256
Views
12
CrossRef citations to date
0
Altmetric
Review

Peptide-based targeting of connexins and pannexins for therapeutic purposes

, , , & ORCID Icon
Pages 1213-1222 | Received 01 Apr 2020, Accepted 21 May 2020, Published online: 15 Jun 2020

References

  • Loewenstein WR. Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev. 1981;61(4):829–913.
  • Yeager M, Nicholson BJ. Structure of gap junction intercellular channels. Curr Opin Struct Biol. 1996;6(2):183–192.
  • Kar R, Batra N, Riquelme MA, et al. Biological role of connexin intercellular channels and hemichannels. Arch Biochem Biophys. 2012;524(1):2–15.
  • Johnstone SR, Billaud M, Lohman AW, et al. Posttranslational modifications in connexins and pannexins. J Membr Biol. 2012;245(5–6):319–332.
  • Bao X, Reuss L, Altenberg GA. Regulation of purified and reconstituted connexin 43 hemichannels by protein kinase C-mediated phosphorylation of Serine 368. J Biol Chem. 2004;279(19):20058–20066.
  • Mitropoulou G, Bruzzone R. Modulation of perch connexin35 hemi-channels by cyclic AMP requires a protein kinase A phosphorylation site. J Neurosci Res. 2003;72(2):147–157.
  • Srinivas M, Calderon DP, Kronengold J, et al. Regulation of connexin hemichannels by monovalent cations. J Gen Physiol. 2006;127(1):67–75.
  • De Vuyst E, Decrock E, Cabooter L, et al. Intracellular calcium changes trigger connexin 32 hemichannel opening. Embo J. 2006;25(1):34–44.
  • Sosinsky GE, Boassa D, Dermietzel R, et al. Pannexin channels are not gap junction hemichannels. Channels (Austin). 2011;5(3):193–197.
  • Boassa D, Ambrosi C, Qiu F, et al. Pannexin1 Channels Contain a Glycosylation Site That Targets the hexamer to the plasma membrane. J Biol Chem. 2007;282(43):31733–31743.
  • Chekeni FB, Elliott MR, Sandilos JK, et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature. 2010;467(7317):863–867.
  • Makarenkova HP, Shah SB, Shestopalov VI. The two faces of pannexins: new roles in inflammation and repair. J Inflamm Res. 2018;11:273–288.
  • Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. Embo J. 2006;25(21):5071–5082.
  • Vanden Abeele F, Bidaux G, Gordienko D, et al. Functional implications of calcium permeability of the channel formed by pannexin 1. J Cell Biol. 2006;174(4):535–546.
  • Gossman DG, Zhao HB. Hemichannel-mediated inositol 1,4,5-trisphosphate (IP3) release in the cochlea: a novel mechanism of IP3 intercellular signaling. Cell Commun Adhes. 2008;15(4):305–315.
  • Kang J, Kang N, Lovatt D, et al. Connexin 43 hemichannels are permeable to ATP. J Neurosci. 2008;28(18):4702–4711.
  • Wei L, Sheng H, Chen L, et al. Effect of pannexin-1 on the release of glutamate and cytokines in astrocytes. J Clin Neurosci. 2016;23:135–141.
  • Schalper KA, Sánchez HA, Lee SC, et al. Connexin 43 hemichannels mediate the Ca2+ influx induced by extracellular alkalinization. Am J Physiol Cell Physiol. 2010;299(6):1504–1515.
  • Dahl G. ATP release through pannexon channels. Philos Trans R Soc B. 2015;370(1672):1–11.
  • Vejar S, Oyarzún JE, Retamal MA, et al. Connexin and pannexin-based channels in oligodendrocytes: implications in brain health and disease. Front Cell Neurosci. 2019;13:1–10.
  • Molica F, Figueroa XF, Kwak BR, et al. Connexins and pannexins in vascular function and disease. Int J Mol Sci. 2018;19:6.
  • Cooreman A, van Campenhout R, Ballet S, et al. Connexin and pannexin (Hemi)channels: emerging targets in the treatment of liver disease. Hepatology. 2019;69(3):1317–1323.
  • Kar R, Riquelme MA, Werner S, et al. Connexin 43 channels protect osteocytes against oxidative stress-induced cell death. J Bone Min Res Off J Am Soc Bone Min Res. 2013;28(7):1611–1621.
  • Ozog MA, Siushansian R, Naus CCG. Blocked gap junctional coupling increases glutamate-induced neurotoxicity in neuron-astrocyte co-cultures. J Neuropathol Exp Neurol. 2002;61(2):132–141.
  • Willebrords J, Maes M, Crespo Yanguas S, et al. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol Ther. 2017;180:144–160.
