643
Views
7
CrossRef citations to date
0
Altmetric
Review

Computational representations of protein–ligand interfaces for structure-based virtual screening

, , , ORCID Icon &
Pages 1175-1192 | Received 05 Nov 2020, Accepted 11 May 2021, Published online: 03 Jun 2021

References

  • Ou-Yang SS, Lu JY, Kong XQ, et al. Computational drug discovery. Acta Pharmacol Sin. 2012;33(9):1131–1140.
  • DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33.
  • Hasselgren C, Myatt GJ. Computational Toxicology and Drug Discovery. Methods Mol Biol. 2018;1800:233–244.
  • Schneider G. Virtual screening: an endless staircase? Nat Rev Drug Discov. 2010;9(4):273–276.
  • Scior T, Bender A, Tresadern G, et al. Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model. 2012;52(4):867–881.
  • Cereto-Massague A, Ojeda MJ, Valls C, et al. Molecular fingerprint similarity search in virtual screening. Methods. 2015;71:58–63.
  • Kumar A, Zhang KY. Hierarchical virtual screening approaches in small molecule drug discovery. Methods. 2015;71:26–37.
  • Leung CH, Ma DL. Recent advances in virtual screening for drug discovery. Methods. 2015;71:1–3.
  • Heikamp K, Bajorath J. The future of virtual compound screening. Chem Biol Drug Des. 2013;81(1):33–40.
  • Batool M, Ahmad B, Choi S, et al. A structure-based drug discovery paradigm. Int J Mol Sci. 2019;20(11):11.
  • Chiba S, Ikeda K, Ishida T, et al. Identification of potential inhibitors based on compound proposal contest: tyrosine-protein kinase Yes as a target. Sci Rep. 2015;5(1):17209.
  • Amano Y, Namatame I, Tateishi Y, et al. Structural insights into the novel inhibition mechanism of Trypanosoma cruzi spermidine synthase. Acta Crystallogr D Biol Crystallogr. 2015;71(9):1879–1889.
  • Sousa SF, Fernandes PA, Ramos MJ. Protein-ligand docking: current status and future challenges. Proteins. 2006;65(1):15–26.
  • Cheng T, Li X, Li Y, et al. Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model. 2009;49(4):1079–1093.
  • Bjerrum EJ. Machine learning optimization of cross docking accuracy. Comput Biol Chem. 2016;62:133–144.
  • Ashtawy HM, Mahapatra NR. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction. IEEE/ACM Trans Comput Biol Bioinform. 2012;9(5):1301–1313.
  • Lavecchia A, Di Giovanni C. Virtual screening strategies in drug discovery: a critical review. Curr Med Chem. 2013;20(23):2839–2860.
  • Leach AR, Shoichet BK, Peishoff CE. Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J Med Chem. 2006;49(20):5851–5855.
  • Huang SY, Grinter SZ, Zou X. Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys. 2010;12(40):12899–12908.
  • Spyrakis F, Amadasi A, Fornabaio M, et al. The consequences of scoring docked ligand conformations using free energy correlations. Eur J Med Chem. 2007;42(7):921–933.
  • Ballester PJ. Machine learning for molecular modelling in drug design. Biomolecules. 2019;9(6):6.
  • Melville JL, Burke EK, Hirst JD. Machine learning in virtual screening. Comb Chem High Throughput Screen. 2009;12(4):332–343.
  • Wu Z, Ramsundar B, Feinberg EN, et al. MoleculeNet: a benchmark for molecular machine learning. Chem Sci. 9(2): 513–530. 2018. .
  • Leidner F, Kurt Yilmaz N, Schiffer CA. Target-specific prediction of ligand affinity with structure-based interaction fingerprints. J Chem Inf Model. 2019;59(9):3679–3691.
  • Dimitrov T, Kreisbeck C, Becker JS, et al. Autonomous molecular design: then and now. ACS Appl Mater Interfaces. 2019;11(28):24825–24836.
  • David L, Arus-Pous J, Karlsson J, et al. Applications of Deep-Learning in Exploiting Large-Scale and Heterogeneous Compound Data in Industrial Pharmaceutical Research. Front Pharmacol. 2019;10:1303.
