368
Views
2
CrossRef citations to date
0
Altmetric
Review

Acoustic ejection mass spectrometry: fundamentals and applications in high-throughput drug discovery

Pages 775-787 | Received 26 Dec 2021, Accepted 26 May 2022, Published online: 31 May 2022

References

  • Papac DI, Shahrokh Z. Mass spectrometry innovations in drug discovery and development. Pharm Res. 2001;18(2):131–145.
  • Pu F, Elsen NL, Williams JD. Emerging chromatography-free high-throughput mass spectrometry technologies for generating hits and leads. ACS Med Chem Lett. 2020;11(11):2108–2113.
  • McLaren DG, Shah V, Wisniewski T, et al. High-throughput mass spectrometry for hit identification: current landscape and future perspectives. SLAS Discov. 2021;26(2):168–191.
  • Shou WZ. Current status and future directions of high-throughput ADME screening in drug discovery. J Pharm Anal. 2020;10(3):201–208.
  • Klont F, Hopfgartner G. Mass spectrometry based approaches and strategies in bioanalysis for qualitative and quantitative analysis of pharmaceutically relevant molecules. Drug Discov Today Technol. 2021;40:64–68.
  • Vervoort N, Goossens K, Baeten M, et al. Recent advances in analytical techniques for high throughput experimentation. Anal Sci Adv. 2021;2(3–4):109–127.
  • Grainger R, Whibley S. A Perspective on the Analytical Challenges Encountered in High-Throughput Experimentation. Org Process Res Dev. 2021;25(3):354–364.
  • Gomez-Sanchez R, Besley S, Quayle J, et al. Maintaining a high-quality screening collection: the GSK experience. SLAS Discov. 2021;26:24725552211017526.
  • Kapinos B, Liu J, Piotrowski M, et al. Development of a high-performance, enterprise-level, multimode LC–MS/MS autosampler for drug discovery. Bioanalysis. 2017;9(21):1643–1654.
  • Janiszewski J, Schneider R, Kapinos B, et al. Development of a high-speed, multiplexed sample-delivery instrument for LC–MS/MS bioanalysis. Bioanalysis. 2012;4(9):1039–1056.
  • Zhang J, Vath M, Ferraro C, et al. A high‐speed liquid chromatography/tandem mass spectrometry platform using multiplexed multiple‐injection chromatography controlled by single software and its application in discovery ADME screening. Rapid Commum Mass Spectrom. 2013;27(7):731–737.
  • Luippold AH, Arnhold T, Jörg W, et al. Application of a rapid and integrated analysis system (RIAS) as a high-throughput processing tool for in vitro ADME samples by liquid chromatography/tandem mass spectrometry. J Biomol Screen. 2011;16(3):370–377.
  • Luippold AH, Arnhold T, Jörg W, et al. An integrated platform for fully automated high-throughput LC–MS/MS analysis of in vitro metabolic stability assay samples. Int J Mass Spectrom. 2010;296(1–3):1–9.
  • Uchiyama N, Dougan DR, Lawson JD, et al. Identification of AHCY inhibitors using novel high-throughput mass spectrometry. Biochem Biophys Res Commun. 2017;491(1):1–7.
  • Yoneyama-Hirozane M, Matsumoto S-I, Toyoda Y, et al. Identification of PARP14 inhibitors using novel methods for detecting auto-ribosylation. Biochem Biophys Res Commun. 2017;486(3):626–631.
  • Langsdorf EF, Malikzay A, Lamarr WA, et al. Screening for antibacterial inhibitors of the UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) using a high-throughput mass spectrometry assay. J Biomol Screen. 2010;15(1):52–61.
  • Bretschneider T, Ozbal C, Holstein M, et al. RapidFire BLAZE-mode is boosting ESI-MS toward high-throughput-screening. SLAS Technol. 2019;24(4):386–393.
  • Steyer DJ, Kennedy RT. High-throughput nanoelectrospray ionization-mass spectrometry analysis of microfluidic droplet samples. Anal Chem. 2019;91(10):6645–6651.
  • Kempa EE, Smith CA, Li X, et al. Coupling droplet microfluidics with mass spectrometry for ultrahigh-throughput analysis of complex mixtures up to and above 30 Hz. Anal Chem. 2020;92(18):12605–12612.
