241
Views
12
CrossRef citations to date
0
Altmetric
Review

The recent application of 3D-QSAR and docking studies to novel HIV-protease inhibitor drug discovery

, , &
Pages 1095-1109 | Received 03 Dec 2019, Accepted 20 May 2020, Published online: 21 Jul 2020

References

  • Eilami O, Nazari A, Dousti M, et al. Investigation of HIV/AIDS prevalence and associated risk factors among female sex workers from 2010 to 2017: a meta-analysis study. HIV/AIDS - Res Palliat Care. 2019;Volume 11:105–117.
  • Hansoti B, Mwinnyaa G, Hahn E, et al. Targeting the HIV epidemic in South Africa: the need for testing and linkage to care in emergency departments. EClinicalMedicine. 2019;15:14–22.
  • Carnes SK, Sheehan JH, Aiken C. Inhibitors of the HIV-1 capsid, a target of opportunity. Curr Opin HIV AIDS. 2018;13(4):359–365.
  • Awi NJ, Teow S-Y. Antibody-mediated therapy against HIV/AIDS: where are we standing now? J Pathog. 2018;2018:1–9.
  • Stoszko M, Ne E, Abner E, et al. A broad drug arsenal to attack a strenuous latent HIV reservoir. Curr Opin Virol. 2019;38:37–53.
  • Lv Z, Chu Y, Wang Y. HIV protease inhibitors: A review of molecular selectivity and toxicity. HIV/AIDS - Res Palliat Care. 2015. DOI:10.2147/HIV.S79956.
  • Ghosh AK, Osswald HL, Prato G. Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS. J Med Chem. 2016;59(11):5172–5208. .
  • Halder AK. Finding the structural requirements of diverse HIV-1 protease inhibitors using multiple QSAR modelling for lead identification. SAR QSAR Environ Res. 2018;29(11):911–933. .
  • Chandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: A review. Ther Clin Risk Manag. 2008. DOI:10.2147/tcrm.s3285
  • Weiss J, Haefeli WE. Impact of ATP-binding cassette transporters on human immunodeficiency virus therapy. 1sted. Cambridge (MA): Elsevier Inc; 2010. 280. doi:10.1016/S1937-6448(10)80005-X.
  • Liebert MA, Requena DGDE, Gallego O, et al. Indinavir plasma concentrations and resistance mutations in patients experiencing early virological failure. AIDS Res Hum Retroviruses. 2003;19:457–459.
  • Max B, Sherer R Management of the adverse effects of antiretroviral therapy and medication adherence 2000:96–116.
  • Gantt S, Carlsson J, Ikoma M, et al. The HIV protease inhibitor nelfinavir inhibits Kaposi ’ s sarcoma-associated herpesvirus replication in vitro.  Antimicrob Agents Chemother. 2011;55:2696–2703.
  • Noor MA, Parker RA, Mara EO, et al. The effects of HIV protease inhibitors atazanavir and lopinavir/ritonavir on insulin sensitivity in HIV-seronegative healthy adults 2004.
  • Crane HM, Van Rompaey SE, Kitahata MM. Antiretroviral medications associated with elevated blood pressure among patients receiving highly active antiretroviral therapy. AIDS. 2006;20:1019‐1026.
  • Cresswell FV, Tomlins J. Achilles tendinopathy following Kaletra (lopinavir/ritonavir) use. Int J STD AIDS. 2014;25:833–835.
  • St H, Millard J, Rooney J, et al. In vitro antiviral activity of 141W94 (VX-478) in combination with other antiretroviral agents. ANTIVIR RES. 1996;29:53–56.
  • Profile T. Amprenavir or Fosamprenavir plus Ritonavir in HIV Infection Pharmacology. Efficacy Tolerability Profile. 2005;65:633–659.
  • Company BS. Rx only Microbiology n.d..
  • Rusconi S, La Seta Catamancio S, Citterio P, et al. Susceptibility to PNU-140690 (Tipranavir) of human immunodeficiency virus type 1 isolates derived from patients with multidrug resistance to other protease inhibitors. Antimicrob Agents Chemother. 2000;44:1328‐1332. DOI:10.1128/AAC.44.5.1328-1332.2000
  • Sheldon J, Toro C, Jime V, et al. Susceptibility to protease inhibitors in HIV-2 primary isolates from patients failing antiretroviral therapy. Antimicrob Chemother. 2006;709–713. DOI:10.1093/jac/dkl034.
