270
Views
0
CrossRef citations to date
0
Altmetric
Drug Discovery Case History

An overview of the preclinical discovery and development of tezepelumab for the treatment of asthma

, ORCID Icon, ORCID Icon &
Pages 951-963 | Received 26 Apr 2023, Accepted 26 Jun 2023, Published online: 30 Jun 2023

References

  • Whetstone CE, Ranjbar M, Omer H, et al. The role of airway epithelium cell alarmins in asthma. Cells. 2022;11(7):1105. doi: 10.3390/cells11071105
  • Porsbjerg CM, Sverrild A, Lloyd CM, et al. Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics. Eur Respir J. 2020;56(5):2000260. doi: 10.1183/13993003.00260-2020
  • Mitchell PD, O’Byrne PM. Biologics and the lung: tSLP and other epithelial cell-derived cytokines in asthma. Pharmacol Ther. 2017;169:104–112. doi: 10.1016/j.pharmthera.2016.06.009
  • Verstraete K, Peelman F, Braun H, et al. Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. Nat Commun. 2017;8(1):14937. doi: 10.1038/ncomms14937
  • Ebina-Shibuya R, Leonard WJ. Role of thymic stromal lymphopoietin in allergy and beyond. Nat Rev Immunol. 2023;23(1):24–37. doi: 10.1038/s41577-022-00735-y
  • Varricchi G, Pecoraro A, Marone G, et al. Thymic stromal lymphopoietin isoforms, inflammatory disorders, and cancer. Front Immunol. 2018;9:1595. doi: 10.3389/fimmu.2018.01595
  • He R, Geha RS. Thymic stromal lymphopoietin. Ann N Y Acad Sci. 2010;1183(1):13–24. doi: 10.1111/j.1749-6632.2009.05128.x
  • Matera MG, Rogliani P, Calzetta L, et al. TSLP inhibitors for asthma: current status and future prospects. Drugs. 2020;80(5):449–458. doi: 10.1007/s40265-020-01273-4
  • Yao W, Zhang Y, Jabeen R, et al. Interleukin-9 is required for allergic airway inflammation mediated by the cytokine TSLP. Immunity. 2013;38(2):360–372. doi: 10.1016/j.immuni.2013.01.007
  • Borowski A, Vetter T, Kuepper M, et al. Expression analysis and specific blockade of the receptor for human thymic stromal lymphopoietin (TSLP) by novel antibodies to the human TSLPRα receptor chain. Cytokine. 2013;61(2):546–555. doi: 10.1016/j.cyto.2012.10.025
  • Pattarini L, Trichot C, Bogiatzi S, et al. TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand. J Exp Med. 2017;214(5):1529–1546. doi: 10.1084/jem.20150402
  • Kitajima M, Lee HC, Nakayama T, et al. TSLP enhances the function of helper type 2 cells. Eur J Immunol. 2011;41(7):1862–1871. doi: 10.1002/eji.201041195
  • Hui CC, Rusta-Sallehy S, Asher I, et al. The effects of thymic stromal lymphopoietin and IL-3 on human eosinophil-basophil lineage commitment: relevance to atopic sensitization. Immun Inflamm Dis. 2014;2(1):44–55. doi: 10.1002/iid3.20
  • Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 2016;17(7):765–774. doi: 10.1038/ni.3489
  • Liu S, Verma M, Michalec L, et al. Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: the role of thymic stromal lymphopoietin. J Allergy Clin Immunol. 2018;141(1):257–268. doi: 10.1016/j.jaci.2017.03.032
  • Mkorombindo T, Balkissoon R. Journal Club: biologics and potential for immune modulation in chronic obstructive lung disease. Chronic Obstr Pulm Dis. 2022;9(2):285–297. doi: 10.15326/jcopdf.2022.0318
  • Zhou B, Comeau MR, De Smedt T, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol. 2005;6(10):1047–1053. doi: 10.1038/ni1247
  • Chen ZG, Zhang TT, Li HT, et al. Neutralization of TSLP inhibits airway remodeling in a murine model of allergic asthma induced by chronic exposure to house dust mite. PLoS One. 2013;8(1):e51268. doi: 10.1371/journal.pone.0051268
  • Shi L, Leu SW, Xu F, et al. Local blockade of TSLP receptor alleviated allergic disease by regulating airway dendritic cells. Clin Immunol. 2008;129(2):202–210. doi: 10.1016/j.clim.2008.07.015
  • Chauhan A, Singh M, Agarwal A, et al. Correlation of TSLP, IL-33, and CD4 + CD25 + FOXP3 + T regulatory (Treg) in pediatric asthma. J Asthma. 2015;52(9):868–872. doi: 10.3109/02770903.2015.1026441
  • Ying S, O’Connor B, Ratoff J, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol. 2008;181(4):2790–2798. doi: 10.4049/jimmunol.181.4.2790