  • Baranova A, Ivanov D, Petrash N, et al. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics. 2004;83(4):706–716.
  • Söhl G, Willecke K. An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes. 2003;10(4–6):173–180.
  • Orellana JA, Froger N, Ezan P, et al. ATP and glutamate released via astroglial connexin43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem. 2011;118(5):826–840.
  • Hainz N, Becker P, Rapp D, et al. Probenecid-treatment reduces demyelination induced by cuprizone feeding. J Chem Neuroanat. 2017;85:21–26.
  • Santiago MF, Veliskova J, Patel NK, et al. Targeting pannexin1 improves seizure outcome. PLoS ONE. 2011;6(9):25178.
  • Maier N, Güldenagel M, Söhl G, et al. Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice. Journal of Physiology. 2002;541(2):521–528.
  • Lutz SE, González-Fernández E, Ventura JCC, et al. Contribution of pannexin1 to experimental autoimmune encephalomyelitis. PLoS ONE. 2013;8(6): DOI:10.1371/annotation/cedbee08-9c0e-42e3-862f-df7409c273ef.
  • Lai CPK, Bechberger JF, Thompson RJ, et al. Tumor-suppressive effects of pannexin 1 in C6 glioma cells. 2007;67(4):1545–1554.
  • Lai C, Bechberger JF, Naus CC. Pannexin2 as a novel growth regulator in C6 glioma cells. Oncogene. 2009;28(49):4402–4408.
  • Nakase T, Söhl G, Theis M, et al. Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexin43 in astrocytes. Am J Pathol. 2004;164(6):2067–2075.
  • Karatas H, Erdener SE, Gursoy-Ozdemir Y, et al. Spreading depression triggers headache by activating neuronal panx1 channels. 2013;339(6123):1092–1095. 10959203.
  • Timóteo MA, Carneiro I, Silva I, et al. ATP released via pannexin-1 hemichannels mediates bladder overactivity triggered by urothelial P2Y6 receptors. Biochem Pharmacol. 2014;87(2):371–379.
  • Bond SR, Naus CC. The pannexins: past and present. Front Physiol. 2014(5):1–24.
  • Lu D, Soleymani S, Madakshire R, et al. ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors. Faseb J. 2012;26(6):2580–2591.
  • Calder BW, Matthew Rhett J, Bainbridge H, et al. Inhibition of connexin 43 hemichannel-mediated ATP release attenuates early inflammation during the foreign body response. Tissue Eng Part A. 2015;21(11–12):1752–1762.
  • Guttman JA, Lin AE-J, Li Y, et al. Gap junction hemichannels contribute to the generation of diarrhoea during infectious enteric disease. Gut. 2010;59(2):218–226.
  • Skals M, Jorgensen NR, Leipziger J, et al. Alpha-hemolysin from escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. Proc Natl Acad Sci U S A. 2009;106(10):4030–4035.
  • Paoletti A, Raza SQ, Voisin L, et al. Editorial: pannexin-1-the hidden gatekeeper for HIV-1. J Leukoc Biol. 2013;94(3):390–392.
  • Orellana JA, Sáez JC, Bennett MVL, et al. HIV increases the release of dickkopf-1 protein from human astrocytes by a Cx43 hemichannel-dependent mechanism. J Neurochem. 2014;128(5):752–763.
  • Masaki K, Suzuki SO, Matsushita T, et al. Connexin 43 astrocytopathy linked to rapidly progressive multiple sclerosis and neuromyelitis optica. PLoS ONE. 2013;8(8):e72919.
  • Willebrords J, Maes M, Pereira IVA, et al. Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic liver disease. Biochim Biophys Acta Mol Basis Dis. 2018;1864(3):819–830.
  • Csak T, Ganz M, Pespisa J, et al. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology. 2011;54(1):133–144.
  • Freeman TJ, Sayedyahossein S, Johnston D, et al. Inhibition of pannexin 1 reduces the tumorigenic properties of human melanoma cells. Cancers (Basel). 2019;11(1):1–24.
  • Warner A, Clements DK, Parikh S, et al. Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes. Journal of Physiology. 1995;488(3):721–728.
  • Braet K, Vandamme W, Martin PEM, et al. Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. 2003;33(1):37–48. 01434160.
  • Eugeni EA, Sa CG, Sa JC, et al. Gap junctional communication coordinates vasopressin-induced glycogenolysis in rat hepatocytes. Am J Physiol Gastrointest Liver Physiol. 1998;274(6):1109–1116.
  • Wang N, De Bock M, Antoons G, et al. Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation. Basic Res Cardiol. 2012;107(6):304.
  • Pollok S, Pfeiffer AC, Lobmann R, et al. Connexin 43 mimetic peptide Gap27 reveals potential differences in the role of Cx43 in wound repair between diabetic and non-diabetic cells. J Cell Mol Med. 2011;15(4):861–873.