  • Tie Y, Boross PI, Wang Y, et al. High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) active against multi-drug-resistant clinical strains. J Mol Bio. 2004; 341–352. DOI:10.1016/j.jmb.2004.02.052
  • Antinori A, Meraviglia P, Arminio A, et al. Effectiveness, durability, and safety of darunavir/ritonavir in HIV-1-infected patients in routine clinical practice in Italy: a postauthorization noninterventional study 2016:1589–1603.
  • Clavel F, Mammano F. Role of gag in HIV resistance to protease inhibitors. Viruses. 2010;2(7):1411–1426.
  • Rule AM. American Society of Health-System Pharmacists. Pain Manage Network. n.d.;18:59–62.
  • Wensing AMJ, van Maarseveen NM, Nijhuis M. Fifteen years of HIV Protease Inhibitors: raising the barrier to resistance. Antiviral Res. 2010;85(1):59–74.
  • Baxter JD, Chasanov WM. An update on HIV-1 protease inhibitor resistance. J AIDS Clin Res. 2016;7(6). DOI:10.4172/2155-6113.1000581.
  • Nasiri-Tajabadi Z, Salim FB, Najafzadeh MJ, et al. A surveillance on protease inhibitor resistance-associated mutations among iranian hiv-1 patients. Arch Clin Infect Dis. 2018;13(6). DOI:10.5812/archcid.69153
  • Kim R, Baxter JD. Protease inhibitor resistance update: where are we now? AIDS Patient Care and STDs. 2008;22(4):267–277.
  • Rhee SY, Taylor J, Fessel WJ, et al. HIV-1 protease mutations and protease inhibitor cross-resistance. Antimicrob Agents Chemother. 2010;54(10):4253–4261.
  • Hou T, McLaughlin WA, Wang W. Evaluating the potency of HIV-1 protease drugs to combat resistance. Proteins Struct Funct Genet. 2008. DOI:10.1002/prot.21808
  • Tie Y, Wang YF, Boross PI, et al. Critical differences in HIV-1 and HIV-2 protease specificity for clinical inhibitors. Protein Sci. 2012;21(3):339–350.
  • Yu Y, Wang J, Shao Q, et al. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir. Sci Rep. 2015. DOI:10.1038/srep10517
  • Dam E, Quercia R, Glass B, et al. Gag mutations strongly contribute to HIV-1 resistance to protease inhibitors in highly drug-experienced patients besides compensating for fitness loss. PLoS Pathog. 2009;5(3):e1000345.
  • Ali A, Reddy GSKK, Nalam MNL, et al. Structure-based design, synthesis, and structure-activity relationship studies of HIV-1 protease inhibitors incorporating phenyloxazolidinones. J Med Chem. 2010. DOI:10.1021/jm1008743.
  • Golbraikh A, Wang XS, Zhu H, et al. Predictive QSAR modeling: methods and applications in drug discovery and chemical risk assessment. Handb Comput Chem. 2012. DOI:10.1007/978-94-007-0711-5_37
  • Akamatsu M. Current state and perspectives of 3D-QSAR. Curr Top Med Chem. 2002;2(12):1381–1394.
  • Hopfinger A, Tokarski J. Three-dimensional quantitativestructure-activity relationship analysis. In: Charifson P, editor. Pract. Appl. Comput. Drug Des. New York (USA): Marcel Dek; 1997. p. 105–164.
  • Oprea T. 3D QSAR modeling in drug design. In: Bultinck P, Winter H, Langenaeker W, et al., editors. Comput. Med. Chem. Drug Discov. New York (USA): Marcel Dek; 2004. p. 571–616.
  • Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in Drug Design - A Review. Curr Top Med Chem. 2010;10:95–115.
  • Madhavan T. A Review of 3D-QSAR in Drug Design. JCNS. 2012;5:1–5.
  • Martin Y. 3D QSAR, current state, scope, and limitations. In: Kubinyi H, Folkers G, Martin Y, editors. 3D QSAR Drug Des. - Recent Adv. , New York (USA): Kluwer Academic Publishers; 1998. p. 3–23.
  • Singh DA, Singh DR. QSAR and its role in target-ligand interaction. Open Bioinforma J. 2014. DOI:10.2174/1875036201307010063
  • Cheng Q, Chen Q, Xu JH, et al. A 3D-QSAR assisted activity prediction strategy for expanding substrate spectra of an aldehyde ketone reductase. Mol Catal. 2018;455:224–232.
