481
Views
13
CrossRef citations to date
0
Altmetric
Review

Approaches for the discovery of new cell-penetrating peptides

, & ORCID Icon
Pages 553-565 | Received 27 Jul 2020, Accepted 11 Nov 2020, Published online: 01 Dec 2020

References

  • Langel Ü, CPP. Cell-penetrating peptides. Singapore (Singapore): Springer Nature Singapore Pte Ltd; 2019.
  • Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988 Dec;55(6):1189–1193.
  • Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 1988;55(6):1179–1188.
  • Joliot A, Pernelle C, Deagostini-Bazin H, et al. Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A. 1991 Mar;88(5):1864–1868.
  • Derossi D, Joliot AH, Chassaing G, et al. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem. 1994 Apr;269(14):10444–10450.
  • Vivès E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997 Jun;272(25):16010–16017.
  • Morris MC, Vidal P, Chaloin L, et al. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res. 1997 Jul;;25(14):2730–2736.
  • Wender PA, Mitchell DJ, Pattabiraman K, et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A. 2000 Nov;;97(24):13003–13008.
  • Futaki S, Ohashi W, Suzuki T, et al. Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug Chem. 2001 Nov-Dec;12(6):1005–1011.
  • Pooga M, Soomets U, Hällbrink M, et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat Biotechnol. 1998 Sep;;16(9):857–861.
  • Agrawal P, Bhalla S, Usmani SS, et al. CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res. 2016 Jan;44(D1): D1098–103.
  • Habault J, Poyet JL. Recent advances in cell penetrating peptide-based anticancer therapies. Molecules. 2019 Mar;24(5):5.
  • Olson SE, Jiang T, Aguilera TA, et al. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Nat Acad Sci Mar. 2010;107(9):4311–4316.
  • Böhmová E, Pola R, Pechar M, et al. Etrych T polymer cancerostatics containing cell-penetrating peptides: internalization efficacy depends on peptide type and spacer length. Pharmaceutics. 2020;12(1):59.
  • Golan M, Feinshtein V, David A. Conjugates of HA2 with octaarginine-grafted HPMA copolymer offer effective siRNA delivery and gene silencing in cancer cells. Eur J Pharm Biopharm. 2016;(109):103–112,
  • Bartlett RL, Sharma S, Panitch A. Cell-penetrating peptides released from thermosensitive nanoparticles suppress pro-inflammatory cytokine response by specifically targeting inflamed cartilage explants. Nanomedicine. 2013;9(3):419–427.
  • Zhu Y, Jiang Y, Meng F, et al. Highly efficacious and specific anti-glioma chemotherapy by tandem nanomicelles co-functionalized with brain tumor-targeting and cell-penetrating peptides. J Control Release. 2018;278(18–8):0168–3659.
  • Kanazawa T, Akiyama F, Kakizaki S, et al. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials. 2013;34(36):9220–9226.
  • Kanazawa T, Morisaki K, Suzuki S, et al. Prolongation of life in rats with malignant glioma by intranasal siRNA/drug codelivery to the brain with cell-penetrating peptide-modified micelles. Mol Pharm. 2014;11(5):1471–1478.
  • Su R, Hu J, Zou Q, et al. Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools. Brief Bioinform. 2020 Mar;21(2):408–420.
  • The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. NAR. 2019;47:D506–515.
  • Pirtskhalava M, Gabrielian A, Cruz P, et al. 2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucl Acids Res. 2016;44(D1):D1104–D1112.
  • Kang X, Dong F, Shi C, et al. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data. 2019;6(148). DOI:https://doi.org/10.1038/s41597-019-0154-y
  • Armenteros JJA, Tsirigos KD, Sønderby CK, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(420–423). DOI:https://doi.org/10.1038/s41587-019-0036-z
  • Sharma S, Schiller MR. The carboxy-terminus, a key regulator of protein function. Crit Rev Biochem Mol Biol. 2019 04;54(2):85–102.
