251
Views
0
CrossRef citations to date
0
Altmetric
Review

The problem of antimalarial resistance and its implications for drug discovery

, , , ORCID Icon & ORCID Icon
Pages 209-224 | Received 28 Jul 2023, Accepted 14 Nov 2023, Published online: 18 Dec 2023

References

  • World malaria report 2022. Geneva: World Health Organization; 2022.
  • Gao L, Shi Q, Liu Z, et al. Impact of the COVID-19 pandemic on malaria control in Africa: A Preliminary analysis. Trop Med Infect Dis. 2023 Jan 16;8(1):67. doi: 10.3390/tropicalmed8010067
  • Park J, Kang S, Seok D, et al. Barriers against and strategies for malaria control during the COVID-19 pandemic in low- and middle-income countries: a systematic review. Malar J. 2023 Feb 3;22(1):41. doi: 10.1186/s12936-023-04452-2
  • Brief history of malaria. In: Arrow KJ, Panosian C, Gelband H, editors. Saving lives, buying time: economics of malaria drugs in an age of resistance. (WA) (DC): National Academies Press (US); 2004p. 130–135.
  • Payne D. Did medicated salt hasten the spread of chloroquine resistance in Plasmodium falciparum? Parasitol Today. 1988;4(4):112–115. doi: 10.1016/0169-4758(88)90042-7
  • Moore DV, Lanier JE. Observations on two Plasmodium falciparum infections with an Abnormal response to chloroquine. Am J Trop Med. 1961;10(1):5–9. doi: 10.4269/ajtmh.1961.10.5
  • Harinasuta T, Suntharasamai P, Viravan C. Chloroquine-Resistant Falciparum Malaria in Thailand. Lancet. 1965;2(7414):657–660. doi: 10.1016/S0140-6736(65)90395-8
  • Fogh S, Jepsen S, Effersoe P. Chloroquine-resistant Plasmodium falciparum malaria in Kenya. Trans R Soc Trop Med Hyg. 1979;73(2):228–229. doi: 10.1016/0035-9203(79)90220-7
  • Campbell CC, Chin W, Collins WE, et al. Chloroquine-Resistant Plasmodium falciparum from East Africa: Cultivation and Drug Sensitivity of the Tanzanian I/CDC Strain from an American Tourist. Lancet. 1979;2(8153):1151–1154. doi: 10.1016/S0140-6736(79)92383-3
  • Wootton JC, Feng X, Ferdig MT, et al. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature. 2002;418(6895):320–323. doi: 10.1038/nature00813
  • Takahashi N, Tanabe K, Tsukahara T, et al. Large-scale survey for novel genotypes of Plasmodium falciparum chloroquine-resistance gene pfcrt. Malar J. 2012;11(92): doi: 10.1186/1475-2875-11-92
  • Peters W. Resistance in human malaria IV: 4-aminoquinolines and multiple resistance. Chemotheand drug resis in mala. 1987;2:659–786.
  • Wellems TE, Plowe CV. Chloroquine-Resistant Malaria. J Infect Dis. 2001;184(6):770–776. doi: 10.1086/322858
  • Trape JF. The public Health impact of chloroquine resistance in Africa. The intolerable burden of malaria: a new look at the numbers: supplement to volume 64(1) of the American Journal of Tropical Medicine and Hygiene. 2001 Jan-Feb;64(1-2 Suppl):12–7. doi: 10.4269/ajtmh.2001.64.12. PMID: 11425173.
  • Cowell AN, Winzeler EA. The genomic architecture of antimalarial drug resistance. Brief Funct Genomics. 2019 Sep 24;18(5):314–328. doi: 10.1093/bfgp/elz008
  • Bunnag D, Harinasuta T. The current status of drug resistance in malaria. Parasitol Int. 1987;17(1):169–180. doi: 10.1016/0020-7519(87)90038-5
  • Kilimali VAEB, Mkufya AR. In vivo assessment of the sensitivity of Plasmodium falciparum to sulphadoxine/pyrimethamine combination (Fansidar) in six localities in Tanzania where chloroquine-resistant P. falciparum has been detected. Trans R Soc Trop Med Hyg. 1985;79(4):482–483. doi: 10.1016/0035-9203(85)90071-9
  • Peterson DS, Di Santi SM, Povoa M, et al. Prevalence of the dihydrofolate reductase ASN-108 mutation as the basis for pyrimethamine-resistant falciparum malaria in the Brazilian Amazon. Am J Trop Med Hyg. 1991;45(4):492–497. doi: 10.4269/ajtmh.1991.45.492
  • Hurwitz ES, Johnson D, Campbell CC. Resistance of Plasmodium falciparum to Sulfadoxine-pyrimethamine (‘Fansidar’) in a refugee Camp in Thailand. Lancet. 1981;1(8229):1068–1070. doi: 10.1016/S0140-6736(81)92239-X
  • Talisuna AO, Bloland P, D’Alessandro U. History, dynamics, and public health importance of malaria parasite resistance. Clin Microbiol Rev. 2004 Jan;17(1):235–254. doi: 10.1128/CMR.17.1.235-254.2004
  • Elliotson J. The Principles and practice of Medicine. 2nd ed. Philadelphia: Carey and Hart; 1844.