  • Xie L, Xu L, Chang S, et al. Multitask deep networks with grid featurization achieve improved scoring performance for protein-ligand binding. Chem Biol Drug Des. 2020;96(3):973–983.
  • Nguyen DD, Wei GW. AGL-Score: algebraic Graph Learning Score for Protein-Ligand Binding Scoring, Ranking, Docking, and Screening. J Chem Inf Model. 2019;59(7):3291–3304.
  • Cheng T, Li Q, Zhou Z, et al. Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J. 2012;14(1):133–141.
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. .
  • Wainberg M, Merico D, Delong A, et al. Deep learning in biomedicine. Nat Biotechnol. 2018;58(1):829–838.
  • Lee H, Kwon H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans Image Process. 2017;26(10):4843–4855.
  • Zhang L, Tan J, Han D, et al. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 22(11): 1680–1685. 2017. .
  • Tan L, Batista J, Bajorath J. Computational methodologies for compound database searching that utilize experimental protein-ligand interaction information. Chem Biol Drug Des. 2010;76(3):191–200.
  • Liu J, Su M, Liu Z, et al. Enhance the performance of current scoring functions with the aid of 3D protein-ligand interaction fingerprints. BMC Bioinformatics. 18(1): 343. 2017. .
  • Li GB, Yu ZJ, Liu S, et al. IFPTarget: a customized virtual target identification method based on protein-ligand interaction fingerprinting analyses. J Chem Inf Model. 2017;57(7):1640–1651.
  • Crisman TJ, Sisay MT, Bajorath J. Ligand-target interaction-based weighting of substructures for virtual screening. J Chem Inf Model. 2008;48(10):1955–1964.
  • Deng Z, Chuaqui C, Singh J. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. J Med Chem. 2004;47(2):337–344. .
  • Chuaqui C, Deng Z, Singh J. Interaction profiles of protein kinase-inhibitor complexes and their application to virtual screening. J Med Chem. 2005;48(1):121–133.
  • Deng Z, Chuaqui C, Singh J. Knowledge-based design of target-focused libraries using protein-ligand interaction constraints. J Med Chem. 2006;49(2):490–500.
  • Nandigam RK, Kim S, Singh J, et al. Position specific interaction dependent scoring technique for virtual screening based on weighted protein–ligand interaction fingerprint profiles. J Chem Inf Model. 2009;49(5):1185–1192.
  • Smusz S, Mordalski S, Witek J, et al. Multi-step protocol for automatic evaluation of docking results based on machine learning methods–A case study of serotonin receptors 5-HT(6) and 5-HT(7). J Chem Inf Model. 2015;55(4):823–832.
  • Witek J, Smusz S, Rataj K, et al. An application of machine learning methods to structural interaction fingerprints–a case study of kinase inhibitors. Bioorg Med Chem Lett. 2014;24(2):580–585.
  • Clark AM, Labute P. 2D depiction of protein-ligand complexes. J Chem Inf Model. 2007;47(5):1933–1944.
  • Marcou G, Rognan D. Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J Chem Inf Model. 2007;47(1):195–207.
  • Radifar M, Yuniarti N, Istyastono EPP. Python-based Protein-Ligand Interaction Fingerprinting. Bioinformation. 2013;9(6):325–328.
  • Chupakhin V, Marcou G, Baskin I, et al. Predicting ligand binding modes from neural networks trained on protein-ligand interaction fingerprints. J Chem Inf Model. 2013;53(4):763–772.
  • Venhorst J, Nunez S, Terpstra JW, et al. Assessment of scaffold hopping efficiency by use of molecular interaction fingerprints. J Med Chem. 2008;51(11):3222–3229.
  • Kelly MD, Mancera RL. Expanded interaction fingerprint method for analyzing ligand binding modes in docking and structure-based drug design. J Chem Inf Comput Sci. 2004;44(6):1942–1951.
  • Mpamhanga CP, Chen B, McLay IM, et al. Knowledge-based interaction fingerprint scoring: a simple method for improving the effectiveness of fast scoring functions. J Chem Inf Model. 2006;46(2):686–698.