  • Patel HM, Noolvi MN, Sharma P, et al. Quantitative structure-activity relationship (QSAR) studies as strategic approach in drug discovery. Med Chem Res. 2014;23(12):4991–5007.
  • Cramer R, Patterson D, Bunce J. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc. 1988;110(18):5959–5967.
  • Klebe G, Abraham U, Mietzner T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem. 1994;37(24):4130–4146.
  • Jain A, Koile K, Chapman D. Compass: predicting biological activities from molecular surface properties. Performance comparisons on a steroid benchmark. J Med Chem. 1994;37(15):2315–2327.
  • Silverman B, Platt D. Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. J Med Chem. 1996;39(11):2129–2140.
  • Robinson D, Winn P, Lyne P, et al. Self-organizing molecular field analysis: a tool for Structure–Activity studies. J Med Chem. 1999;42(4):573–583.
  • Gohlke H, Klebe G. DrugScore meets CoMFA: adaptation of fields for molecular comparison (AFMoC) or how to tailor knowledge-based pair-potentials to a particular protein. J Med Chem. 2002;45(19):4153–4170.
  • Semus S. A novel hydropathic intermolecular field analysis (HIFA) for the prediction of ligand-receptor binding affinities. Med Chem Res. 1999;9:535–550.
  • Datar P, Khedkar S, Malde A, et al. Comparative residue interaction analysis (CoRIA): a 3D-QSAR approach to explore the binding contributions of active site residues with ligands. J Comput Aided Mol Des. 2006;20(6):343–360.
  • Dhaked D, Verma J, Saran A, et al. Exploring the binding of HIV-1 integrase inhibitors by comparative residue interaction analysis (CoRIA). J Mol Model. 2009;15(3):233–245.
  • Ortiz A, Pisabarro M, Gago F, et al. Prediction of drug binding affinities by comparative binding energy analysis. J Med Chem. 1995;38(14):2681–2691.
  • Lushington G, Guo J, Wang J. Whither combine? New opportunities for receptor-based QSAR. Curr Med Chem. 2007;14(17):1863–1877.
  • Lowis D. HQSAR: a new, highly predictive QSAR technique. Tripos tech. notes. USA: Tripos Inc; 1997.
  • Todeschini R, Lasagni M, Marengo E. New Molecular Descriptors for 2D- and 3D-Structures. Theory J Chemom. 1994;8:263–273.
  • Ferguson A, Heritage T, Jonathon P, et al. EVA: a new theoretically based molecular descriptor for use in QSAR/QSPR Analysis. J Comput Aided Mol Des. 1997;11(2):143–152. .
  • Pastor M, Cruciani G, McLay I, et al. GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem. 2000;43(17):3233–3243.
  • Walters D, Hinds R. Genetically evolved receptor models: a computational approach to construction of receptor models. J Med Chem. 1994;37(16):2527–2536.
  • Verma J, Khedkar V, Prabhu A, et al. A comprehensive analysis of the thermodynamic events involved in ligand-receptor binding using CoRIA and its variants. J Comput Aided Mol Des. 2008;22:91–104.
  • Dunn III W, Rogers D. Genetic partial least squares in QSAR. In: Devillers J, editor. Genet. algorithms Mol. Model. London, UK: Academic Press; 1996. p. 109–130.
  • Rachana KOL, Rani S. Modern drug design with advancement in QSAR : A review. Int J Res Biosciences. 2013;2:1–12.
  • Abdizadeh R, Hadizadeh F, Abdizadeh T. QSAR analysis of coumarin-based benzamides as histone deacetylase inhibitors using CoMFA, CoMSIA and HQSAR methods. J Mol Struct. 2020;1199:126961.
  • Abdizadeh T, Kalani MR, Abnous K, et al. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur J Med Chem. 2017;132:42–62.
  • Rasulev B. Recent developments in 3D QSAR and molecular docking studies of organic and nanostructures. Leszczynski J editor. Handb. Comput. Chem. Springer International Publishing: Switzerland. 2017. 2133–2161. DOI:10.1007/978-3-319-27282-5
  • Kubinyi H. 2D QSAR models: Hansch and free-wilson analyses. In: Bultinck P, Winter H, Langenaeker W, et al., editors. Comput. Med. Chem. Drug Discov. New York (USA): CRC press; 2004. p. 539–570.
  • Sippl W. Development of biologically active compounds by combining 3D QSAR and structure-based design methods. J Comput Aided Mol Des. 2002;16(11):825–830.