  • Wernsdorfer WH, Payne D. The Dynamics of drug resistance in Plasmodium falciparum. Pharmac Ther. 1991;50(1):95–121. doi: 10.1016/0163-7258(91)90074-V
  • Adamcova M, Schaerer MT, Bercaru I, et al. Eye disorders reported with the use of mefloquine (Lariam((r))) chemoprophylaxis–A drug safety database analysis. Travel Med Infect Dis. 2015 Sep;13(5):400–408. doi: 10.1016/j.tmaid.2015.04.005
  • Webster HK, Boudreau EF, Pavanand K, et al. Antimalarial drug susceptibility testing of Plasmodium falciparum in Thailand using a microdilution radiosiotope method. Am J Trop Med. 1985;34:228–235. doi: 10.4269/ajtmh.1985.34.228
  • Hasugian AR, Tjitra E, Ratcliff A, et al. In vivo and in vitro efficacy of amodiaquine monotherapy for treatment of infection by chloroquine-resistant Plasmodium vivax. Antimicrob Agents Chemother. 2009 Mar;53(3):1094–1099. doi: 10.1128/AAC.01511-08
  • Sapak P, Garner P, Alpers MP. Ineffectiveness of amodiaquine against Plasmodium falciparum malaria in symptomatic young children living in an endemic malarious area of Papua new Guinea. J Trop Pediatr. 1991;37(4):185–190. doi: 10.1093/tropej/37.4.185
  • Tran TH, Dolecek C, Pham PM, et al. Dihydroartemisinin-piperaquine against multidrug-resistant Plasmodium falciparum malaria in Vietnam: randomised clinical trial. Lancet. 2004 Jan 3;363(9402):18–22. doi: 10.1016/S0140-6736(03)15163-X
  • Liu DQ. Surveillance of antimalarial drug resistance in China in the 1980s–1990s. Infect Dis Poverty. 2014;3(8). doi: 10.1186/2049-9957-3-8
  • Faurant C. From bark to weed: the history of artemisinin. Parasite. 2011;18(3):215–218. doi: 10.1051/parasite/2011183215
  • Chang C, Lin-Hua T, Jantanavivat C. Studies on a new antimalarial compound: Pyronaridine. Trans R Soc Trop Med Hyg. 1992;86(1):7–10. doi: 10.1016/0035-9203(92)90414-8
  • Yang HL, Liu DQ, Yang YM, et al. In vitro sensitivity of Plasmodium falciparum to eight antimalarials in China-Myanmar and China-Lao PDR border areas. Southeast Asean J Trop Med Public Health. 1997;28(3):460–464.
  • Vaidya AB, Mather MW. Atovaquone resistance in malaria parasites. Drug Resist Updat. 2000 Oct;3(5):283–287. doi: 10.1054/drup.2000.0157
  • Looareesuwan S, Viravan C, Webster HK, et al. Clinical studies of atovaquone, alone or in combination with other antimalarial drugs, for treatment of acute uncomplicated malaria in Thailand. Am J Trop Med Hyg. 1996;54(1):62–66. doi: 10.4269/ajtmh.1996.54.62
  • Noedl H, Se Y, Schaecher K, et al. Evidence of artemisinin-resistant malaria in Western Cambodia. N Engl J Med. 2008;395(24):2619–2620. doi: 10.1056/NEJMc0805011
  • Brown GD. The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules. 2010 Oct 28;15(11):7603–7698. doi: 10.3390/molecules15117603
  • Giao PT, Binh TQ, Kager PA, et al. Artemisinin for treatment of uncomplicated falciparum malaria: Is there a place for monotherapy? Am J Trop Med Hyg. 2001;65(6):690–695. doi: 10.4269/ajtmh.2001.65.690
  • Bunnag D, Viravan C, Looareesuwan S, et al. Double blind randomised clinical trial of two different regimens of oral artesunate in falciparum malaria. Southeast Asean J Trop Med Public Health. 1991;22(4):534–538.
