173
Views
17
CrossRef citations to date
0
Altmetric
Perspective

Have molecular hybrids delivered effective anti-cancer treatments and what should future drug discovery focus on?

&
Pages 335-363 | Received 23 Jun 2020, Accepted 09 Nov 2020, Published online: 30 Dec 2020

References

  • Weinberg RA. The biology of cancer. 2nd ed ed. New York: Garland Science; 2014.
  • Wild CP, Weiderpass E, Stewart BW. World cancer report. 2020. https://www.iarc.fr/cards_page/world-cancer-report/
  • WHO report on cancer: setting priorities, investing wisely and providing care for all. Geneva: world health organization. 2020. Licence: CC BY-NC-SA 3.0 IGO.
  • DeVita VT Jr, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643–8653.
  • Meunier B. Hybrid molecules with a dual mode of action: dream or reality. Acc Chem Res. 2008;41(1):69–77.
  • Fortin S, Bérube G. Advances in the development of hybrid anti cancer drugs. Expert Opin Drug Discov. 2013;8(8):1029–1047.
  • Kucuksayan E, Ozben T. Hybrid compounds as multitarget directed anticancer agents. Curr Top Med Chem. 2017;17(8):907–918.
  • Xu Z, Zhao S, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: current developments, action mechanisms and structure-activity relationships. Eur J Med Chem. 2019;183(1):111700–111737.
  • Kerru N, Singh P, Koorbanally N, et al. Recent advances (2015–2016) in anticancer hybrids. Eur J Med Chem. 2017;142(15):179–212. .
  • New Drugs at FDA: CDER’s New Molecular Entities and New Therapeutic Biological Products. Available online: http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/default.htm ( accessed 2020 May 21).
  • PubChem Compound—NCBI. Available online: http://www.ncbi.nlm.nih.gov/pccompound ( accessed on 2020 May 21).
  • Rhoads CP. Nitrogen mustards in the treatment of neoplastic disease; official statement. J Am Med Assoc. 1946;131(8):656–658.
  • Kohn KW, Spears CL, Doty P. Inter-strand crosslinking of DNA by nitrogen mustard. J Mol Biol. 1966;19(2):266–288.
  • Wang AL, Tew KD. Increased glutathione-S-transferase activity in a cell line with acquired resistance to nitrogen mustards. Cancer Treat Rep. 1985;69(6):677–682.
  • Lewis AD, Hickson ID, Robson CN. Amplification and increased expression of alpha class glutathione S-transferase-encoding genes associated with resistance to nitrogen mustards. Proc Natl Acad Sci U S A. 1988;85(22):8511–8515.
  • Singh RK, Kumar S, Prasad DN. Therapeutic journey of nitrogen mustard as alkylating anticancer agents: historic to future perspectives. Eur J Med Chem. 2018;151:401–433.
  • Chen Y, Jia Y, Song W. Therapeutic potential of nitrogen mustard based hybrid molecules. Front Pharmacol. 2018;9:1453–1464. .
  • Anadu NO, Davisson VJ, Cushman M. Synthesis and anticancer activity of brefeldin A ester derivatives. J Med Chem. 2006;49(13):3897–3905.
  • Kikuchi S, Shinpo K, Tsuji S. Brefeldin A-induced neurotoxicity in cultured spinal cord neurons. J Neurosci Res. 2003;71(4):591–599.
  • Han T, Tian KT, Pan HQ. Novel hybrids of brefeldin A and nitrogen mustards with improved antiproliferative selectivity: design, synthesis and antitumor biological evaluation. Eur J Med Chem. 2018;150:53–63.
  • Wang L, Li DH, Xu ST. The conversion of oridonin to spirolactone-type or enmein-type diterpenoid: synthesis and biological evaluation of ent-6,7-seco-oridonin derivatives as novel potential anticancer agents. Eur J Med Chem. 2012;52:242–250.
  • Xu S, Pei LL, Wang CQ. Novel hybrids of natural oridonin-bearing nitrogen mustards as potential anticancer drug candidates. ACS Med Chem Lett. 2014;5(7):797–802.
