312
Views
5
CrossRef citations to date
0
Altmetric
Review

Approaches for targeting the mycobactin biosynthesis pathway for novel anti-tubercular drug discovery: where we stand

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 699-715 | Received 15 Aug 2021, Accepted 10 May 2022, Published online: 29 May 2022

References

  • Harding E. WHO global progress report on tuberculosis elimination. Lancet Respir Med. 2020 Jan;8(1):19.
  • Bogen E, Loomis RN, Will DW. Para-aminosalicylic acid treatment of tuberculosis; a review. Am Rev Tuberc. 1950 Feb;61(2):226–246.
  • Shyam M, Shilkar D, Verma H, et al. The mycobactin biosynthesis pathway: a prospective therapeutic target in the battle against tuberculosis. J Med Chem. 2021 Jan 14;64(1):71–100.
  • Padda IS, Reddy KM. Antitubercular medications. StatPearls [Internet]. 2020.
  • Udwadia ZF, Amale RA, Ajbani KK, et al. Totally drug-resistant tuberculosis in India. Clinl Infect Dis. 2012;54(4):579–581.
  • Field SK. Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther Adv Chronic Dis. 2015 Jul;6(4):170–184.
  • Li Y, Sun F, Zhang W. Bedaquiline and delamanid in the treatment of multidrug-resistant tuberculosis: promising but challenging. Drug Dev Res. 2019 Feb;80(1):98–105.
  • Pieterman ED, Keutzer L, van der Meijden A, et al. Superior efficacy of a bedaquiline, delamanid and linezolid combination regimen in a mouse-TB model. J Infect Dis. 2021;224(6):1039–1047.
  • Andries K, Villellas C, Coeck N, et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One. 2014;9(7):e102135.
  • Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58(5):2979–2981.
  • Ismail N, Rivière E, Limberis J, et al. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. Lancet Microbe. 2021;2(11):e604–e616.
  • Yang J, Pang Y, Zhang T, et al. Molecular characteristics and in vitro susceptibility to bedaquiline of Mycobacterium tuberculosis isolates circulating in Shaanxi, China. Int J Infect Dis. 2020 Oct;99:163–170.
  • Degiacomi G, Sammartino JC, Sinigiani V, et al. In vitro study of bedaquiline resistance in Mycobacterium tuberculosis multi-drug resistant clinical isolates. Front Microbiol. 2020;11:559469.
  • Karmakar M, Rodrigues CHM, Holt KE, et al. Empirical ways to identify novel Bedaquiline resistance mutations in AtpE. PLoS One. 2019;14(5):e0217169.
  • Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria: an update. Drugs. 2009 Aug 20;69(12):1555–1623.
  • Liu J, Shi W, Zhang S, et al. Mutations in efflux pump Rv1258c (Tap) cause resistance to Pyrazinamide, Isoniazid, and Streptomycin in M. tuberculosis. Front Microbiol. 2019;10:216.
  • Mdluli K, Ma Z. Mycobacterium tuberculosis DNA gyrase as a target for drug discovery. Infect Disord Drug Targ. 2007;7(2):159–168.
  • Lu P, Lill H, Bald D. ATP synthase in mycobacteria: special features and implications for a function as drug target. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2014;1837(7):1208–1218.
  • Ratledge C. Iron, mycobacteria and tuberculosis. Tuberculosis (Edinb). 2004;84(1–2):110–130.
  • Cassat JE, Skaar EP. Iron in infection and immunity. Cell Host Microbe. 2013 May 15;13(5):509–519.
  • Ratledge C, Ewing M. The occurrence of carboxymycobactin, the siderophore of pathogenic mycobacteria, as a second extracellular siderophore in Mycobacterium smegmatis. Microbiology. 1996;142(8):2207–2212.
  • Ratledge C, Dover LG. Iron metabolism in pathogenic bacteria. Annu Rev Microbiol. 2000;54(1):881–941.
  • Quadri LE. Assembly of aryl-capped siderophores by modular peptide synthetases and polyketide synthases. Mol Microbiol. 2000 Jul;37(1):1–12.
  • Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 2007 Sep;71(3):413–451.
  • Snow GA. Mycobactins: iron-chelating growth factors from mycobacteria. Bacteriol Rev. 1970 Jun;34(2):99–125.
  • De Voss JJ, Rutter K, Schroeder BG, et al. Iron acquisition and metabolism by mycobacteria. J Bacteriol. 1999 Aug;181(15):4443–4451.