  • World Health Organization. Antimalarial drug combination therapy. Geneva, Switzerland: World Health Organization; 2001.
  • Looareesuwan S, Wilairatana P, Vanijanonta S, et al. Monotherapy with sodium artesunate for uncomplicated falciparum malaria in Thailand: a comparison of 5- and 7-day regimens. Acta tropica. 1997;67(3):197–205. doi: 10.1016/S0001-706X(97)00063-6
  • WHO guidelines for malaria. Geneva: World Health Organization; 2022 Nov 25.
  • Vijaykadga S, Rojanawatsirivej C, Cholpol S, et al. In vivo sensitivity monitoring of mefloquine monotherapy and artesunate-mefloquine combinations for the treatment of uncomplicated falciparum malaria in Thailand in 2003. Trop Med Int Health. 2006 Feb;11(2):211–219. doi: 10.1111/j.1365-3156.2005.01557.x
  • Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum malaria. New Engl J Med. 2009;361(5):455–467. doi: 10.1056/NEJMoa0808859
  • Ashley EA, Dhorda M, Fairhurst RM, et al. Spread of Artemisinin Resistance in Plasmodium falciparum Malaria. N Engl J Med. 2014;371(5):411–423. doi: 10.1056/NEJMoa1314981
  • Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014 Jan 2;505(7481):50–55. doi: 10.1038/nature12876
  • Artemisinin resistance and artemisinin-based combination therapy efficacy. World Health Organization; Aug 2018.
  • Malaria: Artemisinin Resistance: https://www.who.int/news-room/questions-and-answers/item/artemisinin-resistance; [19.01.2023].
  • Witkowski B, Lelievre J, Barragan MJ, et al. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother. 2010 May;54(5):1872–1877. doi: 10.1128/AAC.01636-09
  • Yu X, Wang C, Zhao Y, et al. Ring-stage growth arrest: Metabolic basis of artemisinin tolerance in Plasmodium falciparum. iScience. 2023 Jan 20;26(1):105725. doi: 10.1016/j.isci.2022.105725
  • Hanboonkunupakarn B, White NJ. Advances and roadblocks in the treatment of malaria. Br J Clin Pharmacol. 2022 Feb;88(2):374–382. doi: 10.1111/bcp.14474
  • Phyo AP, Ashley EA, Anderson TJC, et al. Declining efficacy of artemisinin combination therapy against P. Falciparum malaria on the Thai-Myanmar Border (2003-2013): The role of parasite genetic factors. Clin Infect Dis. 2016 Sep 15;63(6):784–791. doi: 10.1093/cid/ciw388
  • Dondorp AM, Smithuis FM, Woodrow C, et al. How to Contain Artemisinin- and Multidrug-Resistant Falciparum Malaria. Trends Parasitol. 2017 May;33(5):353–363. doi: 10.1016/j.pt.2017.01.004
  • Watson OJ, Gao B, Nguyen TD, et al. Pre-existing partner-drug resistance to artemisinin combination therapies facilitates the emergence and spread of artemisinin resistance: a consensus modelling study. Lancet Microbe. 2022 Sep;3(9):e701–e710. doi: 10.1016/S2666-5247(22)00155-0
  • Woodrow CJ, White NJ, van Ooij C. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol Rev. 2017 Jan;41(1):34–48. doi: 10.1093/femsre/fuw037
  • Imwong M, Dhorda M, Myo Tun K, et al. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study. Lancet Infect Dis. 2020 Dec;20(12):1470–1480. doi: 10.1016/S1473-3099(20)30228-0
  • Report on antimalarial drug efficacy, resistance and response: 10 years of surveillance (2010-2019). Geneva: World Health Organization.