  • Quo L, Xue TY, Xu W. Matrine promotes G(0)/G(1) arrest and down-regulates cyclin D1 expression in human rhabdomyosarcoma cells. Panminerva Med. 2013;55(3):291–296.
  • Li D, Dai L, Zhao X. Novel sophoridine derivatives bearing phosphoramide mustard moiety exhibit potent antitumor activities in vitro and in vivo. Molecules. 2018;23(8):1960–1971.
  • Li DD, Dai LL, Zhang N. Synthesis, structure-activity relationship and biological evaluation of novel nitrogen mustard sophoridinic acid derivatives as potential anticancer agents. Bioorg Med Chem Lett. 2015;25(19):4092–4096.
  • Wu CC, Li TK, Farh L. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science. 2011;333(6041):459–462.
  • Yadav AA, Wu X, Patel D. Structure-based design, synthesis and biological testing of etoposide analog epipodophyllotoxin-N-mustard hybrid compounds designed to covalently bind to topoisomerase II and DNA. Bioorg Med Chem. 2014;22(21):5935–5949.
  • Shyu KG, Lin S, Lee CC. Evodiamine inhibits in vitro angiogenesis: implication for antitumorgenicity. Life Sci. 2006;78(19):2234–2243.
  • Hu X, Wang Y, Xu JJ. Design and synthesis of novel nitrogen mustard-evodiamine hybrids with selective antiproliferative activity. Bioorg Med Chem Lett. 2017;27(22):4989–4993.
  • Wall ME, Jr GS A, Carroll FI. The effects of some steroidal alkylating agents on experimental animal mammary tumor and leukemia systems. J Med Chem. 1969;12(5):810–818.
  • Trafalis D, Geromichalou E, Dalezis P. Synthesis and evaluation of new steroidal lactam conjugates with aniline mustards as potential antileukemic therapeutics. Steroids. 2016;115:1–8.
  • Głuszynska A. Biological potential of carbazole derivatives. Eur J Med Chem. 2015;94:405–426.
  • Issa S, Prandina A, Bedel N. Carbazole scaffolds in cancer therapy: a review from 2012 to 2018. J Enzyme Inhib Med Chem. 2019;34(1):1321–1346. .
  • Hu L, Li Z-R, Li Y. Synthesis and structure-activity relationships of carbazole sulphonamides as a novel class of antimitotic agents against solid tumors. J Med Chem. 2006;49(21):6273–6282.
  • Nagarapu L, Gaikwad HK, Sarikonda K. Synthesis and cytotoxic evaluation of 1-[3-(9H-carbazol-4-yloxy)-2-hydroxypropyl]-3-aryl-1H-pyrazole-5-carboxylic acid derivatives. Eur J Med Chem. 2010;45(11):4720–4725.
  • Caruso A, Sinicropi MS, Lancelot J-C. Synthesis and evaluation of cytotoxic activities of new guanidines derived from carbazoles. Bioorg Med Chem Lett. 2014;24(2):467–472.
  • Liu L-X, Wang XQ, Zhou B. Synthesis and antitumor activity of novel N-substituted carbazole imidazolium salt derivatives. Sci Rep. 2015;5(1):13101–13120.
  • Mongre RK, Mishra CB, Prakash A. Novel carbazole-piperazine hybrid small molecule induces apoptosis by targeting BCL-2 and inhibits tumor progression in lung adenocarcinoma in vitro and xenograft mice model. Cancers (Basel). 2019;11(9):1245–1269.
  • Chang -C-C, Wu J-Y, Chang T-C. A carbazole derivative synthesis for stabilizing the quadruplex structure. J Chin Chem Soc. 2003;50(2):185–188.
  • Głuszyńska A. Biological potential of carbazole derivatives. Eur J Med Chem. 2015;94:405–426.
  • Gu Y, Lin D, Tang Y. A light-up probe targeting for bcl-2 2345 G-quadruplex DNA with carbazole TO. Spectrochim Acta A Mol Biomol Spectrosc. 2018;191:180–188.
  • Council of Scientific & Industrial Research (IN). Carbazolebonded pyrrolo[2,1 c][1,4]benzodiazepine hybrids as potential anticancer agents and process for their preparation. US. 2015;8(927):538.
