797
Views
5
CrossRef citations to date
0
Altmetric
Perspective

What is on the horizon for type 2 diabetes pharmacotherapy? – An overview of the antidiabetic drug development pipeline

, , &
Pages 1253-1265 | Received 28 Apr 2020, Accepted 30 Jun 2020, Published online: 09 Jul 2020

References

  • Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843.
  • Skyler JS, Bakris GL, Bonifacio E, et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes. 2017;66(2):241–255.
  • Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068–1083.
  • Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 2013;17(1):20–33.
  • Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006;332(7533):73–78.
  • Mazzone T, Chait A, Plutzky J. Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet. 2008;371(9626):1800–1809.
  • American Diabetes Association. 6. glycemic targets: standards of medical care in Diabetes—2018. Diabetes Care. 2018;41(Supplement 1):S55–S64.
  • Buse JB, Wexler DJ, Tsapas A, et al. 2019 update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the american diabetes association (ADA) and the European association for the study of diabetes (EASD). Diabetes Care. 2020;43(2):487–493.
  • American Diabetes Association. 8. pharmacologic approaches to glycemic treatment: standards of medical care in Diabetes—2018. Diabetes Care. 2018;41(Supplement 1):S73–S85.
  • Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the american diabetes association (ADA) and the European association for the study of diabetes (EASD). Diabetes Care. 2012;35(6):1364–1379.
  • Hazlehurst JM, Woods C, Marjot T, et al. Non-alcoholic fatty liver disease and diabetes. Metabolism. 2016;65(8):1096–1108.
  • Garito T, Roubenoff R, Hompesch M, et al. Bimagrumab improves body composition and insulin sensitivity in insulin-resistant individuals. Diabetes Obes Metab. 2018;20(1):94–102.
  • Larsen AT, Sonne N, Andreassen KV, et al. The dual amylin and calcitonin receptor agonist KBP-088 induces weight loss and improves insulin sensitivity superior to chronic amylin therapy. J Pharmacol Exp Ther. 2019;370(1):35–43.
  • Jorsal T, Rungby J, Knop FK, et al. GLP-1 and amylin in the treatment of obesity. Curr Diab Rep. 2016;16(1):1.
  • Hieronymus L, Griffin S. Role of amylin in type 1 and type 2 diabetes. Diabetes Educ. 2015;41:47S–56S.
  • Gydesen S, Hjuler ST, Freving Z, et al. A novel dual amylin and calcitonin receptor agonist, KBP‐089, induces weight loss through a reduction in fat, but not lean mass, while improving food preference. Br J Pharmacol. 2017;174:591–602.
  • Singh-Franco D, Perez A, Harrington C. The effect of pramlintide acetate on glycemic control and weight in patients with type 2 diabetes mellitus and in obese patients without diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. 2011;13(2):169–180.
  • Qiao Y-C, Ling W, Pan Y-H, et al. Efficacy and safety of pramlintide injection adjunct to insulin therapy in patients with type 1 diabetes mellitus: a systematic review and meta-analysis. Oncotarget. 2017;8(39):66504–66515.
  • Pipeline [Internet]. [cited 2020 Jan 27]. Available from: https://www.novonordisk.com/research-and-development/pipeline.html
  • Kim J, Yang G, Kim Y, et al. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med. 2016;48(4):e224.
  • Coughlan KA, Valentine RJ, Ruderman NB, et al. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes. 2014;7:241–253.
  • Steneberg P, Lindahl E, Dahl U, et al. PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight. 2018;3(12). DOI:10.1172/jci.insight.99114
  • Moreno D, Knecht E, Viollet B, et al. A769662, a novel activator of AMP-activated protein kinase, inhibits non-proteolytic components of the 26S proteasome by an AMPK-independent mechanism. FEBS Lett. 2008;582(17):2650–2654.
  • Poxel SA. PXL770 | [Internet]. [ cited 2020 Jan 7]. Available from: https://www.poxelpharma.com/en_us/product-pipeline/pxl770
  • Lan T, Morgan DA, Rahmouni K, et al. FGF19, FGF21, and an FGFR1/β-klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab. 2017;26(5):709–718.e3.
  • Staiger H, Keuper M, Berti L, et al. Fibroblast growth factor 21-metabolic role in mice and men. Endocr Rev. 2017;38:468–488.
  • Gaich G, Chien JY, Fu H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18:333–340.
