top Med Chem. 2015;15(18):1801–1813.
  • Speck-Planche A, Kleandrova VV, Ruso JM, et al. First multitarget chemo-bioinformatic model to enable the discovery of antibacterial peptides against multiple gram-positive pathogens. J Chem Inf Model. 2016;56(3):588–598.
  • Nimrod G, Fischman S, Austin M, et al. Computational design of epitope-specific functional antibodies. Cell Rep. 2018;25(8):2121–2131.e5.
  • Niu B, Lu Y, Wang J, et al. 2D-SAR, Topomer CoMFA and molecular docking studies on avian influenza neuraminidase inhibitors. Comput Struct Biotechnol J. 2018;17:39–48.
  • Dey S, Roy P, Dutta T, et al. Rational design of peptide vaccines for the highly lethal nipah and Hendra viruses. bioRxiv. 2018:1–26.
  • Dey S, Nandy A, Basak SC, et al. A bioinformatics approach to designing a Zika virus vaccine. Comput Biol Chem. 2017;68:143–152.
  • Speck-Planche A, Cordeiro MN. Speeding up early drug discovery in antiviral research: a fragment-based in silico approach for the design of virtual anti-Hepatitis C leads. ACS Comb Sci. 2017;19(8):501–512.
  • Kleandrova VV, Speck Planche A. Multitasking model for computer-aided design and virtual screening of compounds with high anti-HIV activity and desirable ADMET properties. In: Speck-Planche A editor. Multi-scale approaches in drug discovery: from empirical knowledge to in silico experiments and back 1st. Chapter: 3. Amsterdam, Netherlands: Elsevier;2017:1–238.
  • Vásquez-Domínguez E, Armijos-Jaramillo VD, Tejera E, et al. Multioutput perturbation-theory machine learning (PTML) model of ChEMBL data for antiretroviral compounds. Mol Pharm. 2019;16(10):4200–4212.
  • Capuzzi SJ, Sun W, Muratov EN, et al. Computer-aided discovery and characterization of novel ebola virus inhibitors. J Med Chem. 2018;61(8):3582–3594.
  • Prada-Gracia D, Huerta-Yépez S, Moreno-Vargas LM. Application of computational methods for anticancer drug discovery, design, and optimization. Bol Med Hosp Infant Mex. 2016;73(6):411–423.
  • Speck-Planche A, Scotti MT. BET bromodomain inhibitors: fragment-based in silico design using multi-target QSAR models. Mol Divers. 2019;23(3):555–572.
  • Speck-Planche A. Combining ensemble learning with a fragment-based topological approach to generate new molecular diversity in drug discovery: in Silico design of Hsp90 inhibitors. ACS Omega. 2018;3(11):14704–14716.
  • Singh AK, Misra K. 2D - QSAR (Quantitative structure activity relationship) Study of probable inhibitors for oral and cervical cancers, generation of model for pharmacophore prediction. Res Rev: J Drug Des Discov. 2018;5(1):1–13.
  • Zhao M, Wang L, Zheng L, et al. 2D-QSAR and 3D-QSAR analyses for EGFR inhibitors. Biomed Res Int. 2017;2017:4649191.
  • Girgis AS, Panda SS, Aziz MN, et al. Rational design, synthesis, and 2D-QSAR study of anti-oncological alkaloids against hepatoma and cervical carcinoma. RSC Advan. 2015;5:36.
  • Veitia MS, Siverio-Mota D, Lerari V, et al. In silico repurposing, design, synthesis and biological evaluation of bisacodyl analogues. MOL2NET. 2018:1–3.
  • Siverio-Mota D, Andujar I, Marrero-Ponce Y, et al. Anti-inflammatory activity and cheminformatics analysis of new poten t 2-Substituted 1-Methyl-5-Nitroindazolinones. Curr Top Med Chem. 2018;17(30):3236–3248.
  • Naumov RN, Panda SS, Girgis AS, et al. Synthesis and QSAR study of novel NSAID hybrid conjugates as potential anti-inflammatory agents. Bioorg Med Chem Lett. 2015;25(11):11.
  • Speck-Planche A. Multicellular target QSAR model for simultaneous prediction and design of anti-pancreatic cancer agents. ACS Omega. 2019;4(2):3122–3132.