  • Perez-Nueno VI, Rabal O, Borrell JI, et al. APIF: a new interaction fingerprint based on atom pairs and its application to virtual screening. J Chem Inf Model. 2009;49(5):1245–1260.
  • Desaphy J, Raimbaud E, Ducrot P, et al. Encoding protein-ligand interaction patterns in fingerprints and graphs. J Chem Inf Model. 2013;53(3):623–637.
  • Da Silva F, Desaphy J, Rognan D. IChem: a versatile toolkit for detecting, comparing, and predicting protein-ligand interactions. ChemMedChem. 2018;13(6):507–510.
  • Li F, Wan X, Xing J, et al. Deep neural network classifier for virtual screening inhibitors of (S)-Adenosyl-L-Methionine (SAM)-Dependent Methyltransferase family. Front Chem. 2019;7:324.
  • Jacquemard C, Tran-Nguyen VK, Drwal MN, et al. Local interaction density (LID), a fast and efficient tool to prioritize docking poses. Molecules. 2019;24(14):14.
  • Da C, Kireev D. Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: method and benchmark study. J Chem Inf Model. 2014;54(9):2555–2561.
  • Da C, Stashko M, Jayakody C, et al. Discovery of Mer kinase inhibitors by virtual screening using structural protein-ligand interaction fingerprints. Bioorg Med Chem. 2015;23(5):1096–1101.
  • Cang Z, Wei GW. Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction. Int J Numer Method Biomed Eng. 2018;34(2):2.
  • Ashtawy HM, Mahapatra NR, Ashtawy HM, Mahapatra NR. Descriptor Data Bank (DDB). A cloud platform for multiperspective modeling of protein-ligand interactions. J Chem Inf Model. 2018;58(1):134–147.
  • Wojcikowski M, Zielenkiewicz P, Siedlecki P. Open drug discovery toolkit (ODDT): a new open-source player in the drug discovery field. J Cheminform. 2015;7(1):26.
  • Durrant JD, McCammon JA. BINANA: a novel algorithm for ligand-binding characterization. J Mol Graph Model. 2011;29(6):888–893.
  • Ballester PJ, Mitchell JB. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics. 2010;26(9):1169–1175. .
  • Ballester PJ, Schreyer A, Blundell TL. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity? J Chem Inf Model. 2014;54(3):944–955.
  • Li H, Leung KS, Wong MH, et al. Improving autodock vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets. Mol Inform. 2015;34(2–3):115–126.
  • Li H, Peng J, Sidorov P, et al. Classical scoring functions for docking are unable to exploit large volumes of structural and interaction data. Bioinformatics. 2019;35(20):3989–3995.
  • Wojcikowski M, Ballester PJ, Siedlecki P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci Rep. 2017;7(1):46710.
  • Ouyang X, Handoko SD, Kwoh CK. CScore: a simple yet effective scoring function for protein-ligand binding affinity prediction using modified CMAC learning architecture. J Bioinform Comput Biol. 2011;9(Suppl 1):1–14.
  • Pires DE, Ascher DB. CSM-lig: a web server for assessing and comparing protein-small molecule affinities. Nucleic Acids Res. 2016;44(W1):W557–61.
  • Pires DE, De Melo-minardi RC, Dos Santos MA, et al. Cutoff scanning matrix (CSM): structural classification and function prediction by protein inter-residue distance patterns. BMC Genomics. 2011;12(Suppl 4):S12.
  • Da Silveira CH, Pires DE, Minardi RC, et al. Protein cutoff scanning: a comparative analysis of cutoff dependent and cutoff free methods for prospecting contacts in proteins. Proteins. 2009;74(3):727–743.
  • Singh RK, Tropsha A, Vaisman II. Delaunay tessellation of proteins: four body nearest-neighbor propensities of amino acid residues. J Comput Biol. 1996;3(2):213–221.
  • Zhang S, Golbraikh A, Tropsha A. Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. J Med Chem. 2006;49(9):2713–2724.