  • Haslam C, Hellicar J, Dunn A, et al. The evolution of MALDI-TOF mass spectrometry toward ultra-high-throughput screening: 1536-well format and beyond. J Biomol Screen. 2016;21(2):176–186.
  • Winter M, Ries R, Kleiner C, et al. Automated MALDI target preparation concept: providing ultra-high-throughput mass spectrometry–based screening for drug discovery. SLAS Technol. 2019;24(2):209–221.
  • Krenkel H, Hartmane E, Piras C, et al. Advancing liquid atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry toward ultrahigh-throughput analysis. Anal Chem. 2020;92(4):2931–2936.
  • Vestal M, Li L, Dobrinskikh E, et al. Rapid MALDI‐TOF molecular imaging: instrument enhancements and their practical consequences. J Mass Spectrom. 2020;55(8):e4423.
  • O’Kane PT, Dudley QM, McMillan AK, et al. High-throughput mapping of CoA metabolites by SAMDI-MS to optimize the cell-free biosynthesis of HMG-CoA. Sci Adv. 2019;5(6):eaaw9180.
  • Corr JJ, Kovarik P, Schneider BB, et al. Design considerations for high speed quantitative mass spectrometry with MALDI ionization. J Am Soc Mass Spectrom. 2006;17(8):1129–1141.
  • Wu J, Hughes CS, Picard P, et al. High-throughput cytochrome P450 inhibition assays using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry. Anal Chem. 2007;79(12):4657–4665.
  • Yu S, Crawford E, Tice J, et al. Bioanalysis without sample cleanup or chromatography: the evaluation and initial implementation of direct analysis in real time ionization mass spectrometry for the quantification of drugs in biological matrixes. Anal Chem. 2009;81(1):193–202.
  • Sawicki JW, Bogdan AR, Searle PA, et al. Rapid analytical characterization of high-throughput chemistry screens utilizing desorption electrospray ionization mass spectrometry. React Chem Eng. 2019;4(9):1589–1594.
  • Morato NM, Holden DT, Cooks RG. High‐throughput label‐free enzymatic assays using desorption electrospray‐ionization mass spectrometry. Angew Chem Int Ed. 2020;59(46):20459–20464.
  • Pu F, Radosevich AJ, Sawicki JW, et al. High-throughput label-free biochemical assays using infrared matrix-assisted desorption electrospray ionization mass spectrometry. Anal Chem. 2021;93(17):6792–6800.
  • Radosevich AJ, Pu F, Chang-Yen D, et al. Ultrahigh-throughput direct sampling MS: sampling at 22 Hz by infrared matrix-assisted desorption electrospray ionization mass spectrometry. Anal Chem. 2022;94(12):4913–4918.
  • Wei Z, Xie Z, Kuvelkar R, et al. High‐throughput bioassays using “Dip‐and‐Go” sometry. Angew Chem Int Ed. 2019;58(49):17594–17598.
  • Belov AM, Kozole J, Bean MF, et al. Acoustic mist ionization-mass spectrometry: a comparison to conventional high-throughput screening and compound profiling platforms. Anal Chem. 2020;92(20):13847–13854.
  • Kempa EE, Hollywood KA, Smith CA, et al. High throughput screening of complex biological samples with mass spectrometry–from bulk measurements to single cell analysis. Analyst. 2019;144(3):872–891.
  • Sinclair I, Bachman M, Addison D, et al. Acoustic mist ionization platform for direct and contactless ultrahigh-throughput mass spectrometry analysis of liquid samples. Anal Chem. 2019;91(6):3790–3794.
  • Zhang H. Acoustic-OPP-MS - the next generation high throuhgput bioanalytical platform for drug discovery. San Diego (CA): SLAS; 2018.
  • Shou WZ. Acoustic ejection mass spectrometry: development, applications and future perspective. Biomed Chromatogr. 2021;5278:s.
  • Hadimioglu B, Stearns R, Ellson R. Moving liquids with sound: the physics of acoustic droplet ejection for robust laboratory automation in life sciences. J Lab Autom. 2016;21(1):4–18.
  • Van Berkel GJ, Kertesz V. An open port sampling interface for liquid introduction atmospheric pressure ionization mass spectrometry. Rapid Commum Mass Spectrom. 2015;29(19):1749–1756.