  • Charles ED, Neuschwander-Tetri BA, Pablo Frias J, et al. Pegbelfermin (BMS-986036), PEGylated FGF21, in patients with obesity and type 2 diabetes: results from a randomized phase 2 study. Obesity (Silver Spring). 2019;27:41–49.
  • Verzijl CRC, Van De Peppel IP, Struik D, et al. Pegbelfermin (BMS-986036): an investigational PEGylated fibroblast growth factor 21 analogue for the treatment of nonalcoholic steatohepatitis. Expert Opin Investig Drugs. 2020;29(2):125-133.
  • Sanyal A, Charles ED, Neuschwander-Tetri BA, et al. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet. 2019;392:2705–2717.
  • Zhang J, Weng W, Wang K, et al. The role of FGF21 in type 1 diabetes and its complications. Int J Biol Sci. 2018;14:1000–1011.
  • Kaur R, Dahiya L, Kumar M. Fructose-1,6-bisphosphatase inhibitors: A new valid approach for management of type 2 diabetes mellitus. Eur J Med Chem. 2017;141:473–505.
  • Viking Therapeutics. Other pipeline programs [Internet]. [cited 2020 Jan 17]. Available from: https://www.vikingtherapeutics.com/pipeline/other-pipeline-programs/
  • van Poelje PD, Potter SC, Erion MD. Fructose-1, 6-bisphosphatase inhibitors for reducing excessive endogenous glucose production in type 2 diabetes. Handb Exp Pharmacol. 2011;(203):279–301.
  • Mullican SE, Rangwala SM. Uniting GDF15 and GFRAL: therapeutic opportunities in obesity and beyond. Trends Endocrinol Metab. 2018;29:560–570.
  • Matschinsky FM, Zelent B, Doliba N, et al. Glucokinase activators for diabetes therapy: may 2010 status report. Diabetes Care. 2011;34:S236–S243.
  • Scheen AJ. New hope for glucokinase activators in type 2 diabetes? Lancet Diabetes Endocrinol. 2018;6:591–593.
  • Zhu D, Gan S, Liu Y, et al. Dorzagliatin monotherapy in Chinese patients with type 2 diabetes: a dose-ranging, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Diabetes Endocrinol. 2018;6:627–636.
  • Zhu -X-X, Zhu D-L, Li X-Y, et al. Dorzagliatin (HMS5552), a novel dual-acting glucokinase activator, improves glycaemic control and pancreatic β-cell function in patients with type 2 diabetes: A 28-day treatment study using biomarker-guided patient selection. Diabetes Obes Metab. 2018;20:2113–2120.
  • Amin NB, Aggarwal N, Pall D, et al. Two dose-ranging studies with PF-04937319, a systemic partial activator of glucokinase, as add-on therapy to metformin in adults with type 2 diabetes. Diabetes Obes Metab. 2015;17:751–759.
  • Kimura T, Sato H, Shimizu M, et al. Pharmacokinetics, pharmacodynamics, and tolerability of a novel glucokinase activator TMG-123, after multiple oral ascending doses in Japanese type 2 diabetes mellitus patients. Diabetes. 2017;66(Supplement 1):A229-A398.
  • Vella A, Freeman JLR, Dunn I, et al. Targeting hepatic glucokinase to treat diabetes with TTP399, a hepatoselective glucokinase activator. Sci Transl Med. 2019;11(475):eaau3441.
  • Johansson KS, Brønden A, Knop FK, et al. Clinical pharmacology of imeglimin for the treatment of type 2 diabetes. Expert Opin Pharmacother. 2020;21(8):871-882.
  • Pacini G, Mari A, Fouqueray P, et al. Imeglimin increases glucose-dependent insulin secretion and improves β-cell function in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17:541–545.
  • Pirags V, Lebovitz H, Fouqueray P. Imeglimin, a novel glimin oral antidiabetic, exhibits a good efficacy and safety profile in type 2 diabetic patients. Diabetes Obes Metab. 2012;14:852–858.
  • Fouqueray P. Dose-ranging study to determine the optimum dose for imeglimin, a novel treatment for type 2 diabetes. DIABETES. 2015;64:A301.
  • Dubourg J, Ueki K, Watada H, et al. Imeglimin monotherapy in Japanese patients with type 2 diabetes: results from a randomised, 24-week, double-blind, placebo-controlled, phase IIb trial. Diabetologia. 2017;60(Suppl 1):1-608.