  • Hsieh JH, Yin S, Wang XS, et al. Cheminformatics meets molecular mechanics: a combined application of knowledge-based pose scoring and physical force field-based hit scoring functions improves the accuracy of structure-based virtual screening. J Chem Inf Model. 2012;52(1):16–28.
  • Ma X, Sun Y, Huang Z, et al. A density functional theory study of the molecular interactions between a series of amides and sulfuric acid. Chemosphere. 2019;214:781–790.
  • Parr RG, Yang W. Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem. 1995;46(1):701–728.
  • Fourches D, Politi R, Tropsha A. Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR 2013 benchmark. J Chem Inf Model. 2015;55(1):63–71.
  • Politi R, Convertino M, Popov K, et al. Docking and scoring with target-specific pose classifier succeeds in native-like pose identification but not binding affinity prediction in the CSAR 2014 benchmark exercise. J Chem Inf Model. 2016;56(6):1032–1041.
  • Xia J, Hu H, Xue W, et al. The discovery of novel HDAC3 inhibitors via virtual screening and in vitro bioassay. J Enzyme Inhib Med Chem. 2018;33(1):525–535.
  • Xia J, Hsieh JH, Hu H, et al. The development of target-specific pose filter ensembles to boost ligand enrichment for structure-based virtual screening. J Chem Inf Model. 2017;57(6):1414–1425.
  • Xia J, Wang Z, Huan Y, et al. Pose filter-based ensemble learning enables discovery of orally active, nonsteroidal farnesoid x receptor agonists. J Chem Inf Model. 2020;60(3):1202–1214.
  • Li L, Wang B, Meroueh SO. Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries. J Chem Inf Model. 2011;51(9):2132–2138.
  • Li L, Khanna M, Jo I, et al. Target-specific support vector machine scoring in structure-based virtual screening: computational validation, in vitro testing in kinases, and effects on lung cancer cell proliferation. J Chem Inf Model. 2011;51(4):755–759.
  • Xing J, Lu W, Liu R, et al. Machine-Learning-Assisted approach for discovering novel inhibitors targeting bromodomain-containing protein 4. J Chem Inf Model. 2017;57(7):1677–1690.
  • Liu J, Wang R. Classification of current scoring functions. J Chem Inf Model. 2015;55(3):475–482.
  • Li H, Leung K-S, Wong M-H, et al. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: cyscore as a case study. BMC Bioinformatics. 2014;15(1):291.
  • Cao Y, Li L. Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model. Bioinformatics. 2014;30(12):1674–1680.
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461.
  • Wang R, Lai L, Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des. 2002;16(1):11–26.
  • Wang C, Zhang Y. Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J Comput Chem. 2017;38(3):169–177.
  • Lu J, Hou X, Wang C, et al. Incorporating explicit water molecules and ligand conformation stability in machine-learning scoring functions. J Chem Inf Model. 2019;59(11):4540–4549.
  • Ashtawy HM, Mahapatra NR. A comparative assessment of predictive accuracies of conventional and machine learning scoring functions for protein-ligand binding affinity prediction. IEEE/ACM Trans Comput Biol Bioinform. 2014;12(2):335–347.
  • Ashtawy HM, Mahapatra NR. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins. BMC Bioinformatics. 2015;16(Suppl 6):S3.
  • Durrant JD, McCammon JA. NNScore: a neural-network-based scoring function for the characterization of protein-ligand complexes. J Chem Inf Model. 2010;50(10):1865–1871.
  • Durrant JD, McCammon JA. NNScore 2.0: a neural-network receptor-ligand scoring function. J Chem Inf Model. 2011;51(11):2897–2903.
  • Zilian D, Sotriffer CA. SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J Chem Inf Model. 2013;53(8):1923–1933.
  • Sotriffer CA, Sanschagrin P, Matter H, et al. SFCscore: scoring functions for affinity prediction of protein-ligand complexes. Proteins. 2008;73(2):395–419.
  • Li GB, Yang LL, Wang WJ, et al. ID-Score: a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J Chem Inf Model. 2013;53(3):592–600.
