3,923
Views
8
CrossRef citations to date
0
Altmetric
Review

Advances in biocatalytic and chemoenzymatic synthesis of nucleoside analogues

ORCID Icon & ORCID Icon
Pages 355-364 | Received 14 Dec 2021, Accepted 04 Feb 2022, Published online: 17 Feb 2022

References

  • Eastman RT, Roth JS, Brimacombe KR, et al. Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci. 2020;6(5):672–683.
  • McIntosh JA, Benkovics T, Silverman SM, et al. Engineered Ribosyl-1-Kinase enables concise synthesis of molnupiravir, an antiviral for COVID-19. ACS Cent Sci. 2021;7(12):1980–1985.
  • Serra I, Bavaro T, Cecchini DA, et al. A comparison between immobilized pyrimidine nucleoside phosphorylase from Bacillus subtilis and thymidine phosphorylase from Escherichia coli in the synthesis of 5-substituted pyrimidine 2′-deoxyribonucleosides. J Mol Catal B Enzym. 2013;95:16–22.
  • Visser DF, Rashamuse KJ, Hennessy F, et al. High-yielding cascade enzymatic synthesis of 5-methyluridine using a novel combination of nucleoside phosphorylases. Biocatal Biotransfor. 2010;28(4):245–253.
  • Turner NJ. Directed evolution drives the next generation of biocatalysts. Nat Chem Biol. 2009;5(8):567–573.
  • Arnold FH. Directed evolution: bringing new chemistry to life. Angewandte Chemie Int Ed Engl. 2018;57(16):4143–4148.
  • Savile CK, Janey JM, Mundorff EC, et al. Biocatalytic Asymmetric Synthesis of Chiral Amines from Ketones Applied to Sitagliptin Manufacture. Science. 2010;329(5989):305–309.
  • Zhang P, Iding H, Cedilote M, et al. A practical synthesis of (2R)-3,5-di-O-benzoyl-2-fluoro-2-C-methyl-D-ribono-γ-lactone. Tet Asymm. 2009;20(3):305–312.
  • Xiang DF, Bigley AN, Desormeaux E, et al. Enzyme-Catalyzed kinetic resolution of chiral precursors to antiviral prodrugs. Biochem. 2019;58(29):3204–3211.
  • Slagman S, Fessner W-D. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev. 2020;50:1968–2009.
  • Fateev IV, Kostromina MA, Abramchik YA, et al. Multi-Enzymatic cascades in the synthesis of modified nucleosides: comparison of the thermophilic and mesophilic pathways. Biomol. 2021;11(4):586.
  • Kamel S, Weiß M, Klare HFT, et al. Chemo-enzymatic synthesis of α-D-pentofuranose-1-phosphates using thermostable pyrimidine nucleoside phosphorylases. Mol Catal. 2018;458:52–59.
  • Hellendahl KF, Kamel S, Wetterwald A, et al. Human deoxycytidine kinase is a valuable biocatalyst for the synthesis of nucleotide analogues. Catalysts. 2019;9(12):997.
  • Kaspar F, Seeger M, Westarp S, et al., Diversification of 4′-Methylated nucleosides by nucleoside phosphorylases. ACS Catal. 11(17): 10830–10835. 2021.
  • Meanwell M, Silverman SM, Lehmann J, et al. A short de novo synthesis of nucleoside analogs. Science. 2020;369(6504):725–730.
  • Kaspar F, Giessmann RT, Hellendahl KF, et al. General principles for yield optimization of nucleoside phosphorylase‐catalyzed transglycosylations. ChemBioChem. 2020;21(10):1428–1432.
  • Huffman MA, Fryszkowska A, Alvizo O, et al., Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science. 366(6470): 1255–1259. 2019.
  • Kaspar F, Giessmann RT, Neubauer P, et al., Thermodynamic reaction control of nucleoside phosphorolysis. Adv Synth Catal. 362(4): 867–876. 2020.
  • Kaspar F, Neubauer P, Kurreck A. The peculiar case of the hyper-thermostable pyrimidine nucleoside phosphorylase from thermus thermophilus. ChemBioChem. 2021;22(8):1385–1390.
  • Hellendahl KF, Kaspar F, Zhou X, et al. Optimized biocatalytic synthesis of 2‐selenopyrimidine nucleosides by transglycosylation. ChemBioChem. 2021;22(11):2002–2009.