  • University of Kansas. Formulations of indole-3-carbinol derived antitumor agents with increased oral bioavailability. US. 2012;0(184):590.
  • CNRS. Use of carbazole phenone derivatives for the treatment of cancer. FR. 2012;0(051):491.
  • Incuron LCC. Carbazole compounds and therapeutic uses of the compounds. US. 2015;9(108):916.
  • GTx Inc. Selective androgen receptor degrader (SARD) ligands and methods of use thereof. US. 2017;0(166):526.
  • Ruiz-Ceja KA, Chirino YI. Current FDA-approved treatments for non-small cell lung cancer and potential biomarkers for its detection. Biomed Pharmacother. 2017;90:24–37.
  • Stone RM, Manley PW, Larson RA. Midostaurin: its odyssey from discovery to approval for treating acute myeloid leukemia and advanced systemic mastocytosis. Blood Adv. 2018;2(4):444–453.
  • Kumar S, Narasimhan B. Therapeutic potential of heterocyclic pyrimidine scaffolds. Chem Cent J. 2018;12(1):38–66. .
  • Kaur R, Kaur P, Sharma S. Anti-cancer pyrimidines in diverse scaffolds: A review of patent literature. Recent Pat Anti-Canc. 2015;10(1):23–71.
  • Boloor A, Cheung M, Harris PA. Chemical compounds. US. 2012;20120277258.
  • Combs AP. Substituted diamino-pyrimidine and diamino-pyridine derivatives as PI3K inhibitors. WO. 2012;2012125629.
  • Hogberg M, Dahlstedt E, Smitt O. Novel pyrimidine derivatives. WO. 2012;2012127032.
  • Tanaka M, Zhang MC, Shokat KM. Pyrazolo pyrimidine derivatives and methods of use thereof. US. 2012;20120065154.
  • Mao L, Zhao L, Liu J. Pyrazolo pyrimidine derivatives and uses as anticancer agents. WO. 2012;2012097196.
  • Liang C. mTOR selective kinase inhibitors. US. 2013;20130072481.
  • Dorsch D, Hoelzemann G, Schiemann K. Triazolo[4,5-d]pyrimidine derivatives. 2013:WO2013110309.
  • Shao H, Shi S, Foley DW. Synthesis, structure-activity relationship and biological evaluation of 2,4,5-trisubstituted pyrimidine CDK inhibitors as potential anti-tumour agents. Eur J Med Chem. 2013;70:447–455.
  • El-Sayed NS, El-Bendary ER, Saadia M. Synthesis and antitumor activity of new sulfonamide derivatives of thiadiazole [3,2-a] pyrimidines. Eur J Med Chem. 2011;46(9):3714–3720.
  • Fares M, Abou-Seri SM, Abdel-Aziz HA. Synthesis and antitumor activity of pyrido[2,3-d]pyrimidine and pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidine derivatives that induce apoptosis through G1 cell-cycle arrest. Eur J Med Chem. 2014;83:155–166.
  • Kurumurthy C, Rao PS, Swamy BV. Synthesis of novel alkyltriazole tagged pyrido[2,3-d] pyrimidine derivatives and their anticancer activity. Eur J Med Chem. 2011;46(8):3462–3468.
  • Nagender P, Reddy GM, Kumar RN. Synthesis, cytotoxicity, antimicrobial and anti-biofilm activities of novel pyrazolo[3,4-b] pyridine and pyrimidine functionalized 1,2,3-triazole derivatives. Bioorg Med Chem Lett. 2014;24(13):2905–2908.
  • Marconnet-Decrane L, Gaurrand S, Angibau PR. Pyridine and pyrimidine derivatives as inhibitors of histone deacetylase. US. 2013;20130143898.
  • Huang YY, Wang LY, Chang CH. One-pot synthesis and antiproliferative evaluation of pyrazolo[3,4-d]pyrimidine derivatives. Tetrahedron. 2012;68(47):9658–9664.