  • Snow G, White A. Chemical and biological properties of mycobactins isolated from various mycobacteria. Biochem J. 1969;115(5):1031–1045.
  • Maurer PJ, Miller MJ. Total synthesis of a mycobactin: mycobactin S2. J Am Chem Soc. 1983;105(2):240–245.
  • Hu J, Miller MJ. Total synthesis of a mycobactin S, a siderophore and growth promoter of Mycobacterium smegmatis, and determination of its growth inhibitory activity against Mycobacterium tuberculosis. J Am Chem Soc. 1997;119(15):3462–3468.
  • Poreddy AR, Schall OF, Marshall GR, et al. Solid-phase synthesis of methyl carboxymycobactin T 7 and analogues as potential antimycobacterial agents. Bioorg Med Chem Lett. 2003;13(15):2553–2556.
  • Pandey SD, Choudhury M, Sritharan M. Transcriptional regulation of Mycobacterium tuberculosis hupB gene expression. Microbiology (Reading). 2014 Aug;160(Pt 8):1637–1647.
  • Rodriguez GM, Voskuil MI, Gold B, et al. ideR, An essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun. 2002 Jul;70(7):3371–3381.
  • Pandey R, Rodriguez GM. IdeR is required for iron homeostasis and virulence in M ycobacterium tuberculosis. Mol Microbiol. 2014;91(1):98–109.
  • Dussurget O, Rodriguez M, Smith I. An ideR mutant of Mycobacterium smegmatis has derepressed siderophore production and an altered oxidative‐stress response. Mol Microbiol. 1996;22(3):535–544.
  • Shyam M, Dev A, Sinha BN, et al. Scaffold based search on the desferithiocin archetype. Mini Rev Med Chem. 2019;19(19):1564–1576.
  • Pandey SD, Choudhury M, Yousuf S, et al. Iron-regulated protein HupB of Mycobacterium tuberculosis positively regulates siderophore biosynthesis and is essential for growth in macrophages. J Bacteriol. 2014;196(10):1853–1865.
  • Quadri LE, Sello J, Keating TA, et al. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol. 1998 Nov;5(11):631–645.
  • Harrison AJ, Yu M, Gårdenborg T, et al. The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase. J Bacteriol. 2006;188(17):6081–6091.
  • Zwahlen J, Kolappan S, Zhou R, et al. Structure and mechanism of MbtI, the salicylate synthase from Mycobacterium tuberculosis. Biochemistry. 2007 Jan 30;46(4):954–964.
  • Vergnolle O, Xu H, Tufariello JM, et al. Post-translational acetylation of MbtA modulates mycobacterial siderophore biosynthesis. J Biol Chem. 2016 Oct 14;291(42):22315–22326.
  • McMahon MD, Rush JS, Thomas MG. Analyses of MbtB, MbtE, and MbtF suggest revisions to the mycobactin biosynthesis pathway in Mycobacterium tuberculosis. J Bacteriol. 2012 Jun;194(11):2809–2818.
  • Lambalot RH, Gehring AM, Flugel RS, et al. A new enzyme superfamily—the phosphopantetheinyl transferases. Chem Biol. 1996;3(11):923–936.
  • Krithika R, Marathe U, Saxena P, et al. A genetic locus required for iron acquisition in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2069–2074.
  • Chavadi SS, Stirrett KL, Edupuganti UR, et al. Mutational and phylogenetic analyses of the mycobacterial mbt gene cluster. J Bacteriol. 2011 Nov;193(21):5905–5913.
  • Gold B, Rodriguez GM, Marras SA, et al. The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol Microbiol. 2001;42(3):851–865.
  • Domenech P, Reed MB, Barry CE 3rd. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun. 2005 Jun;73(6):3492–3501.
  • Oré NA, Tekaia FR, Ti AT, et al. The decaying genome of Mycobacterium leprae. Lepr Rev. 2001;72(4):387–398.
  • Viljoen A, Dubois V, Girard‐Misguich F, et al. The diverse family of M mp L transporters in mycobacteria: from regulation to antimicrobial developments. Mol Microbiol. 2017;104(6):889–904.
  • Meneghetti F, Villa S, Gelain A, et al. Iron acquisition pathways as targets for antitubercular drugs. Curr Med Chem. 2016;23(35):4009–4026.
  • Wells RM, Jones CM, Xi Z, et al. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathog. 2013 Jan;9(1):e1003120.
