151
Views
1
CrossRef citations to date
0
Altmetric
Review

An overview on small molecules acting as broad-spectrum agents for yellow fever infection

, &
Pages 755-773 | Received 08 Nov 2021, Accepted 27 May 2022, Published online: 24 Jun 2022

References

  • Monath T. Treatment of yellow fever. Antiviral Res. 2008;78:116–124.
  • Bifani AM, Ong EZ, de Alwis R. Vaccination and therapeutics: responding to the changing epidemiology of yellow fever. Curr Treat Options Infect Dis. 2020; 12:349–360. https://doi.org/10.1007/s40506-020-00232-7
  • Chen LH, Wilson ME. Yellow fever control: current epidemiology and vaccination strategies. Trop Dis Travel Med Vaccines. 2020;6:1–10. https://doi.org/10.1186/s40794-020-0101-0
  • Figueiredo PDO, Stoffella-Dutra AG, Costa GB, et al. Re-emergence of yellow fever in Brazil during 2016–2019: challenges, lessons learned, and perspectives. Viruses. 2020;12:1233.
  • Monath TP, Barrett ADT. Pathogenesis and pathophysiology of yellow fever. Adv Virus Res. 2003;60:343–395.
  • Beeuwkes H. Clinical manifestations of yellow fever in the West African native as observed during four extensive epidemics of the disease in the gold coast and Nigeria. Trans R Soc Trop Med Hyg. 1936;30:61–86.
  • Berry GP, Kitchen SF. Yellow fever accidentally contracted in the laboratory: a study of seven cases. Am J Trop Med Hyg. 1931;1-11:365–434.
  • Quaresma JAS, Pagliari C, Medeiros DBA, et al. Immunity and immune response, pathology and pathologic changes: progress and challenges in the immunopathology of yellow fever. Rev Med Virol. 2013;23:305–318.
  • Klitting R, Fischer C, Drexler JF, et al. What does the future hold for yellow fever virus? II. Genes Basel. 2018; 9: 425. https://doi.org/10.3390/genes9090425
  • Barrett AD, Teuwen DE. Yellow fever vaccine - how does it work and why do rare cases of serious adverse events take place? Curr Opin Immunol. 2009;21:308–313.
  • Mackenzie J. Wrapping things up about virus RNA replication. Traffic. 2005;6:967–977.
  • Bryant JE, Vasconcelos PFC, Rijnbrand RCA, et al. Size heterogeneity in the 3' noncoding region of south american isolates of yellow fever virus. J Virol. 2005;79:3807–3821.
  • Stock NK, Laraway H, Faye O, et al. Biological and phylogenetic characteristics of yellow fever virus lineages from West Africa. J Virol. 2013;87:2895–2907.
  • Barrett ADT, Gould EA. Comparison of neurovirulence of different strains of yellow fever virus in mice. J Gen Virol. 1986;67:631–637.
  • Felicetti T, Manfroni G, Cecchetti V, et al. Broad-Spectrum flavivirus inhibitors: a medicinal chemistry point of view. ChemMedChem. 2020;15:2391–2419. DOI:https://doi.org/10.1002/cmdc.202000464
  • Morrey JD, Taro BS, Siddharthan V, et al. Efficacy of orally administered T-705 pyrazine analog on lethal West Nile virus infection in rodents. Antiviral Res. 2008;80:377–379.
  • Baz M, Goyette N, Griffin BD, et al. In vitro susceptibility of geographically and temporally distinct Zika viruses to favipiravir and ribavirin. Antivir Ther. 2017; 22: 613–618. https://doi.org/10.3851/IMP3180
  • Cannalire R, Ki Chan KW, Burali MS, et al. Pyridobenzothiazolones exert potent anti-dengue activity by hampering multiple functions of NS5 polymerase. ACS Med Chem Lett. 2020;11:773–782.
  • Rice CM, Lenches EM, Eddy SR, et al. Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science. 1985;229:726–733.