  • Chu X-M, Wang C, Liu W. Quinoline and quinolone dimers and their biological activities: an overview. Eur J Med Chem. 2019;161:101–117.
  • Zhao D, Hamilton JP, Pham GM. De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin. GigaScience. 2017;6(9):1–7.
  • Afzal O, Kumar S, Haider MF. A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem. 2015;97:871–910.
  • Cui JJ, McTigue M, Nambu M. Discovery of a novel class of exquisitely selective mesenchymal-epithelial transition factor (c-MET) protein kinase inhibitors and identification of the clinical candidate 2-(4-(1-(quinolin-6-ylmethyl)-1H-[1,2,3]triazolo[4,5-b]pyrazin-6-yl)-1H-pyrazol-1-yl) ethanol (PF- 04217903) for the treatment of cancer. J Med Chem. 2012;55(18):8091–8109.
  • Tsou HR, Klumpers EGO, Hallett WA. Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity. J Med Chem. 2005;48(4):1107–1131.
  • Moffat D, Patel S, Day F. Discovery of 2-(6-{[(6-fluoroquinolin-2-yl)methyl]amino}bicycle[3.1.0]hex-3-yl)-N-hydroxypyrimidine-5-carboxamide (CHR-3996), a class I selective orally active histone deacetylase inhibitor. J Med Chem. 2010;53(24):8663–8678.
  • González-Sánchez I, Solano JD, Loza-Mejía MA. Antineoplastic activity of the thiazolo[5,4-b]quinoline derivative D3CLP in K-562 cells is mediated through effector caspases activation. Eur J Med Chem. 2011;46(6):2102–2108.
  • Tseng CH, Chen YL, Chung KY. Synthesis and antiproliferative evaluation of 6-arylindeno[1,2-c]quinoline derivatives. Bioorg Med Chem. 2009;17(21):7465–7476.
  • Tseng CH, Tzeng CC, Yang CL. Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. J Med Chem. 2010;53(16):6164–6179.
  • Luniewski W, Wietrzyk J, Godlewska J. New derivatives of 11-methyl-6-[2 (dimethylamino)ethyl]-6Hindolo[2,3-b]quinoline as cytotoxic DNA topoisomerase II inhibitors. Bioorg Med Chem Lett. 2012;22(19):6103–6107.
  • Kurzrock R, Albitar M, Cortes JE. Phase II study of R115777, a farnesyl transferase inhibitor, in myelodysplastic syndrome. J Clin Oncol. 2004;22(7):1287–1292.
  • Jin XY, Chen H, Li DD. Design, synthesis, and anticancer evaluation of novel quinoline derivatives of ursolic acid with hydrazide, oxadiazole, and thiadiazole moieties as potent MEK inhibitors. J Enzyme Inhib Med Chem. 2019;34(1):955–972.
  • Solomon VR, Pundir S, Lee H. Examination of novel 4-aminoquinoline derivatives designed and synthesized by a hybrid pharmacophore approach to enhance their anticancer activities. Sci Rep. 2019;9(1):6315–6331.
  • Bello E, Colella G, Scarlato V. E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models. Cancer Res. 2011;71(4):1396–1405.
  • Kumar K, Schniper S, González-Sarrías A. Highly potent anti-proliferative effects of a gallium(III) complex with 7-chloroquinoline thiosemicarbazone as a ligand: synthesis, cytotoxic and antimalarial evaluation. Eur J Med Chem. 2014;86:81–86.
  • Alagarsamy V, Chitra K, Saravanan G. An overview of quinazolines: pharmacological significance and recent developments. Eur J Med Chem. 2018;151:628–685. .
  • Das D, Hong J. Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur J Med Chem. 2019;170:55–72.
  • Cheng W, Zhu S, Ma X. Design, synthesis and biological evaluation of 6-(nitroimidazole-1H-alkyloxyl)-4-anilinoquinazolines as efficient EGFR inhibitors exerting cytotoxic effects both under normoxia and hypoxia. Eur J Med Chem. 2015;89:826–834.
  • Zhang Y, Gao H, Liu R. Quinazoline-1-deoxynojirimycin hybrids as high active dual inhibitors of EGFR and a-glucosidase. Bioorg Med Chem Lett. 2017;27(18):4309–4313.