  • Fouqueray P, Pirags V, Inzucchi SE, et al. The efficacy and safety of imeglimin as add-on therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Diabetes Care. 2013;36:565–568.
  • Fouqueray P, Pirags V, Diamant M, et al. The efficacy and safety of imeglimin as add-on therapy in patients with type 2 diabetes inadequately controlled with sitagliptin monotherapy. Diabetes Care. 2014;37:1924–1930.
  • Poxel. Imeglimin - Japan/Asia [Internet]; 2019 [cited 2019 Jul 9]. Available from: https://www.poxelpharma.com/en_us/product-pipeline/imeglimin-japan.
  • Moonschi FH, Hughes CB, Mussman GM, et al. Advances in micro- and nanotechnologies for the GLP-1-based therapy and imaging of pancreatic beta-cells. Acta Diabetol. 2018;55:405–418.
  • Brandt SJ, Götz A, Tschöp MH, et al. Gut hormone polyagonists for the treatment of type 2 diabetes. Peptides. 2018;100:190–201.
  • Hinnen D. Glucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectr. 2017;30:202–210.
  • Taylor SI. GLP-1 receptor agonists: differentiation within the class. Lancet Diabetes Endocrinol. 2018;6:83–85.
  • Bethel MA, Patel RA, Merrill P, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 2018;6:105–113.
  • Kristensen SL, Rørth R, Jhund PS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019;7(10):776–785.
  • Pocai A. Action and therapeutic potential of oxyntomodulin. Mol Metab. 2014;3:241–251.
  • Frias JP, Nauck MA, Van J, et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet. 2018;392:2180–2193.
  • Aroda VR. A review of GLP-1 receptor agonists: evolution and advancement, through the lens of randomised controlled trials. Diabetes Obes Metab. 2018;20(Suppl 1):22–33.
  • Storgaard H, Cold F, Gluud LL, et al. Glucagon-like peptide-1 receptor agonists and risk of acute pancreatitis in patients with type 2 diabetes. Diabetes Obes Metab. 2017;19:906–908.
  • Commissioner O of the. FDA approves first oral GLP-1 treatment for type 2 diabetes. [Internet]. FDA; 2019 [cited 2019 Nov 14]. Available from: http://www.fda.gov/news-events/press-announcements/fda-approves-first-oral-glp-1-treatment-type-2-diabetes
  • Aroda VR, Rosenstock J, Terauchi Y, et al. PIONEER 1: randomized clinical trial of the efficacy and safety of oral semaglutide monotherapy in comparison with placebo in patients with type 2 diabetes. Diabetes Care. 2019;42:1724–1732.
  • Hedrington MS, Davis SN. Oral semaglutide for the treatment of type 2 diabetes. Expert Opin Pharmacother. 2019;20:133–141.
  • Rosenstock J, Sorli CH, Trautmann ME, et al. Once-weekly efpeglenatide dose-range effects on glycemic control and body weight in patients with type 2 diabetes on metformin or drug naive, referenced to liraglutide. Diabetes Care. 2019;42:1733–1741.
  • Del Prato S, Kang J, Trautmann ME, et al. Efficacy and safety of once-monthly efpeglenatide in patients with type 2 diabetes: results of a phase 2 placebo-controlled, 16-week randomized dose-finding study. Diabetes Obes Metab. 2020;22(7):1176–1186.
  • Yoon K-H, Kang J, Kwon SC, et al. Pharmacokinetic and dose-finding studies of efpeglenatide in patients with type 2 diabetes. Diabetes Obes Metab. 2020. DOI:10.1111/dom.14032
  • Li C, Yang M, Wang X, et al. Glutazumab, a novel long-lasting GLP-1/anti-GLP-1R antibody fusion protein, exerts anti-diabetic effects through targeting dual receptor binding sites. Biochem Pharmacol. 2018;150:46–53.
  • Jing S, Zhang C, Fan K, et al. A phase 1B/2A study of glutazumab for the treatment of type 2 diabetes and obesity. Diabetes. 2018;67(Supplement 1):2298-PUB.
  • Bertsch T, McKeirnan K. ITCA 650. Clin Diabetes. 2018;36:265–267.
  • ITCA 650 (exenatide implant) [Internet]. Intarcia. [cited 2020 Jan 14]. Available from: https://www.intarcia.com/pipeline-technology/itca-650.html
  • Henry RR, Rosenstock J, Denham DS, et al. Clinical Impact of ITCA 650, a novel drug-device GLP-1 receptor agonist, in uncontrolled type 2 diabetes and very high baseline HbA1c: the FREEDOM-1 HBL (high baseline) study. Diabetes Care. 2018;41:613–619.