  • Ye WL, Shen C, Xiong GL, et al. Improving docking-based virtual screening ability by integrating multiple energy auxiliary terms from molecular docking scoring. J Chem Inf Model. 2020;60(9):4216–4230.
  • Yan Y, Wang W, Sun Z, et al. Protein-ligand empirical interaction components for virtual screening. J Chem Inf Model. 2017;57(8):1793–1806.
  • Yasuo N, Sekijima M. Improved method of structure-based virtual screening via interaction-energy-based learning. J Chem Inf Model. 2019;59(3):1050–1061.
  • Jasper JB, Humbeck L, Brinkjost T, et al. A novel interaction fingerprint derived from per atom score contributions: exhaustive evaluation of interaction fingerprint performance in docking based virtual screening. J Cheminform. 2018;10(1):15.
  • Liu Q, Kwoh CK, Li J. Binding affinity prediction for protein-ligand complexes based on beta contacts and B factor. J Chem Inf Model. 2013;53(11):3076–3085.
  • Wang B, Zhao Z, Nguyen DD, et al. Feature functional theory–binding predictor (FFT–BP) for the blind prediction of binding free energies. Theor Chem Acc. 2017;136(4):55.
  • Nguyen DD, Cang Z, Wei GW. A review of mathematical representations of biomolecular data. Phys Chem Chem Phys. 2020;22(8):4343–4367.
  • Li H, Sze KH, Lu G, et al. Machine‐learning scoring functions for structure‐based virtual screening. WIREs Comput Mol Sci. 2021;11:e1478.
  • Nguyen DD, Cang Z, Wu K, et al. Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges. J Comput Aided Mol Des. 33(1): 71–82. 2019. .
  • Nguyen DD, Wei -GWD-G-GL. Differential geometry-based geometric learning of molecular datasets. Int J Numer Method Biomed Eng. 2019;35(3):e3179.
  • Cang Z, Wei GW, Dunbrack RL. TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLoS Comput Biol. 2017;13(7):e1005690.
  • Cang Z, Wei GW. Integration of element specific persistent homology and machine learning for protein‐ligand binding affinity prediction. Int J Numer Method Biomed Eng. 2018;34(2):e2914.
  • Cang Z, Mu L, Wei GW. Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLoS Comput Biol. 2018;14(1):e1005929.
  • Nguyen DD, Xiao T, Wang M, et al. Rigidity strengthening: a mechanism for protein-ligand binding. J Chem Inf Model. 2017;57(7):1715–1721.
  • Shin HC, Roth HR, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35(5):1285–1298.
  • Komura D, Ishikawa S. Machine learning approaches for pathologic diagnosis. Virchows Arch. 2019;475(2):131–138.
  • Zhang X, Zou J, He K, et al. Accelerating very deep convolutional networks for classification and detection. IEEE Trans Pattern Anal Mach Intell. 2016;38(10):1943–1955.
  • Wallach I, Dzamba M, Heifets A. AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery.ArXiv Preprint ArXiv:1510.02855,2015.
  • Ragoza M, Hochuli J, Idrobo E, et al. Protein-ligand scoring with convolutional neural networks. J Chem Inf Model. 57(4): 942–957. 2017. .
  • Ragoza M, Turner L, Koes DR. Ligand pose optimization with atomic grid-based convolutional neural networks. arXiv Preprint. 2017;arXiv:171007400.
  • Jimenez J, Skalic M, Martinez-Rosell G, et al. KDEEP: protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J Chem Inf Model. 2018;58(2):287–296.
  • Imrie F, Bradley AR, Van Der Schaar M, et al. Protein family-specific models using deep neural networks and transfer learning improve virtual screening and highlight the need for more data. J Chem Inf Model. 2018;58(11):2319–2330.
  • Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki P. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction. Bioinformatics. 2018;34(21):3666–3674.
  • Hassan-Harrirou H, Zhang C, RosENet: LT. Improving binding affinity prediction by leveraging molecular mechanics energies with an ensemble of 3D convolutional neural networks. J Chem Inf Model. 2020;60(6):2791–2802.