  • Barlowe C, Helenius A. Cargo capture and bulk flow in the early secretory pathway. Annu Rev Cell Dev Biol. 2016 10;32(1):197–222.
  • Zhang P, Moreno R, Lambert PF, et al. Cell-penetrating peptide inhibits retromer-mediated human papillomavirus trafficking during virus entry. Proc Natl Acad Sci U S A. 2020 03;117(11):6121–6128.
  • Montrose K, Yang Y, Krissansen GW. X-pep, a novel cell-penetrating peptide motif derived from the hepatitis B virus. Biochem Biophys Res Commun. 2014 Oct;;453(1):64–68.
  • Ohgita T, Takechi-Haraya Y, Nadai R, et al. A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E. Biochim Biophys Acta Biomembr. 2019 03;1861(3):541–549. .
  • Fazil MHUT, Chalasani MLS, Choong YK, et al. C-terminal peptide of TFPI-1 facilitates cytosolic delivery of nucleic acid cargo into mammalian cells. Biochim Biophys Acta Biomembr. 2020 Feb;1862(2):183093.
  • Trenner A, Godau J, Sartori AA, et al. BRCA2-derived cell-penetrating peptide targets RAD51 function and confers hypersensitivity toward PARP inhibition. Mol Cancer Ther. 2018 07;17(7):1392–1404.
  • Zhang P, Monteiro da Silva G, Deatherage C, et al. Cell-penetrating peptide mediates intracellular membrane passage of human papillomavirus L2 protein to trigger retrograde trafficking. Cell. 2018 Sept;174(6):1465–1476. . e13.
  • Yu W, Zhan Y, Xue B, et al. Highly efficient cellular uptake of a cell-penetrating peptide (CPP) derived from the capsid protein of porcine circovirus type 2. J Biol Chem. 2018 09;293(39):15221–15232.
  • Bonifaci N, Moroianu J, Radu A, et al. Karyopherin beta2 mediates nuclear import of a mRNA binding protein. Proc Natl Acad Sci U S A. 1997 May;94(10):5055–5060.
  • Bernhofer M, Goldberg T, Wolf S, et al. NLSdb-major update for database of nuclear localization signals and nuclear export signals. Nucleic Acids Res. 2018 *Database of NLS 01;46(D1):D503–D08.
  • Xiong K, Blainey PC. Molecular sled sequences are common in mammalian proteins. Nucleic Acids Res. 2016 Mar;;44(5):2266–2273.
  • Astrada S, Fernández Massó JR, Vallespí MG, et al. Cell penetrating capacity and internalization mechanisms used by the synthetic peptide CIGB-552 and its relationship with tumor cell line sensitivity. Molecules. 2018 Mar;23(4):4.
  • Henriques ST, Melo MN, Castanho MA. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J. 2006 Oct;399(1):1–7.
  • Bahnsen JS, Franzyk H, Sayers EJ, et al. Cell-penetrating antimicrobial peptides – prospectives for targeting intracellular infections. Pharm Res. 2015 May;;32(5):1546–1556.
  • Bustillo ME, Fischer AL, LaBouyer MA, et al. Modular analysis of hipposin, a histone-derived antimicrobial peptide consisting of membrane translocating and membrane permeabilizing fragments. Biochim Biophys Acta. 2014 Sep;;1838(9):2228–2233.
  • Neundorf I, Rennert R, Hoyer J, et al. Fusion of a short HA2-derived peptide sequence to cell-penetrating peptides improves cytosolic uptake, but enhances cytotoxic activity. Pharmaceuticals (Basel). 2009 Sep;2(2):49–65. .
  • Eiríksdóttir E, Konate K, Langel Ü, et al. Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. Biochim Biophys Acta. 2010 Jun;;1798(6):1119–1128.
  • Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. 2004 Mar;;10(3):310–315.
  • Fang SL, Fan TC, Fu HW, et al. A novel cell-penetrating peptide derived from human eosinophil cationic protein. PLoS One. 2013;8(3):e57318. .