  • Intarcia Announces Successful Cardiovascular Safety Results in Phase 3 FREEDOM-CVO Trial [Internet]. Intarcia; 2016 [cited 2020 Apr 26]. Available from: https://www.intarcia.com/media/media-archive/press-releases/intarcia-announces-successful-cardiovascular-safety-results-in-p.html
  • Liu Y, Lv Y, Guo X, et al. Tolerability, safety, PK/PD of once-weekly administration of GLP-1 analogue in T2DM patients in china and U.S. Diabetes. 2017;66(Supplement 1):A229-A398.
  • Chen X, Lv X, Yang G, et al. Polyethylene glycol loxenatide injections added to metformin effectively improve glycemic control and exhibit favorable safety in type 2 diabetic patients. J Diabetes. 2017;9:158–167.
  • ORMD 0901 - Oral GLP-1 for T2DM. Oramed Pharmaceuticals. [Internet]. [cited 2020 Jan 13]. Available from: https://www.oramed.com/pipeline/ormd-0901/
  • Freeman J, Dvergsten C, Dunn I, et al. TTP273, oral (nonpeptide) GLP-1R agonist: improved glycemic control without nausea and vomiting in phase 2. Diabetes. 2017;66:A326.
  • Freeman JLR, Dunn IM, Valcarce C. Beyond topline results for the oral (non-peptide)GLP-1R agonist TTP273 in type 2 diabetes: how much and when? Diabetologia. 2017;60:S51–S52.
  • Ambery P, Parker VE, Stumvoll M, et al. MEDI0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: a randomised, controlled, double-blind, ascending dose and phase 2a study. Lancet. 2018;391:2607–2618.
  • Parker VER, Robertson D, Wang T, et al. Efficacy, safety, and mechanistic insights of cotadutide a dual receptor glucagon-like peptide-1 and glucagon agonist. J Clin Endocrinol Metab. 2020;105(3):dgz047.
  • Hamni Science [Internet]. [ cited 2020 Jan 5]. Available from: http://www.hanmiscience.co.kr/science/handler/Company-News?seq=90114447&board_id=INFORMATION_COMPANY_NEWS
  • OPK88003 (Oxyntomodulin Analog) [Internet]. OPKO Health, Inc. [ cited 2020 Feb 10]. Available from: https://www.opko.com/what-we-do/our-research/opk88003-oxyntomodulin-analog
  • Pipeline – Therapeutic Portfolio. Carmot Therapeutics. [Internet]. [cited 2020 Jan 21]. Available from: https://carmot-therapeutics.us/pipeline/
  • Frias JP, Nauck MA, Van J, et al. Efficacy and tolerability of tirzepatide, a dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist in patients with type 2 diabetes: A 12-week, randomized, double-blind, placebo-controlled study to evaluate different dose-escalation regimens. Diabetes Obes Metab. 2020;22(6):938–946.
  • Pipeline | R&D [Internet]. [ cited 2020 Jan 27]. Available from: http://www.hanmipharm.com/ehanmi/handler/Rnd-Pipeline
  • Sammons MF, Lee ECY. Recent progress in the development of small-molecule glucagon receptor antagonists. Bioorg Med Chem Lett. 2015;25:4057–4064.
  • Pearson MJ, Unger RH, Holland WL. Clinical trials, triumphs, and tribulations of glucagon receptor antagonists. Diabetes Care. 2016;39:1075–1077.
  • Scheen AJ, Paquot N, Lefebvre PJ. Investigational glucagon receptor antagonists in Phase I and II clinical trials for diabetes. Expert Opin Investig Drugs. 2017;26(12):1373–1389.
  • Pettus JH, D’Alessio D, Frias JP, et al. Efficacy and safety of the glucagon receptor antagonist RVT-1502 in type 2 diabetes uncontrolled on metformin monotherapy: A 12-week dose-ranging study. Diabetes Care. 2020;43(1):161-168.
  • Morgan ES, Tai L-J, Pham NC, et al. Antisense inhibition of glucagon receptor by IONIS-GCGRRx improves type 2 diabetes without increase in hepatic glycogen content in patients with type 2 diabetes on stable metformin therapy. Diabetes Care. 2019;42:585–593.