  • Dawes TD, Turincio R, Jones SW, et al. Compound transfer by acoustic droplet ejection promotes quality and efficiency in ultra-high-throughput screening campaigns. J Lab Autom. 2016;21(1):64–75.
  • Sackmann EK, Majlof L, Hahn-Windgassen A, et al. Technologies that enable accurate and precise nano-to milliliter-scale liquid dispensing of aqueous reagents using acoustic droplet ejection. J Lab Autom. 2016;21(1):166–177.
  • Van Berkel GJ, Sanchez AD, Quirke JME. Thin-layer chromatography and electrospray mass spectrometry coupled using a surface sampling probe. Anal Chem. 2002;74(24):6216–6223.
  • Van Berkel GJ, Kertesz V, Koeplinger KA, et al. Liquid microjunction surface sampling probe electrospray mass spectrometry for detection of drugs and metabolites in thin tissue sections. J Mass Spectrom. 2008;43(4):500–508.
  • Prideaux B, ElNaggar MS, Zimmerman M, et al. Mass spectrometry imaging of levofloxacin distribution in TB-infected pulmonary lesions by MALDI-MSI and continuous liquid microjunction surface sampling. Int J Mass Spectrom. 2015;377:699–708.
  • Gill EL, Marks M, Yost RA, et al. Monitoring dopamine ex vivo during electrical stimulation using liquid-microjunction surface sampling. Anal Chem. 2017;89(24):13658–13665.
  • Griffiths RL, Randall EC, Race AM, et al. Raster-mode continuous-flow liquid microjunction mass spectrometry imaging of proteins in thin tissue sections. Anal Chem. 2017;89(11):5683–5687.
  • Wu Q, Huang Z, Wang Y, et al. Absolute quantitative imaging of sphingolipids in brain tissue by exhaustive liquid microjunction surface sampling–liquid chromatography–mass spectrometry. J Chromatogr A. 2020;1609:460436.
  • Ovchinnikova OS, Bhandari D, Lorenz M, et al. Transmission geometry laser ablation into a non‐contact liquid vortex capture probe for mass spectrometry imaging. Rapid Commum Mass Spectrom. 2014;28(15):1665–1673.
  • Cahill JF, Kertesz V, Van Berkel GJ. Characterization and application of a hybrid optical microscopy/laser ablation liquid vortex capture/electrospray ionization system for mass spectrometry imaging with sub-micrometer spatial resolution. Anal Chem. 2015;87(21):11113–11121.
  • Cahill JF, Kertesz V, Van Berkel GJ. Laser dissection sampling modes for direct mass spectral analysis. Rapid Commum Mass Spectrom. 2016;30(5):611–619.
  • Cahill JF, Kertesz V, Weiskittel TM, et al. Online, absolute quantitation of propranolol from spatially distinct 20-and 40-μm dissections of brain, liver, and kidney thin tissue sections by laser microdissection–liquid vortex capture–mass spectrometry. Anal Chem. 2016;88:6026–6034.
  • Cahill JF, Kertesz V, Porta T, et al. Solvent effects on differentiation of mouse brain tissue using laser microdissection ‘cut and drop’sampling with direct mass spectral analysis. Rapid Commum Mass Spectrom. 2018;32(5):414–422.
  • Gómez-Ríos GA, Liu C, Tascon M, et al. Open port probe sampling interface for the direct coupling of biocompatible solid-phase microextraction to atmospheric pressure ionization mass spectrometry. Anal Chem. 2017;89(7):3805–3809.
  • Liu C, Gómez-Ríos GA, Schneider BB, et al. Fast quantitation of opioid isomers in human plasma by differential mobility spectrometry/mass spectrometry via SPME/open-port probe sampling interface. Anal Chim Acta. 2017;991:89–94.
  • Tascon M, Alam MN, Gómez-Ríos GNA, et al. Development of a microfluidic open interface with flow isolated desorption volume for the direct coupling of SPME devices to mass spectrometry. Anal Chem. 2018;90(4):2631–2638.
  • Tascon M, Singh V, Huq M, et al. Direct coupling of dispersive extractions with magnetic particles to mass spectrometry via microfluidic open interface. Anal Chem. 2019;91(7):4762–4770.