  • Chen JX, Xu XD, Yang S, et al. Self-assembled BolA-like amphiphilic peptides as viral-mimetic gene vectors for cancer cell targeted gene delivery. Macromol Biosci. 2013 Jan;;13(1):84–92.
  • Pastushok L, Fu Y, Lin L, et al. A novel cell-penetrating antibody fragment inhibits the DNA repair protein RAD51. Sci Rep. 2019 08;9(1):11227.
  • Walker L, Perkins E, Kratz F, et al. Cell penetrating peptides fused to a thermally targeted biopolymer drug carrier improve the delivery and antitumor efficacy of an acid-sensitive doxorubicin derivative. Int J Pharm. 2012 Oct;;436(1–2):825–832.
  • Myrberg H, Zhang L, Mäe M, et al. Design of a tumor-homing cell-penetrating peptide. Bioconjug Chem. 2008 Jan;;19(1):70–75.
  • Ramaker K, Henkel M, Krause T, et al. Cell penetrating peptides: a comparative transport analysis for 474 sequence motifs. Drug Deliv. 2018;25(1):928–937.
  • Oikawa K, Islam MM, Horii Y, et al. Screening of a cell-penetrating peptide library in Escherichia coli: relationship between cell penetration efficiency and cytotoxicity. ACS Omega. 2018;3(12):16489–16499.
  • Jha D, Mishra R, Gottschalk S, et al. CyLoP-1: a novel cysteine-rich cell-penetrating peptide for cytosolic delivery of cargoes. Bioconjug Chem. 2011 Mar;22(3):319–328. .
  • Freimann K, Arukuusk P, Kurrikoff K, et al. Optimization of in vivo DNA delivery with NickFect peptide vectors. J Control Release. 2016 11;241:135–143.
  • Gessner I, Neundorf I. Nanoparticles modified with cell-penetrating peptides: conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int J Mol Sci. 2020 Apr;21(7):7.
  • Soomets U, Lindgren M, Gallet X, et al. Deletion analogues of transportan. Biochim Biophys Acta. 2000 Jul;;1467(1):165–176. .
  • Soleymani-Goloujeh M, Nokhodchi A, Niazi M, et al. Effects of N-terminal and C-terminal modification on cytotoxicity and cellular uptake of amphiphilic cell penetrating peptides. Artif Cells Nanomed Biotechnol. 2018;46(sup1):91–103. .
  • Nguyen LT, Chau JK, Perry NA, et al. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS One. 2010 Sep;5:9.
  • Park S, Kim M, Hong Y, et al. Myristoylated TMEM39AS41, a cell-permeable peptide, causes lung cancer cell death. Toxicol Res. 2020 Apr;36(2):123–130. .
  • Insua I, Montenegro J. 1D to 2D self assembly of cyclic peptides. J Am Chem Soc. 2020 01;142(1):300–307.
  • Khatri A, Mishra A, Chauhan VS. Characterization of DNA condensation by conformationally restricted dipeptides and gene delivery. J Biomed Nanotechnol. 2017 Jan;;13(1):35–53.
  • Zhang C, Ren W, Liu Q, et al. Transportan-derived cell-penetrating peptide delivers siRNA to inhibit replication of influenza virus in vivo. Drug Des Devel Ther. 2019;13:1059–1068.
  • Robbins PF, Kantor JA, Salgaller M, et al. Transduction and expression of the human carcinoembryonic antigen gene in a murine colon carcinoma cell line. Cancer Res. 1991 Jul;51(14):3657–3662.
  • Rydberg HA, Matson M, Amand HL, et al. Effects of tryptophan content and backbone spacing on the uptake efficiency of cell-penetrating peptides. Biochemistry. 2012 Jul;51(27):5531–5539.
  • Porosk L, Arukuusk P, Põhako K, et al. Enhancement of siRNA transfection by the optimization of fatty acid length and histidine content in the CPP. Biomater Sci. 2019 Sep;7(10):4363–4374.