  • Wang W, Li Y, Lv Z, et al. Bronchial allergen challenge of patients with atopic asthma triggers an alarmin (IL-33, TSLP, and IL-25) response in the airways epithelium and submucosa. J Immunol. 2018;201(8):2221–2231. doi: 10.4049/jimmunol.1800709
  • Harada M, Hirota T, Jodo AI, et al. Thymic stromal lymphopoietin gene promoter polymorphisms are associated with susceptibility to bronchial asthma. Am J Respir Cell Mol Biol. 2011;44(6):787–793. doi: 10.1165/rcmb.2009-0418OC
  • Shikotra A, Choy DF, Ohri CM, et al. Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol. 2012;129(1):104–111. doi: 10.1016/j.jaci.2011.08.031
  • Salter BMA, Smith SG, Mukherjee M, et al. Human bronchial epithelial cell-derived factors from severe asthmatic subjects stimulate eosinophil differentiation. Am J Respir Cell Mol Biol. 2018;58(1):99–106. doi: 10.1165/rcmb.2016-0262OC
  • Park S, Park Y, Son SH, et al. Synthesis and biological evaluation of peptide-derived TSLP inhibitors. Bioorg Med Chem Lett. 2017;27(20):4710–4713. doi: 10.1016/j.bmcl.2017.09.010
  • O’Byrne PM, RA P Jr, Taube C, et al. Development of an inhaled anti-TSLP therapy for asthma. Pulm Pharmacol Ther. 2023;78:102184. doi: 10.1016/j.pupt.2022.102184
  • FDA. Center for drug evaluation and research. Application number 761224Orig1s000. [Last accessed Apr 18, 2023]. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2022/761224Orig1s000MultidisciplineR.pdf.
  • GM G, PM O, LP B, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370(22):2102–2110. doi: 10.1056/NEJMoa1402895
  • Sverrild A, Hansen S, Hvidtfeldt M, et al. The effect of tezepelumab on airway hyperresponsiveness to mannitol in asthma (UPSTREAM). Eur Respir J. 2021;59(1):2101296. doi: 10.1183/13993003.01296-2021
  • Sverrild A, Cerps S, Nieto-Fontarigo J, et al. Effects of tezepelumab on host epithelial tolerance to virus in patients with uncontrolled asthma [abstract]. Eur Respir J. 2021;58(Suppl 65):OA1492.
  • Diver S, Khalfaoui L, Emson C, et al. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med. 2021;9(11):1299–1312.
  • Brightling CE, O’Byrne PM, Porsbjerg C, et al. Effect of tezepelumab on airway hyperresponsiveness by baseline blood eosinophil count in patients with severe, uncontrolled asthma in the phase 2 CASCADE study [abstract]. Am J Respir Crit Care Med. 2023;207:A4760.
  • Corren J, Parnes JR, Wang L, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med. 2017;377(10):936–946. doi: 10.1056/NEJMoa1704064
  • Corren J, Chen S, Callan L, et al. The effect of tezepelumab on hospitalizations and emergency department visits in patients with severe asthma. Ann Allergy Asthma Immunol. 2020;125(2):211–214. doi: 10.1016/j.anai.2020.05.020
  • Corren J, Pham TH, Garcia Gil E, et al. Baseline type 2 biomarker levels and response to tezepelumab in severe asthma. Allergy. 2022;77(6):1786–1796. doi: 10.1111/all.15197
  • Emson C, Corren J, Sałapa K, et al. Efficacy of tezepelumab in patients with severe, uncontrolled asthma with and without nasal polyposis: a post hoc analysis of the phase 2b PATHWAY study. J Asthma Allergy. 2021;14:91–99. doi: 10.2147/JAA.S288260
  • Corren J, Ambrose CS, Sałapa K, et al. Efficacy of tezepelumab in patients with severe, uncontrolled asthma and perennial allergy. J Allergy Clin Immunol Pract. 2021;9(12):4334–4342. doi: 10.1016/j.jaip.2021.07.045
  • Pham TH, Chen C, Colice G, et al. Tezepelumab normalizes serum interleukin-5 and -13 levels in patients with severe, uncontrolled asthma. Ann Allergy Asthma Immunol. 2021;127(6):689–691. doi: 10.1016/j.anai.2021.08.008
  • Corren J, Garcia Gil E, Griffiths JM, et al. Tezepelumab improves patient-reported outcomes in patients with severe, uncontrolled asthma in PATHWAY. Ann Allergy Asthma Immunol. 2021;126(2):187–193. doi: 10.1016/j.anai.2020.10.008