  • Swanson KD, Worth AL, Glish GL. Use of an open port sampling interface coupled to electrospray ionization for the on-line analysis of organic aerosol particles. J Am Soc Mass Spectrom. 2017;29(2):297–303.
  • Van Berkel GJ, Kertesz V, Boeltz H. Immediate drop on demand technology (I-DOT) coupled with mass spectrometry via an open port sampling interface. Bioanalysis. 2017;9(21):1667–1679.
  • Van Berkel GJ, Kertesz V. Rapid sample classification using an open port sampling interface coupled with liquid introduction atmospheric pressure ionization mass spectrometry. Rapid Commum Mass Spectrom. 2017;31(3):281–291.
  • Van Berkel GJ, Kertesz V, Orcutt M, et al. Combined falling drop/open port sampling interface system for automated flow injection mass spectrometry. Anal Chem. 2017;89(22):12578–12586.
  • Sosnowski P, Hopfgartner G. Application of 3D printed tools for customized open port probe-electrospray mass spectrometry. Talanta. 2020;215:120894.
  • Häbe TT, Liu C, Covey TR, et al. Ultrahigh-throughput ESI-MS: sampling pushed to six samples per second by acoustic ejection mass spectrometry. Anal Chem. 2020;92(18):12242–12249.
  • Gillet LC, Navarro P, Tate S, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11(6):O111.016717.
  • Liu C, Van Berkel GJ, Kovarik P, et al., Fluid dynamics of the open port interface for high-speed nanoliter volume sampling mass spectrometry. Anal Chem. 93(24): 8559–8567. 2021.
  • Liu C, Van Berkel GJ, Cox DM, et al., Operational modes and speed considerations of an acoustic droplet dispenser for mass spectrometry. Anal Chem. 92(24): 15818–15826. 2020.
  • Zhang H, Liu C, Hua W, et al., Acoustic ejection mass spectrometry for high-throughput analysis. Anal Chem. 93(31): 10850–10861. 2021.
  • Wagner A, Zhang J, Liu C, et al. Ultrahigh-throughput and chromatography-free bioanalysis of polar analytes with acoustic ejection mass spectrometry. Anal Chem. 2020;92(19):13525–13531.
  • Liu C. High-throughput ESI-MS enabled by the acoustic droplet ejection to the open-port probe sampling interface. Washington (D. C): SLAS; 2019.
  • Simon RP, Häbe TT, Ries R, et al., Acoustic ejection mass spectrometry: a fully automatable technology for high-throughput screening in drug discovery. SLAS Discov. 26(8): 961–973. 2021.
  • Wen X. Observations from our first lap around the block: successful execution of an HTS campaign on an automated Echo MS. The 1st Chinese American Society for Mass Spectrometry Conference; Virtual Conference; 2021.
  • Liddle N, Baghla R, Liu C. Novel methods for increasing throughput and detection of Acoustic Ejection Mass Spectrometry (AEMS). Philadelphia (PA): ASMS; 2021.
  • Wen X, Liu C, Ghislain L, et al. Direct analysis from phase-separated liquid samples using ADE-OPI-MS: applicability to high-throughput screening for inhibitors of diacylglycerol acyltransferase 2. Anal Chem. 2021;93(15):6071–7079.
  • Pearson M, Baghla R, Proos R, et al. High-throughput metabolite quantification for synthetic biology. SCIEX Technical Note. 2021. Available from: https://sciex.com/tech-notes/life-science-research/metabolomics/high-throughput-metabolite-quantification-for-synthetic-biology-?sfdcname=Global_EchoMS_ProductPage_TechNotes_2021&utm_term=G-Echo%20MS%20Product%20Page%20-%20Metabolite%20Synthetic%20Biology
  • Baghla R, Liu C, Kern R. Rapid quantitative analysis of fermentation broth samples to assess efficiency of engineered yeast strain turnover. SCIEX Technical Note. 2020. Available from: https://sciex.com/tech-notes/pharma/discovery/rapid-quantitative-analysis-of-fermentation-broth-samples-to-ass?sfdcname=Global_EchoMS_ProductPage_TechNotes_2021&utm_term=G-%20Echo%20MS%20Product%20Page%20-%20Fermentation%20of%20broth%20samples
  • Bruins W. High throughput MS for higher animal welfare. High-Throughput Screening Symposium; Virtual Conference; 2021.