  • Zhang H-Q, Gong F-H, Ye J-Q. Design and discovery of 4-anilinoquinazoline-urea derivatives as dual TK inhibitors of EGFR and VEGFR-2. Eur J Med Chem. 2017;125:245–254.
  • Yadav RR, Guru SK, Joshi P. 6-Aryl substituted 4-(4-cyanomethyl) phenylamino quinazolines as a new class of isoform-selective PI3K-alpha inhibitors. Eur J Med Chem. 2016;122:731–743.
  • Ding HW, Deng CL, Li DD. Design, synthesis and biological evaluation of novel 4-aminoquinazolines as dual target inhibitors of EGFRPI3Ka. Eur J Med Chem. 2018;146:460–470.
  • Fan YH, Ding HW, Liu DD. Novel 4-aminoquinazoline derivatives induce growth inhibition, cell cycle arrest and apoptosis via PI3Ka inhibition. Bioorg Med Chem. 2018;26(8):1675–1685.
  • Fr€ohlich T, Reiter C, Ibrahim MM. Synthesis of novel hybrids of quinazoline and artemisinin with high activities against plasmodium falciparum, human cytomegalovirus, and leukemia cells. ACS Omega. 2017;2(6):2422–2431.
  • Yang SM, Urban DJ, Yoshioka M. Discovery and lead identification of quinazoline-based BRD4 inhibitors. Bioorg Med Chem Lett. 2018;28(21):3483–3488.
  • Kumari A, Singh RK. Medicinal chemistry of indole derivatives: current to future therapeutic prospective. Bioorg Chem. 2019;89:103021–103055. .
  • Dadashpour S, Emami S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur J Med Chem. 2018;150:9–29.
  • Giannini G, Marzi M, Di Marzo M. Exploring bis-(indolyl) methane moiety as an alternative and innovative CAP group in the design of histone deacetylase (HDAC) inhibitors. Bioorg Med Chem Lett. 2009;19(10):2840–2843.
  • Zhang Y, Yang P, Chou CJ. Development of N-hydroxycinnamamide-based histone deacetylase inhibitors with an indolecontaining cap group. ACS Med Chem Lett. 2013;4(2):235–238.
  • Li X, Inks ES, Li X. Discovery of the first N-hydroxycinnamamide-based histone deacetylase 1/3 dual inhibitors with potent oral antitumor activity. J Med Chem. 2014;57(8):3324–3341.
  • Mehndiratta S, Hsieh YL, Liu YM. Indole-3-ethylsulfamoylphenylacrylamides: potent histone deacetylase inhibitors with anti-inflammatory activity. Eur J Med Chem. 2014;85:468–479.
  • Panathur N, Dalimba U, Koushik PV. Identification and characterization of novel indole based small molecules as anticancer agents through SIRT1 inhibition. Eur J Med Chem. 2013;69:125–138.
  • Lee J, More KN, Yang SA. 3,5-bis(aminopyrimidinyl)indole derivatives: synthesis and evaluation of pim kinase inhibitory activities. Bull Kor Chem Soc. 2014;35(7):2123–2129.
  • Mirzaei H, Shokrzadeh M, Modanloo M. New indole-based chalconoids as tubulin-targeting antiproliferative agents. Bioorg Chem. 2017;75:86–98.
  • Zhou Y, Duan K, Zhu L. Synthesis and cytotoxic activity of novel hexahydropyrrolo [2,3-b] indole imidazolium salts. Bioorg Med Chem Lett. 2016;26(2):460–465.
  • Kumar D, Kumar NM, Tantak MP. Synthesis and identification of α-cyano bis (indolyl)chalcones as novel anticancer agents. Bioorg Med Chem Lett. 2014;24(22):5170–5174.
  • Kumar S, Gu L, Palma G. Design, synthesis, anti-proliferative evaluation and docking studies of 1 H-1,2,3-triazole tethered ospemifene–isatin conjugates as selective estrogen receptor modulators. New J Chem. 2018;42(5):3703–3713.