  • Kwon Y, Shin WH, Ko J, et al. AK-Score: accurate protein-ligand binding affinity prediction using an ensemble of 3D-convolutional neural networks. Int J Mol Sci. 2020;21(22):22.
  • Jiang H, Fan M, Wang J, et al. Guiding conventional protein-ligand docking software with convolutional neural networks. J Chem Inf Model. 2020;60(10):4594–4602.
  • Sunseri J, Koes DR. libmolgrid: graphics processing unit accelerated molecular gridding for deep learning applications. J Chem Inf Model. 2020;60(3):1079–1084.
  • Stecula A, Hussain MS, Viola RE. Discovery of novel inhibitors of a critical brain enzyme using a homology model and a deep convolutional neural network. J Med Chem. 2020;63(16):8867–8875.
  • Lim J, Ryu S, Park K, et al. Predicting drug-target interaction using a novel graph neural network with 3D structure-embedded graph representation. J Chem Inf Model. 59(9): 3981–3988. 2019. .
  • Sun M, Zhao S, Gilvary C, et al. Graph convolutional networks for computational drug development and discovery. Brief Bioinform. 2020;21(3):919–935.
  • Pereira JC, Caffarena ER, Dos Santos CN. Boosting docking-based virtual screening with deep learning. J Chem Inf Model. 2016;56(12):2495–2506. .
  • Gomes J, Ramsundar B, Feinberg E, et al. Atomic convolutional networks for predicting protein-ligand binding affinity. ArXiv Preprint ArXiv:1703.10603,2017.
  • Yang J, Shen C, Huang N. Predicting or pretending: artificial intelligence for protein-ligand interactions lack of sufficiently large and unbiased datasets. Front Pharmacol. 2020;11:69. .
  • Feinberg EN, Sur D, Wu Z, et al. PotentialNet for molecular property prediction. ACS Cent Sci. 2018;4(11):1520–1530.
  • Cho H, Lee EK, Choi IS. Layer-wise relevance propagation of InteractionNet explains protein-ligand interactions at the atom level. Sci Rep. 2020;10(1):21155.
  • Karlov DS, Sosnin S, Fedorov MV, et al. graphDelta: MPNN scoring function for the affinity prediction of protein-ligand complexes. ACS Omega. 2020;5(10):5150–5159.
  • Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett. 2007;98(14):146401.
  • Zheng L, Fan J, Mu Y. OnionNet: a multiple-layer intermolecular-contact-based convolutional neural network for protein-ligand binding affinity prediction. ACS Omega. 2019;4(14):15956–15965.
  • Lavecchia A. Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov Today. 2019;24(10):2017–2032. .
  • Adeshina YO, Deeds EJ, Karanicolas J. Machine learning classification can reduce false positives in structure-based virtual screening. Proc Natl Acad Sci U S A. 2020;60(6):18477–18488.
  • Xiong G-L, Ye W-L, Shen C, et al. Improving structure-based virtual screening performance via learning from scoring function components. Brief Bioinform. 2015. doi:https://doi.org/10.1093/bib/bbaa094.
  • Khamis MA, Gomaa W, Ahmed WF. Machine learning in computational docking. Artif Intell Med. 2015;63(3):135–152.
  • Yang X, Wang Y, Byrne R, et al. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019;119(18):10520–10594.
  • Li J, Fu A, Zhang L. An overview of scoring functions used for protein-ligand interactions in molecular docking. Interdiscip Sci. 2019;11(2):320–328.
  • Ballester PJ. Selecting machine-learning scoring functions for structure-based virtual screening. Drug Discov Today Technol. 2019;32-33:81–87.
  • Guedes IA, Pereira FSS, Dardenne LE. Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges. Front Pharmacol. 2018;9:1089.
  • Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–477.
  • Lo YC, Rensi SE, Torng W, et al. Machine learning in chemoinformatics and drug discovery. Drug Discov Today. 2018;23(8):1538–1546.
  • Stephenson N, Shane E, Chase J, et al. Survey of machine learning techniques in drug discovery. Curr Drug Metab. 2019;20(3):185–193.