  • Kurrikoff K, Veiman KL, Künnapuu K, et al. Effective in vivo gene delivery with reduced toxicity, achieved by charge and fatty acid -modified cell penetrating peptide. Sci Rep. 2017 12;7(1):17056. .
  • Pärnaste L, Arukuusk P, Langel K, et al. The formation of nanoparticles between small interfering RNA and amphipathic cell-penetrating peptides. Mol Ther Nucleic Acids. 2017 Jun;7:1–10.
  • Horton KL, Pereira MP, Stewart KM, et al. Tuning the activity of mitochondria-penetrating peptides for delivery or disruption. Chembiochem. 2012 Feb;;13(3):476–485.
  • Dominguez-Berrocal L, Cirri E, Zhang AL, et al. New therapeutic approach for targeting hippo signalling pathway. Sci Rep. 2019;9(1):4771.
  • Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell. 2019 11;10(11):787–807.
  • Zahid M, Feldman KS, Garcia-Borrero G, et al. Cardiac targeting peptide, a novel cardiac vector: studies in bio-distribution, imaging application, and mechanism of transduction. Biomolecules. 2018 11;8(4):4. .
  • McConnell SJ, Thon VJ, Spinella DG. Isolation of fibroblast growth factor receptor binding sequences using evolved phage display libraries. Comb Chem High Throughput Screen. 1999 Jun;2(3):155–163.
  • Nicklin SA, White SJ, Watkins SJ, et al. Selective targeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation. 2000 Jul;102(2):231–237.
  • Mukai Y, Sugita T, Yamato T, et al. Creation of novel Protein Transduction Domain (PTD) mutants by a phage display-based high-throughput screening system. Biol Pharm Bull. 2006 Aug;29(8):1570–1574. .
  • Mi Z, Mai J, Lu X, et al. Characterization of a class of cationic peptides able to facilitate efficient protein transduction in vitro and in vivo. Mol Ther. 2000 Oct;2(4):339–347.
  • Eriste E, Kurrikoff K, Suhorutšenko J, et al. Peptide-based glioma-targeted drug delivery vector gHoPe2. Bioconjug Chem. 2013 Mar;24(3):305–313.
  • Wu LP, Ahmadvand D, Su J, et al. Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide. Nat Commun. 2019 Oct;10(1):4635.
  • Sugahara KN, Teesalu T, Karmali PP, et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell. 2009 Dec;;16(6):510–520.
  • Hoffmann K, Milech N, Juraja SM, et al. A platform for discovery of functional cell-penetrating peptides for efficient multi-cargo intracellular delivery. Sci Rep. 2018 08;8(1):12538.
  • Watt PM, Milech N, Stone SR. Structure-diverse Phylomer libraries as a rich source of bioactive hits from phenotypic and target directed screens against intracellular proteins. Curr Opin Chem Biol. 2017 Jun;38:127–133.
  • Durzyńska J, Przysiecka Ł, Nawrot R, et al. Viral and other cell-penetrating peptides as vectors of therapeutic agents in medicine. J Pharmacol Exp Ther. 2015 Jul;354(1):32–42.
  • Blanco C, Verbanic S, Seelig B, et al. High throughput sequencing of in vitro selections of mRNA-displayed peptides: data analysis and applications. Phys Chem Chem Phys. 2020 Mar;22(12):6492–6506.
  • Kamide K, Nakakubo H, Uno S, et al. Isolation of novel cell-penetrating peptides from a random peptide library using in vitro virus and their modifications. Int J Mol Med. 2010 Jan;25(1):41–51.
  • Liu R, Barrick JE, Szostak JW, et al. Optimized synthesis of RNA-protein fusions for in vitro protein selection. Methods Enzymol. 2000;318:268–293.
  • Lee JH, Song HS, Park TH, et al. Screening of cell-penetrating peptides using mRNA display. Biotechnol J. 2012 Mar;7(3):387–396.
  • Kwon YU, Kodadek T. Quantitative evaluation of the relative cell permeability of peptoids and peptides. J Am Chem Soc. 2007 Feb;129(6):1508–1509.