  • Barrows NJ, Campos RK, Liao KC, et al. Biochemistry and molecular biology of flaviviruses. Chem Rev. 2018;118:4448–4482.
  • Kleinert RD, Montoya-Diaz E, Khera T, et al. Yellow Fever: integrating current knowledge with technological innovations to identify strategies for controlling a re-emerging virus. Viruses. 2019;11:960.
  • Laureti M, Narayanan D, Rodriguez-Andres J, et al. Flavivirus receptors: diversity, identity, and cell entry. Front Immunol. 2018;9:2180.
  • Teissier E, Penin F, Pécheur EI. Targeting cell entry of enveloped viruses as an antiviral strategy. Mol. 2011;16:221–250. 2010. DOI:https://doi.org/10.3390/molecules16010221.
  • Cannalire R, Stefanelli I, Cerchia C, et al. SARS-CoV-2 entry inhibitors: small molecules and peptides targeting virus or host cells. Int J Mol Sci. 2020;21:5707.
  • Boldescu V, Behnam MAM, Vasilakis N, et al. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov. 2017;16:565–586. DOI:https://doi.org/10.1038/nrd.2017.33
  • Knyazhanskaya E, Morais MC, Choi KH. Flavivirus enzymes and their inhibitors. In: Cameron CE, Arnold JJ, Kaguni LS, editor. Enzymes. Vol. 49. Academic Press; 2021. p. 265–303.
  • Noske GD, Gawriljuk VO, Fernandes RS, et al. Structural characterization and polymorphism analysis of the NS2B-NS3 protease from the 2017 Brazilian circulating strain of yellow fever virus. Biochim Biophys Acta Gen Subj. 2020;1864:129521.
  • Li Z, Brecher M, Deng YQ, et al. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res. 2017;27:1046–1064.
  • Lorenz KJ, Maier H. Squamous cell carcinoma of the head and neck: photodynamic therapy with foscan. HNO. 2008;56:402–409.
  • Li Z, Sakamuru S, Huang R, et al. Erythrosin B is a potent and broad-spectrum orthosteric inhibitor of the flavivirus NS2B-NS3 protease. Antiviral Res. 2018;150:217–225.
  • Luo D, Vasudevan SG, Lescar J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res. 2015;118:148–158.
  • Swarbrick CMD, Basavannacharya C, Chan KWK, et al. NS3 helicase from dengue virus specifically recognizes viral RNA sequence to ensure optimal replication. Nucleic Acids Res. 2017;45:12904–12920.
  • Wu J, Bera AK, Kuhn RJ, et al. Structure of the flavivirus helicase: implications for catalytic activity, protein interactions, and proteolytic processing. J Virol. 2005;79:10268–10277.
  • Mastrangelo E, Pezzullo M, Burghgraeve De T, et al. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J Antimicrob Chemother. 2012;67:1884–1894.
  • Tay MYF, Fraser JE, Chan WKK, et al. Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral Res. 2013;99:301–306.
  • Jans DA, Wagstaff KM. Ivermectin as a broad-spectrum host-directed antiviral: the real Deal? Cells. 2020;9:2100.
  • Temple C, Hoang R, Hendrickson RG. Toxic effects from ivermectin use associated with prevention and treatment of covid-19. N Engl J Med. 2021;385:2197–2198.
  • Yamasmith E, Fadhil A-HS-A, Avirutnan P, et al. The 34 th Annual Meeting The Royal College of Physicians of Thailand “Internal Medicine and One Health” 26 th-28 th. PEACH R. Cliff Beach Resort. 2018.
  • Eyer L, Nencka R, de Clercq E, et al. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir Chem Chemother. 2018;26:1–28. DOI:https://doi.org/10.1177/2040206618761299.
  • Dubankova A, Boura E. Structure of the yellow fever NS5 protein reveals conserved drug targets shared among flaviviruses. Antiviral Res. 2019;169:104536.