  • Corren J, Larson D, Altman MC, et al. Effects of combination treatment with tezepelumab and allergen immunotherapy on nasal responses to allergen: a randomized controlled trial. J Allergy Clin Immunol. 2023;151(1):192–201. doi: 10.1016/j.jaci.2022.08.029
  • Parnes JR, Sullivan JT, Chen L, et al. Pharmacokinetics, safety, and tolerability of tezepelumab (AMG 157) in healthy and atopic dermatitis adult subjects. Clin Pharmacol Ther. 2019;106(2):441–449. doi: 10.1002/cpt.1401
  • Sakamoto K, Matsuki S, Irie S, et al. A phase 1, randomized, placebo-controlled study to evaluate the safety, tolerability, pharmacokinetics, and immunogenicity of subcutaneous tezepelumab in healthy Japanese men. Clin Pharmacol Drug Dev. 2020;9(7):833–840. doi: 10.1002/cpdd.775
  • Zheng Y, Abuqayyas L, Megally A, et al. Tezepelumab pharmacokinetics, safety, and tolerability after administration via vial-and-syringe, accessorized prefilled syringe, or autoinjector: a randomized trial in healthy volunteers. Clin Ther. 2021;43(1):142–155. doi: 10.1016/j.clinthera.2020.11.014
  • Hoy SM. Tezepelumab: first approval. Drugs. 2022;82(4):461–468. doi: 10.1007/s40265-022-01679-2
  • Ly N, Zheng Y, Griffiths JM, et al. Pharmacokinetic and pharmacodynamic modeling of Tezepelumab to guide phase 3 dose selection for patients with severe asthma. J Clin Pharmacol. 2021;61(7):901–912. doi: 10.1002/jcph.1803
  • Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med. 2021;384(19):1800–1809. doi: 10.1056/NEJMoa2034975
  • Wechsler ME, Menzies-Gow A, Brightling CE, et al. Evaluation of the oral corticosteroid-sparing effect of tezepelumab in adults with oral corticosteroid-dependent asthma (SOURCE): a randomised, placebo-controlled, phase 3 study. Lancet Respir Med. 2022;10(7):650–660. doi: 10.1016/S2213-2600(21)00537-3
  • Menzies-Gow A, Wechsler ME, Brightling CE, et al. Long-term safety and efficacy of tezepelumab in people with severe, uncontrolled asthma (DESTINATION): a randomised, placebo-controlled extension study. Lancet Respir Med. Online ahead of print 2023;11:425–438. doi: 10.1016/S2213-2600(22)00492-1
  • Shinkai M, Ebisawa M, Fukushima Y, et al. One-year safety and tolerability of tezepelumab in Japanese patients with severe uncontrolled asthma: results of the NOZOMI study. J Asthma. 2023;60(3):616–624. doi: 10.1080/02770903.2022.2082309
  • Alpizar S, Megally A, Chen C, et al. Functionality and performance of an accessorized pre-filled syringe and an autoinjector for at-home administration of tezepelumab in patients with severe, uncontrolled asthma. J Asthma Allergy. 2021;14:381–392. doi: 10.2147/JAA.S305114
  • Corren J, Menzies-Gow A, Chupp G, et al. Efficacy of tezepelumab in severe, uncontrolled asthma: pooled analysis of PATHWAY and NAVIGATOR studies. Am J Respir Crit Care Med. 2023. 10.1164/rccm.202210-2005OC. Online ahead of print
  • Corren J, Wechsler ME, Chupp G, et al. Efficacy and safety of tezepelumab in patients with uncontrolled disease while receiving maintenance therapy for moderate or severe asthma. J Allergy Clin Immunol Pract. 2023;11(3):943–945. doi: 10.1016/j.jaip.2022.10.042
  • Wechsler ME, Ambrose CS, Cook W, et al. Efficacy of tezepelumab in patients grouped by pre-treatment percent predicted FEV1: a pooled analysis of the PATHWAY and NAVIGATOR studies [abstract]. Am J Respir Crit Care Med. 2023;207:A5996.
  • Mathur S, Hill J, Ambrose C, et al. Tezepelumab efficacy by SNOT-22 score in patients with severe, uncontrolled asthma and comorbid nasal polyps in NAVIGATOR [abstract]. J Allergy Clin Immunol. 2023;151(2 Suppl):AB17. doi: 10.1016/j.jaci.2022.12.057
  • Carr W, Ambrose C, Hunter G, et al. Effect of tezepelumab on rescue medication use and night-time awakenings in patients with severe, uncontrolled asthma: results from the NAVIGATOR study [abstract]. J Allergy Clin Immunol. 2023;151(2 Suppl):AB14.
  • Castro M, Kraft M, Ambrose CS, et al. Tezepelumab reduces patient-reported cough and phlegm production in patients with severe, uncontrolled asthma: results from the phase 3 NAVIGATOR study [abstract]. Am J Respir Crit Care Med. 2023;207:A4752.