  • Gumbiner B, Esteves B, Dell V, et al. Single and multiple ascending-dose study of glucagon-receptor antagonist RN909 in type 2 diabetes: a phase 1, randomized, double-blind, placebo-controlled trial. Endocrine. 2018;62:371–380.
  • Pettus J, Reeds D, Cavaiola TS, et al. Effect of a glucagon receptor antibody (REMD-477) in type 1 diabetes: A randomized controlled trial. Diabetes Obes Metab. 2018;20:1302–1305.
  • Riddy DM, Delerive P, Summers RJ, et al. G protein-coupled receptors targeting insulin resistance, obesity, and type 2 diabetes mellitus. Pharmacol Rev. 2018;70:39–67.
  • Nunez DJ, Bush MA, Collins DA, et al. Gut hormone pharmacology of a novel GPR119 agonist (GSK1292263), metformin, and sitagliptin in type 2 diabetes mellitus: results from two randomized studies. PLoS ONE. 2014;9:e92494.
  • A study to evaluate the safety, tolerability, PK and PD of DA-1241 in healthy male subjects and subjects with T2DM [Internet]. [cited 2020 Jan 9]. Available from: https://clinicaltrials.gov/ct2/show/NCT03646721
  • CymaBay Pipeline. CymaBay Therapeutics [Internet]. [ cited 2020 Jan 9]. Available from: http://www.cymabay.com/pipeline.html
  • Ritter K, Buning C, Halland N, et al. G protein-coupled receptor 119 (GPR119) agonists for the treatment of diabetes: recent progress and prevailing challenges. J Med Chem. 2016;59:3579–3592.
  • Huan Y, Jiang Q, Li G, et al. The dual DPP4 inhibitor and GPR119 agonist HBK001 regulates glycemic control and beta cell function ex and in vivo. Sci Rep. 2017;7:4351.
  • Ochman AR, Lipinski CA, Handler JA, et al. The Lyn kinase activator MLR-1023 is a novel insulin receptor potentiator that elicits a rapid-onset and durable improvement in glucose homeostasis in animal models of type 2 diabetes. J Pharmacol Exp Ther. 2012;342:23–32.
  • Lee M-K, Kim SG, Watkins E, et al. A novel non-PPARgamma insulin sensitizer: MLR-1023 clinicalproof-of-concept in type 2 diabetes mellitus. J Diabetes Complicat. 2020;34:107555.
  • Verma M, Gupta SJ, Chaudhary A, et al. Protein tyrosine phosphatase 1B inhibitors as antidiabetic agents - A brief review. Bioorg Chem. 2017;70:267–283.
  • Kennedy BP, Ramachandran C. Protein tyrosine phosphatase-1B in diabetes. Biochem Pharmacol. 2000;60:877–883.
  • Krishnan N, Konidaris KF, Gasser G, et al. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models. J Biol Chem. 2018;293:1517–1525.
  • Rieg T, Vallon V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia. 2018;61:2079–2086.
  • Spatola L, Finazzi S, Angelini C, et al. SGLT1 and SGLT1 Inhibitors: A role to be assessed in the current clinical practice. Diabetes Ther. 2018;9:427–430.
  • Thomas MC, Cherney DZI. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia. 2018;61:2098–2107.
  • Wanner C, Marx N. SGLT2 inhibitors: the future for treatment of type 2 diabetes mellitus and other chronic diseases. Diabetologia. 2018;61:2134–2139.
  • Storgaard H, Gluud LL, Bennett C, et al. Benefits and harms of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS ONE. 2016;11:e0166125.
  • Sims H, Smith KH, Bramlage P, et al. Sotagliflozin: a dual sodium-glucose co-transporter-1 and −2 inhibitor for the management of Type 1 and Type 2 diabetes mellitus. Diabetic Med. 2018;35:1037–1048.
  • Scheen AJ. An update on the safety of SGLT2 inhibitors. Expert Opin Drug Saf. 2019;18:295–311.