  • Jones CM, Wells RM, Madduri AV, et al. Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling. Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1945–1950.
  • Salimizand H, Jamehdar SA, Nik LB, et al. Design of peptides interfering with iron-dependent regulator (IdeR) and evaluation of Mycobacterium tuberculosis growth inhibition. Iran J Basic Med Sci. 2017 Jun;20(6):722–728.
  • Ghosh S, Chandra N, Vishveshwara S. Mechanism of iron-dependent repressor (IdeR) activation and DNA binding: a molecular dynamics and protein structure network study. PLoS Comput Biol. 2015 Dec;11(12):e1004500.
  • Rohilla A, Khare G, Tyagi AK. Virtual Screening, pharmacophore development and structure based similarity search to identify inhibitors against IdeR, a transcription factor of Mycobacterium tuberculosis. Sci Rep. 2017 Jul 5;7(1):4653.
  • Ferreras JA, Ryu JS, Di Lello F, et al. Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat Chem Biol. 2005 Jun;1(1):29–32.
  • Lun S, Guo H, Adamson J, et al. Pharmacokinetic and in vivo efficacy studies of the mycobactin biosynthesis inhibitor salicyl-AMS in mice. Antimicrob Agents Chemother. 2013 Oct;57(10):5138–5140.
  • Mori M, Stelitano G, Gelain A, et al. Shedding X-ray light on the role of magnesium in the activity of Mycobacterium tuberculosis salicylate synthase (MbtI) for drug design. J Med Chem. 2020 Jul 9;63(13):7066–7080.
  • Mahalakshmi Vasan D, Neres J, Williams J, et al. Inhibitors of the salicylate synthase (MbtI) from Mycobacterium tuberculosis discovered by high-throughput screening. ChemMedChem. 2010;5(12):2079.
  • Chiarelli LR, Mori M, Barlocco D, et al. Discovery and development of novel salicylate synthase (MbtI) furanic inhibitors as antitubercular agents. Eur J Med Chem. 2018;155:754–763.
  • Chiarelli LR, Mori M, Beretta G, et al. New insight into structure-activity of furan-based salicylate synthase (MbtI) inhibitors as potential antitubercular agents. J Enzyme Inhib Med Chem. 2019;34(1):823–828.
  • Stirrett KL, Ferreras JA, Jayaprakash V, et al. Small molecules with structural similarities to siderophores as novel antimicrobials against Mycobacterium tuberculosis and Yersinia pestis. Bioorg Med Chem Lett. 2008;18(8):2662–2668.
  • Moraski GC, Chang M, Villegas-Estrada A, et al. Structure-activity relationship of new anti-tuberculosis agents derived from oxazoline and oxazole benzyl esters. Eur J Med Chem. 2010 May;45(5):1703–1716.
  • Moraski GC, Franzblau SG, Miller MJ. Utilization of the suzuki coupling to enhance the antituberculosis activity of aryl oxazoles. Heterocycles. 2010 Mar 1;80(2):977–988.
  • Veerepalli P, Vijayakumar V, Sarveswari S. Siderophore inhibitors: synthesis and antimycobacterial evaluation of certain chromeno [4, 3-d] benzimidazo [1, 2-a] pyrimidines. J Pharm Res. 2012;5:1027–1033.
  • Shyam M, Verma H, Bhattacharje G, et al. Mycobactin analogues with excellent pharmacokinetic profile demonstrate potent antitubercular specific activity and exceptional efflux pump inhibition. J Med Chem. 2022 Jan 13;65(1):234–256.
  • Leblanc C, Prudhomme T, Tabouret G, et al. 4’-Phosphopantetheinyl transferase PptT, a new drug target required for Mycobacterium tuberculosis growth and persistence in vivo. PLoS Pathog. 2012 Dec;8(12):e1003097.
  • Ballinger E, Mosior J, Hartman T, et al. Opposing reactions in coenzyme A metabolism sensitize Mycobacterium tuberculosis to enzyme inhibition. Science. 2019 Feb 1;363(6426). DOI:https://doi.org/10.1126/science.aau8959.
  • Mosior J, Bourland R, Soma S, et al. Structural insights into phosphopantetheinyl hydrolase PptH from Mycobacterium tuberculosis. Protein Sci. 2020;29(3):744–757.