  • Sharma B, Singh A, Gu L. Diastereoselective approach to rationally design tetrahydro-b-carboline-isatin conjugates as potential SERMs against breast cancer. RSC Adv. 2019;9(17):9809–9819.
  • Manal M, Chandrasekar MJN, Priya JG. Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorg Chem. 2016;67:18–42. .
  • Marson CM, Serradji N, Rioja AS. Stereodefined and polyunsaturated inhibitors of histone deacetylase based on (2E,4E)-5-arylpenta-2,4-dienoic acid hydroxyamides. Bioorg Med Chem Lett. 2004;14(10):2477–2481.
  • Dai Y, Guo Y, Guo J. Indole amide hydroxamic acids as potent inhibitors of histone deacetylases. Bioorg Med Chem Lett. 2003;13(11):1897–1901.
  • Dai Y, Guo Y, Curtin ML. A novel series of histone deacetylase inhibitors incorporating hetero aromatic ring systems as connection units. Bioorg Med Chem Lett. 2003;13(21):3817–3820.
  • Shinji C, Nakamura T, Maeda S. Design and synthesis of phthalimide-type histone deacetylase inhibitors. Bioorg Med Chem Lett. 2005;15(20):4427–4431.
  • Shinji C, Maeda S, Imai K. Design, synthesis and evaluation of -cyclic amide/imide-bearing hydroxamic acid derivatives as class-selective histone deacetylase (HDAC) inhibitors. Bioorg Med Chem Lett. 2006;14(22):7625–7651.
  • Price S, Bordogna W, Bull RJ. Identification and optimisation of a series of substituted 5-(1Hpyrazol-3-yl)-thiophene-2-hydroxamic acids as potent histone deacetylase (HDAC) inhibitors. Bioorg Med Chem Lett. 2007;17(2):370–375.
  • Chen PC, Patil V, Guerrant W. Synthesis and structure-activity relationship of histone deacetylase (HDAC) inhibitors with triazole-linked cap. Bioorg Med Chem Lett. 2008;16(9):4839–4853.
  • R. He R, Chen Y, Chen Y. Synthesis and biological evaluation of triazol-4-ylphenylbearing histone deacetylase inhibitors as anticancer agents. J Med Chem. 2010;53(3):1347–1356.
  • Tazzari V, Cappalletti G, Casagrande M. New aryldithiolethione derivatives as potent histone deacetylase inhibitors. Bioorg Med Chem. 2010;18(12):4187–4194.
  • Belvedere S, Witter DJ, Yan J. Aminosuberoyl hydroxamic acids (ASHAs): a potent new class of HDAC inhibitors. Bioorg Med Chem Lett. 2007;17(14):3969–3971.
  • Taddei M, Cini E, Giannotti L. Lactam based 7-amino suberoylamide hydroxamic acids as potent HDAC inhibitors. Bioorg Med Chem Lett. 2014;24(1):61–64.
  • Cai M, Hu J, Tian JL. Novel hybrids from N-hydroxyarylamide and indole ring through click chemistry as histone deacetylase inhibitors with potent antitumor activities. Chin Chem Lett. 2015;26(6):675–680.
  • Peter S, Aderibigbe BA. Ferrocene-based compounds with antimalaria/anticancer activity. Molecules. 2019;24(19):3604–3628.
  • Wang R, Chen H, Yan W. Ferrocene-containing hybrids as potential anticancer agents: current developments, mechanisms of action and structure-activity relationships. Eur J Med Chem. 2020;190:112109–112163. .
  • Pigeon P, Wang Y, Top S. A new series of succinimido-ferrociphenols and related heterocyclic species induce strong antiproliferative effects, especially against ovarian cancer cells resistant to cisplatin. J Med Chem. 2017;60(20):8358–8368.
  • Pigeon P, Top S, Zekri O. The replacement of a phenol group by an aniline or acetanilide group enhances the cytotoxicity of 2-ferrocenyl-1, 1-diphenyl-but-l-ene compounds against breast cancer cells. J Organomet Chem. 2009;694(6):895–901.