  • Zhang J-H, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen. 1999;4(2):67–73.
  • Zhang H. Acoustic-OPP-MS - the next generation high throuhgput bioanalytical platform for drug discovery. Orlando (FL): Pittcon; 2018.
  • Simon RP, editor. Acoustic ejection mass spectrometry: a versatile technology for fast bioanalysis and fully automated high-throughput screening. Boston (MA): SLAS; 2022.
  • Hua W. Acoustic-open port-mass spectrometry enabled HTS: assay development for choline transporter (CHT) uptake function assessment. San Diego (CA): ASMS; 2018.
  • Hollenbeck T, Thibodeaux S, White P, et al. Acoustic droplet ejection and open port interface for rapid analysis of metabolic stability assays. J Pharm Sci. 2020;109(11):3285–3291.
  • Devenport N, Walsh N, Wood S. Accelerated pharmacokinetic profiling and metabolite monitoring using Echo® MS system. SCIEX Technical Note. 2021. Available from: https://sciex.com/tech-notes/pharma/bioanalysis-pk/accelerated-pharmacokinetic-profiling-and-metabolite-monitoring-?sfdcname=Global_EchoMS_ProductPage_TechNotes_2021&utm_term=G-Echo%20MS%20Product%20Page%20-%20TN%20Metabolite%20Monitoring.
  • Kern R, Baghla R. True high throughput analysis of a transporter activity assay. Philadelphia (PA): ASMS; 2021.
  • Gribbon P, Sewing A. Fluorescence readouts in HTS: no gain without pain? Drug Discov Today. 2003;8(22):1035–1043.
  • Baghla R, Kern R. Ultrafast bioanalytical analysis using the Echo MS system - two case studies. Philadelphia (PA): ASMS; 2021.
  • Zhang H. Applications of ADE-OPI-MS, the ultra-high throughput platform for drug discovery. San Diego (CA): SLAS; 2020.
  • Bateman K. Quantitative analysis using Echo-MS. WRIB; Virtual Conference; 2020.
  • Guo Y, Forbush M, Covey TR, et al. High-throughput analysis from complex matrices: acoustic ejection mass spectrometry from phase-separated fluid samples. Metabolites. 2021;11(11):789–799.
  • Zhang J, Zhang Y, Liu C, et al. Acoustic ejection/full-scan mass spectrometry analysis for high-throughput compound quality control. SLAS Technol. 2021;26(2):178–188.
  • Liu C. Automated mass spectra comparison algorithm for high-throughput compound QC applications. Philadelphia(PA): ASMS; 2021.
  • DiRico KJ, Hua W, Liu C, et al. Ultra-high-throughput acoustic droplet ejection-open port interface-mass spectrometry for parallel medicinal chemistry. ACS Med Chem Lett. 2020;11(6):1101–1110.
  • Asakawa D, Mizuno H, Toyo’Oka T. Gas-phase stability of negatively charged organophosphate metabolites produced by electrospray ionization and matrix-assisted laser desorption/ionization. J Am Soc Mass Spectrom. 2017;28(12):2561–2568.
  • Attwa MW, Kadi AA, Abdelhameed AS. Phase I metabolic profiling and unexpected reactive metabolites in human liver microsome incubations of X-376 using LC-MS/MS: bioactivation pathway elucidation and in silico toxicity studies of its metabolites. RSC Adv. 2020;10(9):5412–5427.
  • Star-Weinstock M, Williamson BL, Dey S, et al. LC-ESI-MS/MS analysis of testosterone at sub-picogram levels using a novel derivatization reagent. Anal Chem. 2012;84(21):9310–9317.
  • Bedford L, Schneider BB, Duchoslav E, et al. Acoustic ejection mass spectrometry (AEMS)/differential ion mobility for ultra-high throughput mass spectrometry. Pennsylvania (PA): ASMS; 2021.
  • Schneider BB, Nazarov EG, Londry F, et al. Differential mobility spectrometry/mass spectrometry: history, theory, design optimization, simulations, and applications. Mass Spectrom Rev. 2016;35:687–737.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.