  • Corren J, Ambrose CS, Griffiths JM, et al. Efficacy of tezepelumab in patients with evidence of severe allergic asthma: results from the phase 3 NAVIGATOR study. Clin Exp Allergy. 2023;53(4):417–428. doi: 10.1111/cea.14256
  • Menzies-Gow A, Colice G, Ambrose CS, et al. Efficacy of tezepelumab in patients with severe, uncontrolled asthma by prior omalizumab use: a post hoc analysis of the phase 3 Navigator study [abstract]. Am J Respir Crit Care Med. 2023;207:A2764.
  • FDANews. FDA awards AstraZeneca and Amgen’s tezepelumab breakthrough designation. Available at: https://www.fdanews.com/articles/188355-fda-awards-astrazeneca-and-amgens-tezepelumab-breakthrough-designation. Last accessed Nov 10, 2019.
  • Amgen. Tezepelumab granted priority review by U.S. FDA. Available at: https://www.amgen.com/newsroom/press-releases/2021/07/tezepelumab-granted-priority-review-by-u-s–fda. Last accessed Apr 20, 2023.
  • FDA. FDA approves maintenance treatment for severe asthma. Available at: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-maintenance-treatment-severe-asthma. Last accessed Apr 20, 2023.
  • AstraZeneca. TEZSPIRE approved for self-administration in the US with a new pre-filled pen. Available at: https://www.astrazeneca-us.com/media/press-releases/2023/tezspire_approved_for_self_administration_in_the_us_with_a_new_pre_filled_pen.html. Last accessed Apr 20, 2023.
  • European Medicines Agency. Tezspire. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/tezspire#authorisation-details-section. Last accessed Apr 20, 2023.
  • AstraZeneca. Tezspire approved for self-administration in the EU in a new pre-filled pen. Available at: https://www.astrazeneca.com/media-centre/press-releases/2023/tezspire-approved-for-self-administration-in-the-eu-in-a-new-pre-filled-pen.html. Last accessed Apr 20, 2023.
  • AstraZeneca. Tezspire approved in Japan for the treatment of severe asthma. Available at: https://www.astrazeneca.com/media-centre/press-releases/2022/tezspire-approved-in-japan-for-severe-asthma.html. Last accessed Apr 20, 2023.
  • AstraZeneca. Tezspire™ (tezepelumab injection) now available in Canada for severe asthma. Available at: https://www.astrazeneca.ca/en/media/press-releases/2022/tezspire—tezepelumab-injection–now-available-in-canada-for-se.html. Last accessed Apr 20, 2023.
  • Kurihara M, Kabata H, Irie M, et al. Current summary of clinical studies on anti-TSLP antibody, Tezepelumab, in asthma. Allergol Int. 2023;72(1):24–30. doi: 10.1016/j.alit.2022.11.006
  • Gershon AS, Jafarzadeh SR, Wilson KC, et al. Clinical knowledge from observational studies. Everything you wanted to know but were afraid to ask. Am J Respir Crit Care Med. 2018;198(7):859–867. doi: 10.1164/rccm.201801-0118PP
  • Menzies-Gow A, Steenkamp J, Singh S, et al. Tezepelumab compared with other biologics for the treatment of severe asthma: a systematic review and indirect treatment comparison. J Med Econ. 2022;25(1):679–690. doi: 10.1080/13696998.2022.2074195
  • Nopsopon T, Lassiter G, Chen ML, et al. Comparative efficacy of tezepelumab to mepolizumab, benralizumab, and dupilumab in eosinophilic asthma: a Bayesian network meta-analysis. J Allergy Clin Immunol. 2023;151(3):747–755. doi: 10.1016/j.jaci.2022.11.021
  • Plaza V, Cañete C, Domingo C, et al. Efficacy and potential positioning of tezepelumab in the treatment of severe asthma. Open Respir Arch. 2023;5:100231. doi: 10.1016/j.opresp.2022.100231
  • Couillard S, Pavord ID, Heaney LG, et al. Sub-stratification of type-2 high airway disease for therapeutic decision-making: a ‘bomb’ (blood eosinophils) meets ‘magnet’ (FeNO) framework. Respirology. 2022;27(8):573–577. doi: 10.1111/resp.14294
  • Shrimanker R, Keene O, Hynes G, et al. Prognostic and predictive value of blood eosinophil count, fractional exhaled nitric oxide, and their combination in severe asthma: a post hoc analysis. Am J Respir Crit Care Med. 2019;200(10):1308–1312. doi: 10.1164/rccm.201903-0599LE
  • Agusti A, PG G, VM M. Treatable traits in airway disease: from theory to practice. J Allergy Clin Immunol Pract. 2023;11(3):p. 713–723.
  • Melhorn J, Howell I, ID P. Should we apply a treatable traits approach to asthma care? Ann Allergy Asthma Immunol. 2022;128(4):p. 390–397.
  • Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther. 2019;4(1):45. doi: 10.1038/s41392-019-0079-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.