  • Kok WM. New developments in flavivirus drug discovery. Expert Opin Drug Discov. 2016;11:433–445.
  • Sofia MJ, Chang W, Furman PA, et al. Nucleoside, nucleotide, and non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA-polymerase. J Med Chem. 2012;55:2481–2531.
  • Eyer L, Šmídková M, Nencka R, et al. Structure-activity relationships of nucleoside analogues for inhibition of tick-borne encephalitis virus. Antiviral Res. 2016;133:119–129.
  • Eyer L, Nencka R, Huvarová I, et al. Nucleoside inhibitors of zika virus. J Infect Dis. 2016;214:707–711.
  • Migliaccio G, Tomassini JE, Carroll SS, et al. Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro. J Biol Chem. 2003;278:49164–49170.
  • Olsen DB, Eldrup AB, Bartholomew L, et al. A 7-deaza-adenosine analog is a potent and selective inhibitor of hepatitis C virus replication with excellent pharmacokinetic properties. Antimicrob Agents Chemother. 2004;48:3944–3953.
  • Zmurko J, Marques RE, Schols D, et al. The viral polymerase inhibitor 7-Deaza-2’-C-methyladenosine is a potent inhibitor of in vitro zika virus replication and delays disease progression in a robust mouse infection model. PLoS Negl Trop Dis. 2016;10:e0004695.
  • Lee JC, Tseng CK, Wu YH, et al. Characterization of the activity of 2'-C-methylcytidine against dengue virus replication. Antiviral Res. 2015;116:1–9.
  • Julander JG, Jha AK, Choi JA, et al. Efficacy of 2’-C-methylcytidine against yellow fever virus in cell culture and in a hamster model. Antiviral Res. 2010;86:261–267.
  • Yin Z, Chen YL, Schul W, et al. An adenosine nucleoside inhibitor of dengue virus. Proc Natl Acad Sci U S A. 2009;106:20435–20439.
  • Milligan GN, White M, Zavala D, et al. Spectrum of activity testing for therapeutics against all four dengue virus serotypes in AG129 mouse models: proof-of-concept studies with the adenosine nucleoside inhibitor NITD-008. Antiviral Res. 2018;154:104–109.
  • Lo MK, Shi PY, Chen YL, et al. In vitro antiviral activity of adenosine analog NITD008 against tick-borne flaviviruses. Antiviral Res. 2016;130:46–49.
  • Deng YQ, Zhang NN, Li CF, et al. Adenosine analog NITD008 is a potent inhibitor of zika virus. Open Forum Infect Dis. 2016;3:ofw175.
  • Mcquaid T, Savini C, Seyedkazemi S. Sofosbuvir, a Significant Paradigm Change in HCV Treatment. J. Clin. Transl. Hepatol. 2015;3:27–35.
  • Sofia MJ, Bao D, Chang W, et al. Discovery of a β-d-2'-deoxy-2'-α-fluoro-2'-β-C-methyluridine nucleotide prodrug PSI-7977 for the treatment of hepatitis C virus. J Med Chem. 2010;53:7202–7218.
  • Sacramento CQ, de Melo GR, de Freitas CS, et al. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Sci Rep. 2017;7:1–12.
  • Ferreira AC, Zaverucha-do-Valle C, Reis PA, et al. Sofosbuvir protects Zika virus-infected mice from mortality, preventing short- and long-term sequelae. Sci Rep. 2017;7:1–9.
  • Bullard-Feibelman K, Govero J, Zhu Z, et al. The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antiviral Res. 2017;137:134–140.
  • Xu H-T, Colby-Germinario SP, Hassounah SA, et al. Evaluation of sofosbuvir β-D-2'-deoxy-2'-α-fluoro-2'-β-C-methyluridine as an inhibitor of dengue virus replication. Sci Rep. 2017;7:1–11.
  • Mendes E, Pilger D, Santos Nastri A, et al. Sofosbuvir inhibits yellow fever virus in vitro and in patients with acute liver failure. Ann Hepatol. 2019;18:816–824.