  • Ottavi S, Scarry SM, Mosior J, et al. In vitro and in vivo inhibition of the Mycobacterium tuberculosis Phosphopantetheinyl transferase PptT by amidinoureas. J Med Chem. 2022 Jan 19;65(3):1996–2022.
  • Matzanke BF, Bohnke R, Mollmann U, et al. Iron uptake and intracellular metal transfer in mycobacteria mediated by xenosiderophores. Biometals. 1997 Jul;10(3):193–203.
  • Schumann G, Möllmann U. Screening system for xenosiderophores as potential drug delivery agents in mycobacteria. Antimicrob Agents Chemother. 2001;45(5):1317–1322.
  • Matzanke BF, Bohnke R, Mollmann U, et al. Transport and utilization of rhizoferrin bound iron in Mycobacterium smegmatis. Biometals. 1999 Dec;12(4):315–321.
  • Eze PM, Simons V, Seidemann T, et al. Serratiochelins A and B from Serratia marcescens show xenosiderophoric characteristics towards Acinetobacter baumannii and Mycobacterium tuberculosis. Trop J Pharm Res. 2021;20(12):2551–2558.
  • Hsu T, Hingley-Wilson SM, Chen B, et al. The primary mechanism of attenuation of bacillus Calmette–Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Nat Acad Sci. 2003;100(21):12420–12425.
  • Miller MJ, Walz AJ, Zhu H, et al. Design, synthesis, and study of a mycobactin− artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J Am Chem Soc. 2011;133(7):2076–2079.
  • Juárez-Hernández RE, Franzblau SG, Miller MJ. Syntheses of mycobactin analogs as potent and selective inhibitors of Mycobacterium tuberculosis. Org Biomol Chem. 2012;10(37):7584–7593.
  • Montes-Worboys A, Brown S, Antony VB. A trojan horse strategy to deliver amikacin to mycobacterial granulomas. Am J Respir Crit Care Med. 2011;184(7):860–861.
  • Starr J, Brown MF, Aschenbrenner L, et al. Siderophore receptor-mediated uptake of lactivicin analogues in gram-negative bacteria. J Med Chem. 2014 May 8;57(9):3845–3855.
  • Fernando DM, Gee CT, Griffith EC, et al. Biophysical analysis of the Mycobacteria tuberculosis peptide binding protein DppA reveals a stringent peptide binding pocket. Tuberculosis. 2022;132:102157.
  • Wisedchaisri G, Chou CJ, Wu M, et al. Crystal structures, metal activation, and DNA-binding properties of two-domain IdeR from Mycobacterium tuberculosis. Biochemistry. 2007 Jan 16;46(2):436–447.
  • Bhowmick T, Ghosh S, Dixit K, et al. Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors. Nat Commun. 2014 Jun 11;5(1):4124.
  • Chi G, Manos-Turvey A, O’Connor PD, et al. Implications of binding mode and active site flexibility for inhibitor potency against the salicylate synthase from Mycobacterium tuberculosis. Biochemistry. 2012 Jun 19;51(24):4868–4879.
  • Wang Y, Gu SX, He Q, et al. Advances in the development of HIV integrase strand transfer inhibitors. Eur J Med Chem. 2021 Dec 5;225:113787.
  • Grzegorzewicz AE, Pham H, Gundi VA, et al. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol. 2012 Feb 19;8(4):334–341.
  • Li W, Stevens CM, Pandya AN, et al. Direct inhibition of MmpL3 by novel antitubercular compounds. ACS Infect Dis. 2019 Jun 14;5(6):1001–1012.
  • Chim N, Torres R, Liu Y, et al. The structure and interactions of periplasmic domains of crucial MmpL membrane proteins from Mycobacterium tuberculosis. Chem Biol. 2015 Aug 20;22(8):1098–1107.
  • Kumar M, Singh K, Naran K, et al. Design, synthesis, and evaluation of novel hybrid efflux pump inhibitors for use against Mycobacterium tuberculosis. ACS Infect Dis. 2016;2(10):714–725.
  • Solnier J, Martin L, Bhakta S, et al. Flavonoids as novel efflux pump inhibitors and antimicrobials against both environmental and pathogenic intracellular mycobacterial species. Molecules. 2020;25(3):734.
  • Agre N, Khambete M, Maitra A, et al. Exploration of 5-(5-nitrothiophen-2-yl)-4,5-dihydro-1H-pyrazoles as selective, multitargeted antimycobacterial agents. Chem Biol Drug Des. 2020;95(1):192–199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.