  • Lin L, Sheng J, Huang Z. Nucleic acid X-ray crystallography via direct selenium derivatization. Chem Soc Rev. 2011;40(9):4591–4602.
  • Kaspar F, Wolff DS, Neubauer P, et al. pH-independent heat capacity changes during phosphorolysis catalyzed by the pyrimidine nucleoside phosphorylase from geobacillus thermoglucosidasius. Biochem. 2021;60(20):1573–1577.
  • Benítez‐Mateos AI, Paradisi F. Sustainable flow‐synthesis of (Bulky) nucleoside drugs by a novel and highly stable nucleoside phosphorylase immobilized on reusable supports. ChemSusChem. 2021. https://doi.org/10.1002/cssc.202102030
  • Visser DF, Hennessy F, Rashamuse J, et al. Stabilization of Escherichia coli uridine phosphorylase by evolution and immobilization. J Mol Catal B Enzym. 2011;68(3–4):279–285.
  • Xie X, Huo W, Xia J, et al. Structure–activity relationship of a cold-adapted purine nucleoside phosphorylase by site-directed mutagenesis. Enzyme Microb Tech. 2012;51(1):59–65.
  • Alexeev CS, Kulikova IV, Gavryushov S, et al. Quantitative prediction of yield in transglycosylation reaction catalyzed by nucleoside phosphorylases. Adv Synth Catal. 2018;360(16):3090–3096.
  • Heba Y, Sarah W, Viola R, et al. Efficient biocatalytic synthesis of dihalogenated purine nucleoside analogues applying thermodynamic calculations. Molecules. 2020;25(4):934.
  • Arco JD, Fernández-Lucas J. Purine and pyrimidine salvage pathway in thermophiles: a valuable source of biocatalysts for the industrial production of nucleic acid derivatives. Appl Microbiol Biot. 2018;102(18):7805–7820.
  • Nyhan WL. Nucleotide synthesis via salvage pathway. In: eLS. John Wiley&Sons, Ltd (Ed.); 2014. doi:https://doi.org/10.1002/9780470015902.a0001399.pub3.
  • Birmingham WR, Starbird CA, Panosian TD, et al., Bioretrosynthetic construction of a didanosine biosynthetic pathway. Nat Chem Biol. 10(5): 392–399. 2014.
  • Englund JA, Baker CJ, Raskino C, et al. Zidovudine, didanosine, or both as the initial treatment for symptomatic HIV-infected children. New Engl J Medicine. 1997;336(24):1704–1712.
  • Nawrat CC, Whittaker AM, Huffman MA, et al. Nine-step stereoselective synthesis of islatravir from deoxyribose. Org Lett. 2020;22(6):2167–2172.
  • Albers E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5′‐methylthioadenosine. IUBMB Life. 2009;61(12):1132–1142.
  • Rabuffetti M, Bavaro T, Semproli R, et al., Synthesis of ribavirin, tecadenoson, and cladribine by enzymatic transglycosylation. Catalysts. 9(4): 355. 2019.
  • Ubiali D, Serra CD, Serra I, et al. Production, characterization and synthetic application of a purine nucleoside phosphorylase from Aeromonas hydrophila. Adv Synth Catal. 2012;354(1):96–104.
  • Serra I, Daly S, Alcantara AR, et al. Redesigning the synthesis of vidarabine via a multienzymatic reaction catalyzed by immobilized nucleoside phosphorylases. RSC Adv. 2015;5(30):23569–23577.
  • Drenichev MS, Alexeev CS, Kurochkin NN, et al., Use of nucleoside phosphorylases for the preparation of purine and pyrimidine 2′‐deoxynucleosides. Adv Synth Catal. 360(2): 305–312. 2018.
  • Britton J, Majumdar S, Weiss GA. Continuous flow biocatalysis. Chem Soc Rev. 2018;47(15):5891–5918.
  • Santis PD, Meyer L-E, Kara S. The rise of continuous flow biocatalysis – fundamentals, very recent developments and future perspectives. React Chem Eng. 2020;5:2155–2184.
  • Thompson MP, Peñafiel I, Cosgrove SC, et al. Biocatalysis using immobilized enzymes in continuous flow for the synthesis of fine chemicals. Org Process Res Dev. 2019;23(1):9–18.