  • Ebong EE, Kim S, DePaola N. Flow regulates intercellular communication in HAEC by assembling functional Cx40 and Cx37 gap junctional channels. Am J Physiol Heart Circ Physiol. 2006;290(5):2015–2023.
  • Romanov RA, Rogachevskaja OA, Bystrova MF, et al. Afferent neurotransmission mediated by hemichannels in mammalian taste cells. Embo J. 2007;26(3):657–667.
  • Wright CS, Van Steensel Maurice AM, Hodgins MB. Connexin mimetic peptides improve cell migration rates of human epidermal keratinocytes and dermal fibroblasts in vitro. Wound Repair Regener. 2009;17(2):240–249.
  • Dahl G, Nonner W, Werner R. Attempts to define functional domains of gap junction proteins with synthetic peptides. Biophys J. 1994;67(5):1816–1822.
  • Bol M, Wang N, De Bock M, et al. At the cross-point of connexins, calcium, and ATP: blocking hemichannels inhibits vasoconstriction of rat small mesenteric arteries. Cardiovasc Res. 2017;113(2):195–206.
  • Vinken M, Decrock E, De Vuyst E, et al. Connexin32 hemichannels contribute to the apoptotic-to-necrotic transition during Fas-mediated hepatocyte cell death. Cell Mol Life Sci. 2010;67(6):907–918.
  • Ilvesaro J, Tavi P, Tuukkanen J. Connexin-mimetic peptide Gap 27 decreases osteoclastic activity. BMC Musculoskelet Disord. 2001;2(1):1–6.
  • Haefliger JA, Allagnat F, Hamard L, et al. Targeting Cx40 (Connexin40) expression or function reduces angiogenesis in the developing mouse retina. Arterioscler Thromb Vasc Biol. 2017;37(11):2136–2146.
  • O’Carroll SJ, Alkadhi M, Nicholson LFB, et al. Connexin43 mimetic peptides reduce swelling, astrogliosis, and neuronal cell death after spinal cord injury. Cell Commun Adhes. 2008;15(1–2):27–42.
  • Chen Y-S, Green CR, Teague R, et al. Intravitreal injection of lipoamino acid-modified connexin43 mimetic peptide enhances neuroprotection after retinal ischemia. Drug Deliv Transl Res. 2015;5(5):480–488.
  • Ponsaerts R, de Vuyst E, Retamal M, et al. Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity. Faseb J. 2010;24(11):4378–4395.
  • Luckprom P, Kanjanamekanant K, Pavasant P. Role of connexin43 hemichannels in mechanical stress-induced ATP release in human periodontal ligament cells. J Periodontal Res. 2011;46(5):607–615.
  • Wang N, De Bock M, Decrock E, et al. Connexin targeting peptides as inhibitors of voltage- and intracellular Ca2+-triggered Cx43 hemichannel opening. Neuropharmacology. 2013;75:506–516.
  • Maes M, Crespo Yanguas S, Willebrords J, et al. Connexin hemichannel inhibition reduces acetaminophen-induced liver injury in mice. Toxicol Lett. 2017;278:30–37.
  • Crespo Yanguas S, da Silva TC, Pereira IVA, et al. TAT-Gap19 and carbenoxolone alleviate liver fibrosis in mice. Int J Mol Sci. 2018;19(3):817.
  • Willebrords J, Cogliati B, Pereira IVA, et al. Inhibition of connexin hemichannels alleviates non-alcoholic steatohepatitis in mice. Sci Rep. 2017;7(1):8268.
  • Wang N, De Vuyst E, Ponsaerts R, et al. Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Res Cardiol. 2013;108(1):309.
  • Wang J, Ma M, Locovei S, et al. Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters. Am J Physiol Cell Physiol. 2007;293(3):C1112–C1119.
  • Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today. 2012;17(15–16):850–860.
  • Montrose K, Yang Y, Sun X, et al. Xentry, a new class of cell-penetrating peptide uniquely equipped for delivery of drugs. Sci Rep. 2013;3(1):1–7.
  • Li W, Bao G, Chen W, et al. Connexin 43 Hemichannel as a novel mediator of sterile and infectious inflammatory diseases. Sci Rep. 2018;8(1):166.
  • GJA10 - Gap junction alpha-10 protein - homo sapiens (human) - GJA10 gene & protein, 26.2.2020. Available at: https://www.uniprot.org/uniprot/Q969M2 [Last accessed 2020 Feb 28
  • GJB2 - Connexin 26 - homo sapiens (Human) - GJB2 gene & protein, 11/12/2019. Available at: https://www.uniprot.org/uniprot/A8DU55 [Last accessed 17 Mar 2020]
  • Leithe E, Mesnil M, Aasen T. The connexin 43 C-terminus: A tail of many tales. Biochimica Et Biophysica Acta - Biomembranes. 2018;1860(1):48–64.