  • Chen D, Liu S, Kingsbury P, et al. Deep learning and alternative learning strategies for retrospective real-world clinical data. NPJ Digit Med. 2019;2(1):43.
  • Li H, Sze KH, Lu G, et al. Machine‐learning scoring functions for structure‐based drug lead optimization. WIREs Comput Mol Sci. 2020; 10:e1465. .
  • Morrone JA, Weber JK, Huynh T, et al. Combining docking pose rank and structure with deep learning improves protein-ligand binding mode prediction over a baseline docking approach. J Chem Inf Model. 2020;60(9):4170–4179.
  • Chen L, Cruz A, Ramsey S, et al. Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening. PLoS One. 2019;14(8):e0220113.
  • Sieg J, Flachsenberg F, Rarey M. In need of bias control: evaluating chemical data for machine learning in structure-based virtual screening. J Chem Inf Model. 2019;59(3):947–961.
  • Kim H, Kim E, Lee I, et al. Artificial intelligence in drug discovery: a comprehensive review of data-driven and machine learning approaches. Biotechnol Bioprocess Eng. 2020;25(6):895–930.
  • Hessler G, Baringhaus KH. Artificial intelligence in drug design. Molecules. 2018;23(10):10.
  • Lu Y, Wang R, Yang CY, et al. Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes. J Chem Inf Model. 2007;47(2):668–675.
  • Wong SE, Lightstone FC. Accounting for water molecules in drug design. Expert Opin Drug Discov. 2011;6(1):65–74.
  • Roberts BC, Mancera RL. Ligand-protein docking with water molecules. J Chem Inf Model. 2008;48(2):397–408.
  • Garcia-Sosa AT, Mancera RL, Dean PM. WaterScore: a novel method for distinguishing between bound and displaceable water molecules in the crystal structure of the binding site of protein-ligand complexes. J Mol Model. 2003;9(3):172–182.
  • Thilagavathi R, Mancera RL. Ligand-protein cross-docking with water molecules. J Chem Inf Model. 2010;50(3):415–421.
  • Balius TE, Fischer M, Stein RM, et al. Testing inhomogeneous solvation theory in structure-based ligand discovery. Proc Natl Acad Sci U S A. 2017;114(33):E6839–E6846.
  • Zhong H, Wang Z, Wang X, et al. Importance of a crystalline water network in docking-based virtual screening: a case study of BRD4. Phys Chem Chem Phys. 2019;21(45):25276–25289.
  • Dou X, Jiang L, Wang Y, et al. Discovery of new GSK-3beta inhibitors through structure-based virtual screening. Bioorg Med Chem Lett. 2018;28(2):160–166.
  • Lexa KW, Carlson HA. Protein flexibility in docking and surface mapping. Q Rev Biophys. 2012;45(3):301–343.
  • Lill MA. Efficient incorporation of protein flexibility and dynamics into molecular docking simulations. Biochemistry. 2011;50(28):6157–6169.
  • Hochuli J, Helbling A, Skaist T, et al. Visualizing convolutional neural network protein-ligand scoring. J Mol Graph Model. 2018;84:96–108.
  • Wang R, Fang X, Lu Y, et al. The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem. 2004;47(12):2977–2980.
  • Wang R, Fang X, Lu Y, et al. The PDBbind database: methodologies and updates. J Med Chem. 2005;48(12):4111–4119.
  • Liu Z, Su M, Han L, et al. Forging the basis for developing protein-ligand interaction scoring functions. Acc Chem Res. 2017;50(2):302–309.
  • Francoeur PG, Masuda T, Sunseri J, et al. Three-dimensional convolutional neural networks and a cross-docked data set for structure-based drug design. J Chem Inf Model. 2020;60(9):4200–4215.
  • Cai C, Wang S, Xu Y, et al. Transfer learning for drug discovery. J Med Chem. 2020;63(16):8683–8694.
  • Chen H, Engkvist O, Wang Y, et al. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241–1250.
  • Ghasemi F, Fassihi A, Perez-Sanchez H, et al. The role of different sampling methods in improving biological activity prediction using deep belief network. J Comput Chem. 2017;38(4):195–203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.