  • Rinaldi F, Fernández-Lucas J, de la FD, et al. Immobilized enzyme reactors based on nucleoside phosphorylases and 2′-deoxyribosyltransferase for the in-flow synthesis of pharmaceutically relevant nucleoside analogues. Bioresour Technol. 2020;307:123258.
  • Tamborini L, Previtali C, Annunziata F, et al., An enzymatic flow-based preparative route to vidarabine. Molecules. 25(5): 1223. 2020.
  • Kamel S, Walczak MC, Kaspar F, et al. Thermostable adenosine 5′-monophosphate phosphorylase from Thermococcus kodakarensis forms catalytically active inclusion bodies. Sci Rep. 2021;11(1):16880.
  • Kaspar F, Giessmann RT, Westarp S, et al. Spectral unmixing‐based reaction monitoring of transformations between nucleosides and nucleobases. ChemBioChem. 2020;21(18):2604–2610.
  • Kaspar F, Stone MRL, Neubauer P, et al. Route efficiency assessment and review of the synthesis of β-nucleosid via N-glycosylation of nucleobases. Green Chem. 2020;23(1):37–50.
  • Guinan M, Huang N, Hawes CS, et al. Chemical synthesis of 4′-thio and 4′-sulfinyl pyrimidine nucleoside analogues. Org Biomol Chem. 2021. https://doi.org/10.1039/d1ob02097h.
  • Wang Z, Chinoy ZS, Ambre SG, et al. A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans. Science. 2013;341(6144):379–383.
  • Šardzík R, Green AP, Laurent N, et al. Chemoenzymatic synthesis of o-mannosylpeptides in solution and on solid phase. J Am Chem Soc. 2012;134(10):4521–4524.
  • Rexer T, Laaf D, Gottschalk J, et al. Enzymatic Synthesis of Glycans and Glycoconjugates. Adv Biochem Eng Biotech. 2020;175:231–280.
  • Gottschalk J, Elling L. Current state on the enzymatic synthesis of glycosaminoglycans. Curr Opin Chem Biol. 2021;61:71–80.
  • Xu Y, Masuko S, Takieddin M, et al. Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science. 2011;334(6055):498–501.
  • Ahmadipour S, Beswick L, Miller GJ. Recent advances in the enzymatic synthesis of sugar-nucleotides using nucleotidylyltransferases and glycosyltransferases. Carbohydr Res. 2018;469:38–47.
  • Ahmadipour S, Pergolizzi G, Rejzek M, et al. Chemoenzymatic synthesis of c6-modified sugar nucleotides to probe the GDP- d -mannose dehydrogenase from Pseudomonas aeruginosa. Org Lett. 2019;21(12):4415–4419.
  • Gantt RW, Peltier-Pain P, Cournoyer WJ, et al. Using simple donors to drive the equilibria of glycosyltransferase-catalyzed reactions. Nat Chem Biol. 2011;7(10):685–691.
  • Chen Y, Thon V, Li Y, et al. One-pot three-enzyme synthesis of UDP-GlcNAc derivatives. Chem Commun. 2011;47(38):10815–10817.
  • Beswick L, Ahmadipour S, Dolan JP, et al. Chemical and enzymatic synthesis of the alginate sugar nucleotide building block: GDP-D-mannuronic acid. Carbohydr Res. 2019;485:107819.
  • Zhou X, Kiesman WF, Yan W, et al. Development of kilogram-scale convergent liquid-phase synthesis of oligonucleotides. J Org Chem. 2021. https://doi.org/10.1021/acs.joc.1c01756.
  • Huang Y, Knouse KW, Qiu S, et al. A P(V) platform for oligonucleotide synthesis. Science. 2021;373(6560):1265–1270.
  • Knouse KW, Flood DT, Vantourout JC, et al. Nature Chose phosphates and chemists should too: how emerging P(V) methods can augment existing strategies. ACS Cent Sci. 2021;7(9):1473–1485.
  • Wunnava S, Dirscherl CF, Výravský J, et al. Acid‐catalyzed RNA‐oligomerization from 3’,5’‐cGMP. Chem Eur J. 2021;27(70):17581–17585.
  • Lee HH, Kalhor R, Goela N, et al. Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nat Commun. 2019;10(1):2383.
  • Palluk S, Arlow DH, de Rond, et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat Biotechnol. 2018;36(7):645–650.