  • Iyyathurai J, Wang N, D’Hondt C, et al. The SH3-binding domain of Cx43 participates in loop/tail interactions critical for Cx43-hemichannel activity. Cell Mol Life Sci. 2018;75(11):2059–2073.
  • Rhett JM, Calder BW, Fann SA, et al. Mechanism of action of the anti-inflammatory connexin43 mimetic peptide JM2. Am J Physiol Cell Physiol. 2017;313(3):C314‐C326.
  • Thomas MA, Huang S, Cokoja A, et al. Interaction of connexins with protein partners in the control of channel turnover and gating. Biol Cell. 2002;94(7–8):445–456.
  • Hunter AW, Barker RJ, Zhu C, et al. Zonula Occludens-1 Alters Connexin43 Gap Junction Size and Organization by Influencing Channel Accretion. Mol Biol Cell. 2005;16(12):5686–5698.
  • Obert E, Strauss R, Brandon C, et al. Targeting the tight junction protein, zonula occludens-1, with the connexin43 mimetic peptide, αCT1, reduces VEGF-dependent RPE pathophysiology. J Mol Med. 2017;95(5):535–552.
  • Gulbransen BD, Bashashati M, Hirota SA, et al. Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med. 2012;18(4):600–604.
  • Maes M, McGill MR, da Silva TC, et al. Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity. Arch Toxicol. 2017;91(5):2245–2261.
  • Pelegrin P, Surprenant A. Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1β release through a dye uptake-independent pathway. J Biol Chem. 2006;282(4):2386–2394.
  • Bunse S, Schmidt M, Hoffmann S, et al. Single cysteines in the extracellular and transmembrane regions modulate Pannexin 1 channel function. J Membr Biol. 2011;244(1):21–33.
  • Qiu F, Wang J, Dahl G. Alanine substitution scanning of pannexin1 reveals amino acid residues mediating ATP sensitivity. Purinergic Signal. 2012;8(1):81–90.
  • Michalski K, Kawate T. Carbenoxolone inhibits Pannexin1 channels through interactions in the first extracellular loop. J General Physiol. 2016;147(2):165–174.
  • Chiu YH, Schappe MS, Desai BN, et al. Revisiting multimodal activation and channel properties of Pannexin 1. J General Physiol. 2018;150(1):19–39.
  • Boyce AKJ, Epp AL, Nagarajan A, et al. Transcriptional and post-translational regulation of pannexins. Biochimica Et Biophysica Acta - Biomembranes. 2018;1860(1):72–82.
  • Billaud M, Chiu Y-H, Lohman AW, et al. A molecular signature in the pannexin1 intracellular loop confers channel activation by the α1 adrenoreceptor in smooth muscle cells. Sci Signal. 2015;8(364):ra17.
  • Sandilos JK, Chiu Y-H, Chekeni FB, et al. Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated c-terminal autoinhibitory region. J Biol Chem. 2012;287(14):11303–11311.
  • Weilinger NL, Tang PL, Thompson RJ. Anoxia-induced NMDA receptor activation opens pannexin channels via src family kinases. J Neurosci. 2012;32(36):12579–12588.
  • Jiang JX, Penuela S. Connexin and pannexin channels in cancer. BMC Cell Biol. 2016;17(Suppl 1):12.
  • Dubyak GR. Both sides now: multiple interactions of ATP with pannexin-1 hemichannels. Focus on “a permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP. Am J Physiol Cell Physiol. 2009;296(2):C235–C241.
  • Maeda S, Nakagawa S, Suga M, et al. Structure of the connexin 26 gap junction channel at 3.5 Å resolution. Nature. 2009;458(7238):597–602.
  • Michalski K, Syrjanen JL, Henze E, et al. The cryo-EM structure of a pannexin 1 reveals unique motifs for ion selection and inhibition. eLife. 2020;9. DOI:10.7554/eLife.54670
  • Qu R, Dong L, Zhang J, et al. Cryo-EM structure of human heptameric pannexin 1 channel. Cell Res. 2020;30(5):446–448.
  • Michalski K, Kawate T. Subtle Modifications of the Pannexin-1 N-Terminus Results in Altered Channel Activity. Biophys J. 2018;114(3):495a.
  • Moon PM, Penuela S, Barr K, et al. Deletion of panx3 prevents the development of surgically induced osteoarthritis. J Mol Med. 2015;93(8):845–856.
  • Lee JR, White TW. Connexin-26 mutations in deafness and skin disease. Expert Rev Mol Med. 2009;11:e35.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.