  • Haldar K, Bhattacharjee S, Safeukui I. Drug resistance in Plasmodium. Nat Rev Microbiol. 2018 Mar;16(3):156–170. doi: 10.1038/nrmicro.2017.161
  • Country antimalarial drug policies in south-east Asia: World Health Organization; 2018 [ 29.06.2023]. Available from: https://www.who.int/teams/global-malaria-programme/case-management/treatment/country-antimalarial-drug-policies-by-who-regions/country-antimalarial-drug-policies-in-south-east-asia
  • Amaratunga C, Lim P, Suon S, et al. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis. 2016 Mar;16(3):357–365. doi: 10.1016/S1473-3099(15)00487-9
  • van der Pluijm, RW, Imwong M, Chau NH, et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect Dis. 2019 Sep;19(9):952–961. doi: 10.1016/S1473-3099(19)30391-3
  • Mairet-Khedim M, Roesch C, Khim N, et al. Prevalence and characterization of piperaquine, mefloquine and artemisinin derivatives triple-resistant Plasmodium falciparum in Cambodia. J Antimicrob Chemother. 2022 Dec 12;78(2):411–417. doi: 10.1093/jac/dkac403
  • Marwa K, Kapesa A, Baraka V, et al. Therapeutic efficacy of artemether-lumefantrine, artesunate-amodiaquine and dihydroartemisinin-piperaquine in the treatment of uncomplicated Plasmodium falciparum malaria in Sub-Saharan Africa: A systematic review and meta-analysis. PLoS One. 2022;17(3):e0264339. doi: 10.1371/journal.pone.0264339
  • Uwimana A, Legrand E, Stokes BH, et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med. 2020 Oct;26(10):1602–1608. doi: 10.1038/s41591-020-1005-2
  • Balikagala B, Fukuda N, Ikeda M, et al. Evidence of artemisinin-resistant malaria in Africa. N Engl J Med. 2021 Sep 23;385(13):1163–1171. doi: 10.1056/NEJMoa2101746
  • Bwire GM, Ngasala B, Mikomangwa WP, et al. Detection of mutations associated with artemisinin resistance at k13-propeller gene and a near complete return of chloroquine susceptible falciparum malaria in Southeast of Tanzania. Sci Rep. 2020 Feb 26;10(1):3500. doi: 10.1038/s41598-020-60549-7
  • Stokes BH, Dhingra SK, Rubiano K, et al. Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness. Elife. 2021 Jul 19;10. doi: 10.7554/eLife.66277
  • Bopp SE, Manary MJ, Bright AT, et al. Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLoS Genet. 2013;9(2):e1003293. doi: 10.1371/journal.pgen.1003293
  • McDew-White M, Li X, Nkhoma SC, et al. Mode and Tempo of Microsatellite Length Change in a Malaria Parasite Mutation Accumulation Experiment. Genome Biol Evol. 2019 Jul 1;11(7):1971–1985. doi: 10.1093/gbe/evz140
  • Claessens A, Hamilton WL, Kekre M, et al. Generation of antigenic diversity in Plasmodium falciparum by structured rearrangement of Var genes during mitosis. PLoS Genet. 2014 Dec;10(12):e1004812. doi: 10.1371/journal.pgen.1004812
  • Hamilton WL, Claessens A, Otto TD, et al. Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids Res. 2017 Feb 28;45(4):1889–1901.
  • Dondorp AM, Desakorn V, Pongtavornpinyo W, et al. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLOS Med. 2005 Aug;2(8):e204. doi: 10.1371/journal.pmed.0020204
  • Chang HH, Moss EL, Park DJ, et al. Malaria life cycle intensifies both natural selection and random genetic drift. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20129–20134. doi: 10.1073/pnas.1319857110
  • Wicht KJ, Mok S, Fidock DA. Molecular Mechanisms of Drug Resistance in Plasmodium falciparum Malaria. Annu Rev Microbiol. 2020 Sep 8;74(1):431–454. doi: 10.1146/annurev-micro-020518-115546
  • Heinberg A, Kirkman L. The molecular basis of antifolate resistance in Plasmodium falciparum: looking beyond point mutations. Ann N Y Acad Sci. 2015 Apr;1342(1):10–18. doi: 10.1111/nyas.12662
  • Yuthavong Y, Yuvaniyama J, Chitnumsub P, et al. Malarial (Plasmodium falciparum) dihydrofolate reductase-thymidylate synthase: structural basis for antifolate resistance and development of effective inhibitors. Parasitology. 2005 Mar;130(Pt 3):249–259. doi: 10.1017/S003118200400664X