  • Zanni R, Galvez-Llompart M, Morell C, et al. Novel cancer chemotherapy hits by molecular topology: dual akt and beta-catenin inhibitors. PLoS One. 2015;10(4):e0124244.
  • Maldonado-Rojas W, Olivero-Verbel J, Marrero-Ponce Y. Computational fishing of new DNA methyltransferase inhibitors from natural products. J Mol Graph Model. 2015;60:43–54.
  • Hodos RA, Kidd BA, Khader S, et al. Computational approaches to drug repurposing and pharmacology. Wiley Interdiscip Rev Syst Biol Med. 2016;8(3):186–210.
  • Veitía MS, Mota DS, Lerari V, et al. Fishing anti-inflammatories from known drugs: in silico repurposing, design, synthesis and biological evaluation of bisacodyl analogues. Curr Top Med Chem. 2017; Epub ahead of print.17(25). DOI:10.2174/1568026617666170817161953.
  • Galvez-Llompart M, Recio MC, García-Domenech R, et al. Molecular topology: a strategy to identify novel compounds against ulcerative colitis. Mol Divers. 2017;21(1):219–234.
  • Doucet JP, Doucet-Panaye A, Papa E. Topological QSAR modelling of carboxamides repellent activity to Aedes aegypti. Mol Inform. Epub ahead of print;2019.
  • Bollini M, Bruno AM, Niño ME, et al. Synthesis, 2D-QSAR studies and biological evaluation of quinazoline derivatives as potent anti-trypanosoma cruzi agents. Med Chem. 2019;15(3):265–276.
  • Bellera CL, Sbaraglini ML, Alberca LN, et al. In silico modeling of FDA-approved drugs for discovery of therapies against neglected diseases: a drug repurposing approach. Rep Tech and Meth. 2019:625–648.
  • Aher RB, Roy K. Design of antimalarial transmission blocking agents: pharmacophore mapping of ligands active against stage-V mature gametocytes of Plasmodium falciparum. J Biomol Struct Dyn. 2019;37(14):3660–3673.
  • Alberca LN, Sbaraglini ML, Balcazar D, et al. Discovery of novel polyamine analogs with anti-protozoal activity by computer guided drug repositioning. J Comput Aided Mol Des. 2016;30(4):305–321.
  • Garcia-Domenech R, Zanni R, Galvez-Llompart M, et al. Predicting antiprotozoal activity of benzyl phenyl ether diamine derivatives through QSAR multi-target and molecular topology. Mol Divers. 2015;19(2):357–366.
  • Basak SC, Bhattacharjee AK. Computational approaches for the design of mosquito repellent chemicals. Curr Med Chem. Epub ahead of print;2018.
  • Aher RB, Roy K. In silico modeling of antimalarial protein kinase inhibitors. Lett Drug Des Discov. 2016;13(2):129–134.
  • González-Díaz H, Frías-Fraire M, Aguirre-Crespo A, et al. Multi activity QSAR models for anti-parasite drugs using markov entropy indices. SciForum. 2015.
  • Sbaraglini ML, Bellera CL, Quarroz-Braghini J, et al. Combined therapy with Benznidazole and repurposed drugs Clofazimine and Benidipine for chronic Chagas disease. Eur J Med Chem. 2019;184:111778. .
  • Bellera CL, Balcazar DE, Vanrell MC, et al. Computer-guided drug repurposing: identification of trypanocidal activity of clofazimine, benidipine and saquinavir. Eur J Med Chem. 2015 Mar;26(93):338–348.
  • Meneses-Marcel A, Marrero-Ponce Y, Ibáñez-Escribano A, et al. Drug repositioning for novel antitrichomonas from known antiprotozoan drugs using hierarchical screening. Future Med Chem. 2018;10(8):863–878.
  • Castillo-Garit JA, Del Toro-Cortés O, Vega MC, et al. Bond-based bilinear indices for computational discovery of novel trypanosomicidal drug-like compounds through virtual screening. Eur J Med Chem. 2015;96:238–244.
  • Castillo-Garit JA, Flores-Balmaseda N, Álvarez O, et al. Computational identification of chemical compounds with potential activity against leishmania amazonensis using nonlinear machine learning techniques. Curr Top Med Chem. 2018;18(27):2347–2354.