  • Donnan JR, Grandy CA, Chibrikov E, et al. Comparative safety of the sodium glucose co-transporter 2 (SGLT2) inhibitors: a systematic review and meta-analysis. BMJ Open [Internet]. 2019 [cited 2020 Jan 4];9(1):e022577. Available from: https://bmjopen.bmj.com/content/9/1/e022577
  • Cosentino F, Grant PJ, Aboyans V, et al. ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASDThe task force for diabetes, pre-diabetes, and cardiovascular diseases of the European society of cardiology (ESC) and the European association for the study of diabetes (EASD). Eur Heart J. 2019 [Internet]. [cited 2019 Nov 14]. Available from: https://academic.oup.com/eurheartj/advance-article/doi/10.1093/eurheartj/ehz486/5556890
  • Fukudo S, Endo Y, Hongo M, et al. Safety and efficacy of the sodium-glucose cotransporter 1 inhibitor mizagliflozin for functional constipation: a randomised, placebo-controlled, double-blind phase 2 trial. Lancet Gastroenterol Hepatol. 2018;3:603–613.
  • Zhang W, Welihinda A, Mechanic J, et al. EGT1442, a potent and selective SGLT2 inhibitor, attenuates blood glucose and HbA(1c) levels in db/db mice and prolongs the survival of stroke-prone rats. Pharmacol Res. 2011;63:284–293.
  • Halvorsen Y-DC, Walford GA, Massaro J, et al. A 96-week, multinational, randomized, double-blind, parallel-group, clinical trial evaluating the safety and effectiveness of bexagliflozin as a monotherapy for adults with type 2 diabetes. Diabetes Obes Metab. 2019;21:2496–2504.
  • Halvorsen Y-D, Lock JP, Zhou W, et al. A 24-week, randomized, double-blind, active-controlled clinical trial comparing bexagliflozin with sitagliptin as an adjunct to metformin for the treatment of type 2 diabetes in adults. Diabetes Obes Metab. 2019;21:2248–2256.
  • Bexagliflozin Efficacy and Safety Trial (BEST) [Internet]. [cited 2020 Jan 22]. Available from: https://clinicaltrials.gov/ct2/show/NCT02558296
  • Yan P, Zhang L, Feng Y, et al. SHR3824, a novel selective inhibitor of renal sodium glucose cotransporter 2, exhibits antidiabetic efficacy in rodent models. Acta Pharmacol Sin. 2014;35:613–624.
  • Yong X, Wen A, Liu X, et al. Pharmacokinetics and pharmacodynamics of henagliflozin, a sodium glucose co-transporter 2 inhibitor, in chinese patients with type 2 diabetes mellitus. Clin Drug Investig. 2016;36:195–202.
  • He Y, Haynes WG, Meyers CD, et al. LIK066, a dual SGLT1/2 inhibitor, reduces weight and improves multiple incretin hormones in clinical proof-of-concept studies in obese patients with or without diabetes. Diabetes [Internet]. 2018 [cited 2019 Dec 10];67. Available from]. [];(Supplement 1):114-LB. : https://diabetes.diabetesjournals.org/content/67/Supplement_1/114-LB DOI:10.2337/db18-114-LB
  • He Y-L, Haynes W, Meyers CD, et al. The effects of licogliflozin, a dual SGLT1/2 inhibitor, on body weight in obese patients with or without diabetes. Diabetes Obes Metab. 2019;21:1311–1321.
  • Bays HE, Kozlovski P, Shao Q, et al. Licogliflozin, a novel SGLT1 and 2 inhibitor: body weight effects in a randomized trial in adults with overweight or obesity. Obesity (Silver Spring). 2020;28(5):870–881.
  • de Boer RA, Núñez J, Kozlovski P, et al. Effects of the dual sodium-glucose linked transporter inhibitor, licogliflozin vs placebo or empagliflozin in patients with type 2 diabetes and heart failure. Br J Clin Pharmacol. 2020;86(7):1346–1356.
  • Powell DR, Smith MG, Doree DD, et al. LX2761, a sodium/glucose cotransporter 1 Inhibitor restricted to the intestine, improves glycemic control in mice. J Pharmacol Exp Ther. 2017;362:85–97.
  • Lexicon pharmaceuticals announces topline phase 1 clinical results for LX2761 in diabetes [Internet]. [cited 2020 Jan 4]. Available from: http://www.lexpharma.com/media-center/news/693-lexicon-pharmaceuticals-announces-topline-phase-1-clinical-results-for-lx2761-in-diabetes
  • Goodwin NC, Ding Z-M, Harrison BA, et al. Discovery of LX2761, a Sodium-Dependent Glucose Cotransporter 1 (SGLT1) Inhibitor Restricted to the Intestinal Lumen, for the Treatment of Diabetes. J Med Chem. 2017;60:710–721.