  • da Cunha EFF, Sippl W, de Castro Ramalho T, et al. 3D-QSAR CoMFA/CoMSIA models based on theoretical active conformers of HOE/BAY-793 analogs derived from HIV-1 protease inhibitor complexes. Eur J Med Chem. 2009;44(11):4344–4352.
  • Ferreira G, Leitao A, Montanari C, et al. Comparative Molecular Field Analysis of a Series of Inhibitors of HIV-1 Protease. Med Chem (Los Angeles). 2012. DOI:10.2174/157340611794859370
  • Kubinyi H. 2D QSAR models: Hansch and Free-Wilson analyses. Comput Med Chem Drug Discov New York (USA): CRC press; 2003. p. 565-596.
  • Martin YC. 3D QSAR: current State, Scope, and Limitations. Perspect Drug Discov Des. 1998. DOI:10.1007/0-306-46858-1_1
  • Nair AC, Jayatilleke P, Wang X, et al. Computational studies on tetrahydropyrimidine-2-one HIV-1 protease inhibitors: improving three-dimensional quantitative structure-activity relationship comparative molecular field analysis models by inclusion of calculated inhibitor- and receptor-based pr. J Med Chem. 2002;45(4):973–983.
  • Ul-Haq Z, Usmani S, Shamshad H, et al. A combined 3D-QSAR and docking studies for the In-silico prediction of HIV-protease inhibitors. Chem Cent J. 2013. DOI:10.1186/1752-153X-7-88
  • Jorissen RN, Kiran Kumar Reddy GS, Ali A, et al. Additivity in the analysis and design of HIV protease inhibitors. J Med Chem. 2009;52(3):737–754.
  • Huang X, Xu L, Luo X, et al. Elucidating the inhibiting mode of AHPBA derivatives against HIV-1 protease and building predictive 3D-QSAR models. J Med Chem. 2002;45(2):333–343.
  • Durdagi S, Mavromoustakos T, Papadopoulos MG. 3D QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies of fullerene-based HIV-1 PR inhibitors. Bioorganic Med Chem Lett. 2008;18(23):6283–6289.
  • Durdagi S, Papadopoulos MG, Papahatjis DP, et al. Combined 3D QSAR and molecular docking studies to reveal novel cannabinoid ligands with optimum binding activity. Bioorganic Med Chem Lett. 2007;17(24):6754–6763.
  • Nunthanavanit P, Anthony NG, Johnston BF, et al. 3D-QSAR studies on chromone derivatives as HIV-1 protease inhibitors: application of molecular field analysis. Arch Pharm (Weinheim). 2008;341(6):357–364.
  • Khedkar VM, Ambre PK, Verma J, et al. Molecular docking and 3D-QSAR studies of HIV-1 protease inhibitors. J Mol Model. 2010;16(7):1251–1268.
  • Tong JB, Bai M, Zhao X. 3D-QSAR and docking studies of HIV-1 protease inhibitors using R-group search and Surflex-dock. Med Chem Res. 2016;25(11):2619–2630.
  • Tong J, Wu Y, Bai M, et al. 3D-QSAR and molecular docking studies on HIV protease inhibitors. J Mol Struct. 2017;1129:17–22.
  • Amin SA, Adhikari N, Bhargava S, et al. Structural exploration of hydroxyethylamines as HIV-1 protease inhibitors: new features identified. SAR QSAR Environ Res. 2018. DOI:10.1080/1062936X.2018.1447511
  • Jagiello K, Grzonkowska M, Swirog M, et al. Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives. J Nanopart Res. 2016;18(9):1–16.
  • Lorca M, Valdes Y, Chung H, et al. Three-dimensional quantitative structure-activity relationships (3D-QSAR) on a series of piperazine-carboxamides fatty acid amide hydrolase (FAAH) inhibitors as a useful tool for the design of new cannabinoid ligands. Int J Mol Sci. 2019;20. DOI:10.3390/ijms20102510
  • Sethi A, Joshi K, Sasikala K, et al. Molecular docking in modern drug discovery: principles and recent applications. Drug Discov Dev - New Adv [Working Title]. 2019;1–21. DOI:10.5772/intechopen.85991
  • Singh N, Shah P, Dwivedi H, et al. Integrated machine learning, molecular docking and 3D-QSAR based approach for identification of potential inhibitors of trypanosomal N-myristoyltransferase. Mol Biosyst. 2016;12:3711–3723.
  • Chen YC. Beware of docking! Trends Pharmacol Sci. 2015;36:78–95. .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.