  • Freitas de CS, Higa LM, Sacramento CQ, et al. Yellow fever virus is susceptible to sofosbuvir both in vitro and in vivo. PLoS Negl Trop Dis. 2019;13:e0007072.
  • Zandi K, Amblard F, Amichai S, et al. Nucleoside analogs with antiviral activity against yellow fever virus. Antimicrob Agents Chemother. 2019;63:e00889.
  • De Clercq E. C-nucleosides to be revisited. J Med Chem. 2015;59:2301–2311.
  • Warren TK, Wells J, Panchal RG, et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature. 2014;508:402–405.
  • Julander JG, Siddharthan V, Evans J, et al. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antiviral Res. 2017;137:14–22.
  • Eyer L, Zouharová D, Širmarová J, et al. Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses. Antiviral Res. 2017;142:63–67.
  • Julander JG, Bantia S, Taubenheim BR, et al. BCX4430, a novel nucleoside analog, effectively treats yellow fever in a hamster model. Antimicrob Agents Chemother. 2014;58:6607–6614.
  • Taylor R, Kotian P, Warren T, et al. BCX4430 - A broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease. J Infect Public Health. 2016;9:220–226.
  • Julander JG, Demarest JF, Taylor R, et al. An update on the progress of galidesivir BCX4430, a broad-spectrum antiviral. Antiviral Res. 2021;195:105180.
  • Julander JG, Furuta Y, Shafer K, et al. Activity of T-1106 in a hamster model of yellow fever virus infection. Antimicrob Agents Chemother. 2007;51:1962–1966.
  • Julander JG, Shafer K, Smee DF, et al. Activity of T-705 in a hamster model of yellow fever virus infection in comparison with that of a chemically related compound, T-1106. Antimicrob Agents Chemother. 2009;53:202–209.
  • Sissoko D, Laouenan C, Folkesson E, et al. Experimental treatment with favipiravir for ebola virus disease the jiki trial: a historically controlled, single-arm proof-of-concept trial in Guinea. PLOS Med. 2016;13:e1001967.
  • Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering. 2020;6:1192–1198.
  • Geraghty RJ, Aliota MT, Bonnac LF. Broad-spectrum antiviral strategies and nucleoside analogues. Viruses. 2021;13:667.
  • Tarantino D, Cannalire R, Mastrangelo E, et al. Targeting flavivirus RNA dependent RNA polymerase through a pyridobenzothiazole inhibitor. Antiviral Res. 2016;134:226–235.
  • Cannalire R, Tarantino D, Piorkowski G, et al. Broad spectrum anti-flavivirus pyridobenzothiazolones leading to less infective virions. Antiviral Res. 2019;167:6–12. DOI:https://doi.org/10.1016/j.antiviral.2019.03.004
  • Dong H, Zhang B, Shi PY. Flavivirus methyltransferase: a novel antiviral target. Antiviral Res. 2008;80:1–10.
  • Bollati M, Alvarez K, Assenberg R, et al. Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res. 2010;87:125–148.
  • Nitsche C, Holloway S, Schirmeister T, et al. Biochemistry and medicinal chemistry of the dengue virus protease. Chem Rev. 2014;114:11348–11381.
  • Geiss BJ, Thompson AA, Andrews AJ, et al. Analysis of flavivirus NS5 methyltransferase cap binding. J Mol Biol. 2009;385:1643–1654.
  • Dong H, Liu L, Zou G, et al. Structural and functional analyses of a conserved hydrophobic pocket of flavivirus methyltransferase. J Biol Chem. 2010;285:32586–32595.
  • Dong H, Ren S, Zhang B, et al. West nile virus methyltransferase catalyzes two methylations of the viral rna cap through a substrate-repositioning mechanism downloaded from. J Virol. 2008;82:4295–4307.