  • Yu P, Liu B, Kodadek T. A convenient, high-throughput assay for measuring the relative cell permeability of synthetic compounds. Nat Protoc. 2007;2(1):23–30.
  • Carney RP, Thillier Y, Kiss Z, et al. Combinatorial library screening with liposomes for discovery of membrane active peptides. ACS Comb Sci. 2017 May;19(5):299–307.
  • Hemmati S, Behzadipour Y, Haddad M. Decoding the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for cell-penetrating peptides involved in pathogenesis or applicable as drug delivery vectors. Infect Genet Evol 2019. 2020;104474. DOI:https://doi.org/10.1016/j.meegid.
  • Dobchev DA, Mager I, Tulp I, et al. Prediction of cell-penetrating peptides using artificial neural networks. Curr Comput Aided Drug Des. 2010;6(2):79–89.
  • Sanders WS, Johnston CI, Bridges SM, et al. Prediction of cell penetrating peptides by support vector machines. PLoS Comput Biol. 2011 Jul;;7(7):e1002101.
  • Gautam A, Chaudhary K, Kumar R, et al. In silico approaches for designing highly effective cell penetrating peptides. J Transl Med. 2013;11:74.
  • Diener C, Garza Ramos Martínez G, Moreno Blas D, et al. Effective design of multifunctional peptides by combining compatible functions. PLoS Comput Biol. 2016 Apr;12(4):e1004786.
  • Wei L, Xing P, Su R, et al. CPPred-RF: a sequence-based predictor for identifying cell-penetrating peptides and their uptake efficiency. J Proteome Res. 2017 05;16(5):2044–2053.
  • Arif M, Ahmad S, Ali F, et al. TargetCPP: accurate prediction of cell-penetrating peptides from optimized multi-scale features using gradient boost decision tree. J Comput Aided Mol Des. 2020 Aug;34(8):841–856.
  • Noble WS. What is a support vector machine? Nat Biotechnol. 2006 Dec;24(12):1565–1567.
  • Tang H, Su ZD, Wei HH, et al. Prediction of cell-penetrating peptides with feature selection techniques. Biochem Biophys Res Commun. 2016 Aug;477(1):150–154.
  • Breiman L. Random Forests. Mach Learn. 2001 Oct;45:5–32.
  • Wei L, Tang J, Zou Q. SkipCPP-Pred: an improved and promising sequence-based predictor for predicting cell-penetrating peptides. BMC Genomics. 2017 Oct;18(Suppl 7):742.
  • Kumar V, Agrawal P, Kumar R, et al. Prediction of cell-penetrating potential of modified peptides containing natural and chemically modified residues. Front Microbiol. 2018;9:725.
  • Chen L, Chu L, Huang T, et al. Prediction and analysis of cell-penetrating peptides using pseudo-amino acid composition and random forest models. Amino Acids. 2015 Jul;47(7):1485–1493.
  • Manavalan B, Subramaniyam S, Shin TH, et al. Machine-learning-based prediction of cell-penetrating peptides and their uptake efficiency with improved accuracy. J Proteome Res. 2018 08;17(8):2715–2726.
  • Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006 Mar;63:3–42.
  • Pandey P, Patel V, George NV, et al. KELM-CPPpred: kernel extreme learning machine based prediction model for cell-penetrating peptides. J Proteome Res. 2018 17;9:3214–3222.
  • Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory and applications. Neurocomputing. 2006 Dec;;70(1–3):489–501.
  • Chen T, Guestrin C. XGBoost: a scalable tree boosting system: KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 785–794. August 2016.
  • Hällbrink M, Kilk K, Elmquist A, et al. Prediction of cell-penetrating peptides. Int J Pept Res Ther. 2005;11:249–259.
  • Hellberg S, Sjöström M, Skagerberg B, et al. Peptide quantitative structure-activity relationships, a multivariate approach. J Med Chem. 1987 Jul;;30(7):1126–1135.