  • Narváez-Pita X, Rheingold AL, Meléndez E. Ferrocene-steroid conjugates: synthesis, structure and biological activity. J Organomet Chem. 2017;846:113–120.
  • Reiter C, Fröhlich T, Zeino M. New efficient artemisinin derived agents against human leukemia cells, human cytomegalovirus and plasmodium falciparum: 2nd generation 1,2,4-trioxane-ferrocene hybrids. Eur J Med Chem. 2015;97:164–172.
  • Plazuk D, Wieczorek A, Ciszewski WM. Synthesis and in vitro biological evaluation of ferrocenyl side-chain-functionalized paclitaxel derivatives. ChemMedChem. 2017;12(22):1882–1892.
  • Jia DG, Zhang JA, Fan YR. Ferrocene appended naphthalimide derivatives: synthesis, DNA binding, and in vitro cytotoxic activity. J Organomet Chem. 2019;888:16–23.
  • N’Da DD, Smith PJ. Synthesis, in vitro antiplasmodial and antiproliferative activities of a series of quinoline-ferrocene hybrids. Med Chem Res. 2014;23(3):1214–1224.
  • Esparza-Ruiz A, Herrmann C, Chen J. Synthesis and in vitro anticancer activity of ferrocenyl-aminoquinoline-carboxamide conjugates. Inorg Chim Acta. 2012;393:276–283.
  • Vessieres A, Top S, Pigeon P. Modification of the estrogenic properties of diphenols by the incorporation of ferrocene. Generation of antiproliferative effects in vitro. J Med Chem. 2005;48(12):3937–3940.
  • Singh A, Saha ST, Perumal S. Azide-alkyne cycloaddition en route to 1H-1,2,3-triazole-tethered isatin-ferrocene, ferrocenylmethoxy-isatin, and isatin-ferrocenylchalcone conjugates: synthesis and antiproliferative evaluation. ACS Omega. 2018;3(1):1263–1268.
  • Speicher LA, Barone LR, Chapman AE. P-glycoprotein binding and modulation of the multidrug-resistant phenotype by estramustine. J Natl Cancer Inst. 1994;86(9):688–694.
  • Hartley-Asp B, Gunnarsson PO, Liljekvist J. Cytotoxicity and metabolism of prednimustine, chlorambucil and prednisolone in a chinese hamster cell line. Cancer Chemother Pharmacol. 1986;16(2):85–90.
  • Zhang J, Ren L, Yang X. Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018;291:138–148.
  • Huang YC, Chao DK, Clifford Chao KS. Oral small-molecule tyrosine kinase inhibitor midostaurin (PKC412) inhibits growth and induces megakaryocytic differentiation in human leukemia cells. Toxicol in Vitro. 2009;23(6):979–985.
  • Hawkins W, Mitchell C, McKinstry R. Transient exposure of mammary tumors to PD184352 and UCN-01 causes tumor cell death in vivo and prolonged suppression of tumor regrowth. Cancer Biol Ther. 2005;4(11):1275–1284.
  • Ceribelli M, Kelly PN, Shaffer AL. Blockade of oncogenic IκB kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors. Proc Natl Acad Sci U S A. 2014;111(31):11365–11370.
  • Matsui T, Miyamoto K, Yamanaka K. Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019;383:114761.
  • Han M, Shen J, Wang L. 5-chloro-N4-(2-(isopropylsulfonyl)phenyl)-N2-(2-methoxy-4-(4-((4-methylpiperazin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)phenyl)pyrimidine-2,4-diamine (WY-135), a novel ALK inhibitor, induces cell cycle arrest and apoptosis through inhibiting ALK and its downstream pathways in karpas299 and H2228 cells. Chem Biol Interact. 2018;284:24–31.
  • The I, Ruijtenberg S, Bouchet BP. Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells. Nat Commun. 2015;6:5906.
  • Dong H, Wade MG. Application of a nonradioactive assay for high throughput screening for inhibition of thyroid hormone uptake via the transmembrane transporter MCT8. Toxicol in Vitro. 2017 Apr;40:234–242..
  • Capozzi M, De Divitiis C, Ottaiano AL. a molecule with versatile application: from preclinical evidence to future development in anti-cancer treatment. Cancer Manag Res. 2019;11:3847–3860.