  • Brecher M, Chen H, Liu B, et al. Novel broad spectrum inhibitors targeting the flavivirus methyltransferase. PLoS One. 2015;10:e0130062.
  • Brecher M, Chen H, Li Z, et al. Identification and characterization of novel broad-spectrum inhibitors of the flavivirus methyltransferase. ACS Infect Dis. 2016;1:340–349.
  • Miller S, Sparacio S, Bartenschlager R. Subcellular localization and membrane topology of the dengue virus type 2 non-structural protein 4B. J Biol Chem. 2006;281:8854–8863.
  • Zmurko J, Neyts J, Dallmeier K. Flaviviral NS4b, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention. Rev Med Virol. 2015;25:205–223.
  • Zou J, Xie X, Lee LT, et al. Dimerization of Flavivirus NS4B Protein. J Virol. 2014;88:3379–3391.
  • Patkar CG, Larsen M, Owston M, et al. Identification of inhibitors of yellow fever virus replication using a replicon-based high-throughput assay. Antimicrob Agents Chemother. 2009;53:4103–4114.
  • Guo F, Wu S, Julander J, et al. A novel benzodiazepine compound inhibits yellow fever virus infection by specifically targeting NS4B protein. J Virol. 2016;90:10774–10788. DOI:https://doi.org/10.1128/JVI.01253-16
  • Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the Flavivirus life cycle. Nat Rev Microbiol. 2005;3:13–22.
  • Zhang X, Jia R, Shen H, et al. Structures and functions of the envelope glycoprotein in flavivirus infections. Viruses. 2017;9:338.
  • De Wispelaere M, Lian W, Potisopon S, et al. Inhibition of flaviviruses by targeting a conserved pocket on the viral envelope protein. Cell Chem Biol. 2018;25:1006–1016.
  • Lu X, Xiao H, Li S, et al. Double lock of a human neutralizing and protective monoclonal antibody targeting the yellow fever virus envelope. Cell Rep. 2019;26:438–446.e5.
  • Wang QY, Patel SJ, Vangrevelinghe E, et al. A small-molecule dengue virus entry inhibitor. Antimicrob Agents Chemother. 2009;53:1823–1831.
  • Kampmann T, Yennamalli R, Campbell P, et al. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res. 2009;84:234–241.
  • Samsa MM, Mondotte JA, Iglesias NG, et al. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog. 2009;5:e1000632.
  • Oliveira ERA, Mohana-Borges R, de Alencastro RB, et al. The flavivirus capsid protein: structure, function and perspectives towards drug design. Virus Res. 2017;227:115–123.
  • Ma L, Jones CT, Groesch TD, et al. Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci U S A. 2004;101:3414–3419.
  • Patkar CG, Jones CT, Chang Y-H, et al. Functional requirements of the yellow fever virus capsid protein. J Virol. 2007;81:6471–6481.
  • Byrd CM, Dai D, Grosenbach DW, et al. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob Agents Chemother. 2013;57:15–25.
  • Wang AM, Miyata Y, Klinedinst S, et al. Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat Chem Biol. 2012;9:112–118.
  • Taguwa S, Maringer K, Li X, et al. Defining Hsp70 subnetworks in dengue virus replication reveals key vulnerability in flavivirus infection. Cell. 2015;163:1108–1123.
  • Taguwa S, Yeh MT, Rainbolt TK, et al. Zika virus dependence on host hsp70 provides a protective strategy against infection and disease. Cell Rep. 2019;26:906–920.
  • Fioravanti R, Desideri N, Carta A, et al. Inhibitors of yellow fever virus replication based on 1,3,5-triphenyl-4,5-dihydropyrazole scaffold: design, synthesis and antiviral evaluation. Eur J Med Chem. 2017;141:15–25.
  • Kaptein SJF, Goethals O, Kiemel D, et al. A pan-serotype dengue virus inhibitor targeting the NS3–NS4B interaction. Nat. 2021;598:504–509. DOI:https://doi.org/10.1038/s41586-021-03990-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.