  • Sandberg M, Eriksson L, Jonsson J, et al. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem. 1998 Jul;;41(14):2481–2491.
  • Langel Ü. Handbook of cell-penetrating peptides, 2nd ed. CRC Press Inc. 2006.
  • Hansen M, Kilk K, Langel Ü. Predicting cell-penetrating peptides. Adv Drug Deliv Rev. 2008 Mar;60(4–5):572–579.
  • Holton TA, Pollastri G, Shields DC, et al. CPPpred: prediction of cell penetrating peptides. Bioinformatics. 2013 Dec;29(23):3094–3096.
  • Chou KC. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins. 2001 May;43(3):246–255.
  • Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226–1238.
  • Manavalan B, Lee J. SVMQA: support–vector-machine-based protein single-model quality assessment. Bioinformatics. 2017 Aug;33(16):2496–2503.
  • Lin X, Li X. Lin XA review on applications of computational methods in drug screening and design. Molecules. 2020;25(6):1375.
  • Marrink SJ, Corradi V, Souza PCT, et al. Computational modeling of realistic cell membranes. Chem Rev. 2019;119(9):6184–6226.
  • Cao Z, Liu L, Hu G, et al. Interplay of hydrophobic and hydrophilic interactions in sequence-dependent cell penetration of spontaneous membrane-translocating peptides revealed by bias-exchange metadynamics simulations. Biochimica Et Biophysica Acta (BBA) – Biomembranes. 2020;1862(10): 0005–2736. 183402.
  • Ulmschneider JP, Ulmschneider MB. Molecular Dynamics Simulations Are Redefining Our View Of Peptides Interacting With Biological Membranes. Acc Chem Res. 2018;51(5):1106–1116.
  • Allolio C, Magarkar A, Jurkiewicz P, et al. Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore. Proc Nat Acad Sci Nov. 2018;115(47):11923–11928.
  • Herce HD, Garcia AE. Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes. Proc Nat Acad Sci Dec. 2007;104(52):20805–20810.
  • Ma R, Wong SW, Ge L, et al. In vitro and MD simulation study to explore physicochemical parameters for antibacterial peptide to become potent anticancer peptide. Mol Ther Oncolyt. 2020;16:7–19.
  • Simon AJ, d’Oelsnitz S, Ellington AD. Synthetic evolution. Nat Biotechnol. 2019 Jul;37(7):730–743.
  • Li S, Kim SY, Pittman AE, et al. Potent macromolecule-sized poration of lipid bilayers by the macrolittins, a synthetically evolved family of pore-forming peptides. J Am Chem Soc. 2018 May;140(20):6441–6447.
  • Kauffman WB, Guha S, Wimley WC. Synthetic molecular evolution of hybrid cell penetrating peptides. Nat Commun. 2018 Jul;9(1):2568.
  • Wimley WC. Application of synthetic molecular evolution to the discovery of antimicrobial peptides. Adv Exp Med Biol. 2019;1117:241–255.
  • Johansson HJ, Andaloussi SE, Langel Ü. Mimicry of protein function with cell-penetrating peptides. Methods Mol Biol. 2011;683:233-247.
  • Oughtred R, Stark C, Breitkreutz BJ, et al. The BioGRID interaction database: 2019 update. NAR. 2019, Jan;47(D1):D529–D541.
  • Zaidman D, Wolfson HJ. PinaColada: peptide-inhibitor ant colony ad-hoc design algorithm. Bioinformatics. 2016 Aug 1;32(15):2289–2296.
  • Donsky E, Wolfson HJ. PepCrawler: a fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors. Bioinformatics. 2011 Oct 15;27(20):2836–2842.
  • Cunninham AD, Qvit N, Mochly-Rosen D. Peptides and peptidomimetics as regulators of protein–protein interactions. Curr Opin Struct Biol. 2017 Jun;44:59–66.
  • Howl J, Matou-Nasri S, West DC, et al. Bioportide: an emergent concept of bioactive cell-penetrating peptides. Cell Mol Life Sci. 2012;69:2951–2966.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.