  • Lexicon Pharmaceuticals [Internet]. [ cited 2020 Jan 22]. Available from: http://www.lexpharma.com/media-center/news/733-lexicon-pharmaceuticals-announces-topline-phase-3-data-for-sotagliflozin-in-type-2-diabetes
  • Markham A, Keam SJ. Sotagliflozin: first global approval. Drugs. 2019;79:1023–1029.
  • Grempler R, Thomas L, Eckhardt M, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obesity Metab. 2012;14:83–90.
  • Loomba R, Kayali Z, Noureddin M, et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology. 2018;155:1463–1473.e6. DOI:10.1053/j.gastro.2018.07.027
  • Loomba R, Lawitz E, Mantry PS, et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial. Hepatology. 2018;67:549–559.
  • Tacke F. Cenicriviroc for the treatment of non-alcoholic steatohepatitis and liver fibrosis. Expert Opin Investig Drugs. 2018;27:301–311.
  • Ratziu V, Sanyal A, Harrison SA, et al. Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis: final analysis of the phase 2b CENTAUR Study. Hepatology. 2020. DOI:10.1002/hep.31108
  • Sumida Y, Okanoue T, Nakajima A, et al. Phase 3 drug pipelines in the treatment of non-alcoholic steatohepatitis. Hepatol Res. 2019;49:1256–1262.
  • Harrison SA, Rossi SJ, Paredes AH, et al. NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis. Hepatology. 2020;71(4):1198-1212.
  • Harrison SA, Rinella ME, Abdelmalek MF, et al. NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2018;391:1174–1185.
  • Phase 3 study to evaluate the efficacy and safety of elafibranor versus placebo in patients with nonalcoholic steatohepatitis (NASH) [Internet]. [cited 2020 Feb 5]. Available from: https://clinicaltrials.gov/ct2/show/NCT02704403
  • Ratziu V, Harrison SA, Francque S, et al. Elafibranor, an agonist of the peroxisome proliferator-activated Receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150:1147–1159.e5. DOI:10.1053/j.gastro.2016.01.038
  • Harrison SA, Bashir MR, Guy CD, et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2019;394:2012–2024.
  • Loomba R, Neutel J, Mohseni R, et al. VK2809, a novel liver-directed thyroid receptor beta agonist, significantly reduces liver fat with both low and high doses in patients with non-alcoholic fatty liver disease: a phase 2 randomized, placebo-controlled trial. J Hepatol. 2019;70(1):e150-e151.
  • FDA. Guidance for Industry Diabetes Mellitus — Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes [Internet]; 2008 [cited 2019 Jun 28]. Available from: https://www.fda.gov/media/71297/download
  • Guideline on clinical investigation of medicinal products in the treatment or prevention of diabetes mellitus [Internet]; 2012 [cited 2019 Jul 9]. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-clinical-investigation-medicinal-products-treatment-prevention-diabetes-mellitus_en.pdf
  • Type 2 Diabetes Mellitus: Evaluating the Safety of New Drugs for Improving Glycemic Control; Draft Guidance for Industry; Availability [Internet]. Federal Register; 2020 [cited 2020 Jun 28]. Available from: https://www.federalregister.gov/documents/2020/03/10/2020-04877/type-2-diabetes-mellitus-evaluating-the-safety-of-new-drugs-for-improving-glycemic-control-draft
  • Proietto J, Malloy J, Zhuang D, et al. Efficacy and safety of methionine aminopeptidase 2 inhibition in type 2 diabetes: a randomised, placebo-controlled clinical trial. Diabetologia. 2018;61:1918–1922.
  • Zafgen Study Group, JM W, PG C. The methionine aminopeptidase 2 inhibitor ZGN-1061 improves glucose control and weight in overweight and obese individuals with type 2 diabetes: a randomized placebo-controlled trial. Diabetes Obes Metab. 2020;22(7):1215-1219.
  • Kim T, Zhuang D, Haugen TL, et al. 21-OR: final results of a phase 2, randomized, double-blind, placebo-controlled clinical trial of the MetAP2 inhibitor ZGN-1061 in patients with type 2diabetes. Diabetes [Internet]. 2019 [cited 2020 Jan 22];68(Supplement 1):21-OR. Available from]: https://diabetes.diabetesjournals.org/content/68/Supplement_1/21-OR
  • McCandless SE, Yanovski JA, Miller J, et al. Effects of MetAP2 inhibition on hyperphagia and body weight in prader-willi syndrome: A randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2017;19:1751–1761.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.