  • Zhou Y, Li Y, Ni HM. Nrf2 but not autophagy inhibition is associated with the survival of wild-type epidermal growth factor receptor non-small cell lung cancer cells. Toxicol Appl Pharmacol. 2016;310:140–149.
  • Sun H, Mediwala SN, Szafran AT. CUDC-101, a novel inhibitor of full-length androgen receptor (flAR) and androgen receptor variant 7 (AR-V7) activity: mechanism of action and in vivo efficacy. Horm Cancer. 2016;7(3):196–210.
  • Pham HTT, Maurer B, Prchal-Murphy M. STAT5BN642H is a driver mutation for T cell neoplasia. J Clin Invest. 2018;128(1):387–401.
  • Lee HA, Hyun SA, Byun B. Electrophysiological mechanisms of vandetanib-induced cardiotoxicity: comparison of action potentials in rabbit Purkinje fibers and pluripotent stem cell-derived cardiomyocytes. PLoS One. 2018;13(4):e0195577.
  • Cheng CC, Chang J, Huang SC. YM155 as an inhibitor of cancer stemness simultaneously inhibits autophosphorylation of epidermal growth factor receptor and G9a-mediated stemness in lung cancer cells. PLoS One. 2017;12(8):e0182149.
  • Han W, Pan H, Chen Y. EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS One. 2011;6(6):e18691.
  • Tabasum S, Singh RP. Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition. Chem Biol Interact. 2019;303:14–21.
  • Eno MR, El-Gendy BE, Cameron MD. P450 3A-catalyzed O-dealkylation of lapatinib induces mitochondrial stress and activates nrf2. Chem Res Toxicol. 2016;29(5):784–796.
  • Kato Y, Salumbides BC, Wang XF. Antitumor effect of the histone deacetylase inhibitor LAQ824 in combination with 13-cis-retinoic acid in human malignant melanoma. Mol Cancer Ther. 2007;6(1):70–81.
  • Yaseen A, Chen S, Hock S. Resveratrol sensitizes acute myelogenous leukemia cells to histone deacetylase inhibitors through reactive oxygen species-mediated activation of the extrinsic apoptotic pathway. Mol Pharmacol. 2012;82(6):1030–1041.
  • Heldin CH, Moustakas VM, A. Regulation of EMT by tgfbeta in cancer. FEBS Lett. 2012;586:1959–1970.
  • Song F, Hu B, Cheng J-W. Anlotinib suppresses tumor progression via blocking the VEGFR2/PI3K/AKT cascade in intrahepatic cholangiocarcinoma. Cell Death Dis. 2020;11(7):573–587.
  • Lindsay CR, Macpherson LRJ, Cassidy J. Current status of cediranib: the rapid development of a novel anti-angiogenic therapy. Future Oncol. 2009;5(4):421–432.
  • Marampon F, Leoni F, Mancini A. Histone deacetylase inhibitor ITF2357 (givinostat) reverts transformed phenotype and counteracts stemness in in vitro and in vivo models of human glioblastoma. J Cancer Res Clin Oncol. 2019;145(2):393–409.
  • Soukupova J, Bertran E, Penuelas-Haro I. Resminostat induces changes in epithelial plasticity of hepatocellular carcinoma cells and sensitizes them to sorafenib-induced apoptosis. Oncotarget. 2017;8(66):110367–110379.
  • Basu D, Reyes-Múgica M. Rebbaa A histone acetylation-mediated regulation of the hippo pathway. PLoS One. 2013;8(5):e62478.
  • Wang H, Yu N, Chen D. Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile. J Med Chem. 2011;54(13):4694–4720.
  • Bhalla S, Balasubramanian S, David K. PCI-24781 induces caspase and reactive oxygen species-dependent apoptosis through NF-kappaB mechanisms and is synergistic with bortezomib in lymphoma cells. Clin Cancer Res. 2009;15(10):3354–3365.
  • Adimoolam S, Sirisawad M, Chen J. HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination. Proc Natl Acad Sci U S A. 2007;104(49):19482–19487.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.