  • García-Domenech R, Zanni R, Galvez-Llompart M, et al. Molecular topology as a powerful tool for searching for new repellents and novel drugs against diseases transmitted by mosquitoes. In: computational design of chemicals for the control of mosquitoes and their diseases. Oxfordshire, UK: Taylor & Francis Group. CRC Press;2017. p. 107138.
  • Scotti MT, Speck-Planche A, Tavares JF, et al. Virtual screening of alkaloids from apocynaceae with potential antitrypanosomal activity. Curr Bioinf. 2015;10(5):5.
  • Karmakar A, Ambure P, Mallick T, et al. Exploration of synthetic antioxidant flavonoid analogs as acetylcholinesterase inhibitors: an approach towards finding their quantitative structure–activity relationship. Med Chem Res. 2019;28(5):723–741.
  • Ambure P, Bhat J, Puzyn T, et al. Identifying natural compounds as multi-target-directed ligands against Alzheimer’s disease: an in silico approach. J Biomol Struct Dyn. 2019;37(5):1282–1306.
  • Soria Merino M, Castillo Garit J, Romero Otero M, et al. QSAR studies in the identification of chemical compounds with affinity for dopamine transporter: a possible method of selection of new radiotracers in the Parkinson’s Disease diagnosis. Eur J Nuclear Med Mol Imag. 2019;46:S717S717.
  • López-Sacerio A, Cañizares-Carmenate Y, Castillo-Garit JA. Identification of new analgesic candidates through virtual in silico screening and in vivo experimental test. MOL2NET. 2018.
  • Diéguez‐Santana K, Rivera‐Borroto OM, Puris A, et al. Beyond model interpretability using LDA and decision trees for α‐amylase and α‐glucosidase inhibitor classification studies. Chem Biol Drug Des. 2019;94(1):1414–1421.
  • Srour AM, Abd El-Karim SS, Saleh DO, et al. Rational design, synthesis and 2D-QSAR study of novel vasorelaxant active benzofuran-pyridine hybrids. Bioorg Med Chem Lett. 2016;26(10):2557–2561.
  • George RF, Saleh DO. Synthesis, vasorelaxant activity and 2D-QSAR study of some novel pyridazine derivatives. Eur J Med Chem. 2016;108:663–673.
  • Martínez-López Y, Barigye SJ, Martínez-Santiago O, et al. Prediction of aquatic toxicity of benzene derivatives using molecular descriptor from atomic weighted vectors. Environ Toxicol Pharmacol. 2017;56:314–321.
  • Ambure P, Roy K. CADD modeling of multi-target drugs against Alzheimer’s disease. Curr Drug Targets. 2017;18(5):522–533.
  • García-Pereira I, Zanni R, Galvez-Llompart M, et al. DesMol2, an effective tool for the construction of molecular libraries and its application to QSAR using molecular topology. Molecules. 2019;24(4):736.
  • Castillo-Garit JA, López-Sacerio A, Marrero-Ponce Y, et al. QSAR models and virtual screening for discovery of new analgesic leads. International Conference on Multidisciplinary Sciences. MOL2NET; 2016.
  • Cañizares-Carmenate Y, Mena-Ulecia K, Perera-Sardiña Y, et al. An approach to identify new antihypertensive agents using Thermolysin as model: in silico study based on QSARINS and docking. Arab J Chem. 2016;12(8):4861–4877.
  • Zanni R, Galvez-Llompart M, Garcia-Pereira I, et al. Molecular topology and QSAR multi-target analysis to boost the in silico research for fungicides in agricultural chemistry. Mol Divers. 2019;23(2):371–379.
  • Blay V, Gullón-Soleto J, Gálvez-Llompart M, et al. Biodegradability Prediction of Fragrant Molecules by Molecular Topology. 2016;4(8):4224–4231.
  • Kirchmair J, Markt P, Distinto S, et al. The Protein Data Bank (PDB), its related services and software tools as key components for in silico guided drug discovery. J Med Chem. 2008;51(22):7021–7040.
  • Stierand K, Rarey M. Drawing the PDB: protein− ligand complexes in two dimensions. ACS Med Chem Lett. 2010;1(9):540–545.
  • Haupt VJ, Daminelli S, Schroeder M. Drug promiscuity in PDB: protein binding site similarity is key. PLoS One. 2013;8(6):e65894.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.