  • Sridaran S, McClintock SK, Syphard LM, et al. Anti-folate drug resistance in Africa: meta-analysis of reported dihydrofolate reductase (dhfr) and dihydroperoate synthase (dhps) mutant genotype frequencies in African Plasmodium falciparum parasite populations. Malar J. 2010;9(247): doi: 10.1186/1475-2875-9-247
  • Brown KM, Costanzo MS, Xu W, et al. Compensatory mutations restore fitness during the evolution of dihydrofolate reductase. Mol Biol Evol. 2010 Dec;27(12):2682–2690. doi: 10.1093/molbev/msq160
  • Costanzo MS, Brown KM, Hartl DL, et al. Fitness trade-offs in the evolution of dihydrofolate reductase and drug resistance in Plasmodium falciparum. PLoS One. 2011;6(5):e19636. doi: 10.1371/journal.pone.0019636
  • Sanchez CP, Dave A, Stein WD, et al. Transporters as mediators of drug resistance in Plasmodium falciparum. Int J Parasitol. 2010 Aug 15;40(10):1109–1118. doi: 10.1016/j.ijpara.2010.04.001
  • Ginsburg H, Krugliak M. Chloroquine – some open questions on its antimalarial mode of action and resistance. Drug Resist Updat. 1999;2(3):180–187. doi: 10.1054/drup.1999.0085
  • Martin RE, Marchetti RV, Cowan AI, et al. Chloroquine transport via the malaria parasite’s chloroquine resistance transporter. Science. 2009;325(5948):1680–1682. doi: 10.1126/science.1175667
  • Chaijaroenkul W, Ward SA, Mungthin M, et al. Sequence and gene expression of chloroquine resistance transporter (pfcrt) in the association of in vitro drugs resistance of Plasmodium falciparum. Malar J. 2011;10(42): doi: 10.1186/1475-2875-10-42
  • Summers RL, Dave A, Dolstra TJ, et al. Diverse mutational pathways converge on saturable chloroquine transport via the malaria parasite’s chloroquine resistance transporter. Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):E1759–67. doi: 10.1073/pnas.1322965111
  • Cowman AF, Karcz S, Galatis D, et al. A P-glycoprotein Homologue of Plasmodium falciparum is Localized on the digestive vacuole. J Cell Bio. 1991;113(5):1033–1042. doi: 10.1083/jcb.113.5.1033
  • Babiker HA, Pringle SJ, Abdel-Muhsin A, et al. High-level chloroquine resistance in Sudanese isolates of Plasmodium falciparum is associated with mutations in the chloroquine resistance transporter gene pfcrt and the multidrug resistance gene pfmdr1. J Infect Dis. 2001;183(10):1535–1538. doi: 10.1086/320195
  • Sá JM, Twu O, Hayton K, et al. Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Procl Nat Acad Sci USA. 2009;106(45):18883–18889. doi: 10.1073/pnas.0911317106
  • Mita T, Kaneko A, Hombhanje F, et al. Role of pfmdr1 mutations on chloroquine resistance in Plasmodium falciparum isolates with pfcrt K76T from Papua new Guinea. Acta Trop. 2006 May;98(2):137–144. doi: 10.1016/j.actatropica.2006.03.002
  • Durand R, Jafari S, Vauzelle J, et al. Analysis of pfcrt point mutations and chloroquine susceptibility in isolates of Plasmodium falciparum. Mol Biochem Parasitol. 2001;114(1):95–102. doi: 10.1016/S0166-6851(01)00247-X
  • Veiga MI, Dhingra SK, Henrich PP, et al. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat Commun. 2016 May 18;7(1):11553. doi: 10.1038/ncomms11553
  • Sanchez CP, Rotmann A, Stein WD, et al. Polymorphisms within PfMDR1 alter the substrate specificity for anti-malarial drugs in Plasmodium falciparum. Mol Microbiol. 2008 Nov;70(4):786–798. doi: 10.1111/j.1365-2958.2008.06413.x
  • Price RN, Uhlemann AC, Brockman A, et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet. 2004;364(9432):438–447. doi: 10.1016/S0140-6736(04)16767-6
  • Mwai L, Kiara SM, Abdirahman A, et al. In vitro activities of piperaquine, lumefantrine, and dihydroartemisinin in Kenyan Plasmodium falciparum isolates and polymorphisms in pfcrt and pfmdr1. Antimicrob Agents Chemother. 2009 Dec;53(12):5069–5073. doi: 10.1128/AAC.00638-09
  • Sidhu ABS, Uhlemann AC, Valderramos SG, et al. Decreasing pfmdr1 Copy Number in Plasmodium falciparum Malaria Heightens Susceptibility to Mefloquine, Lumefantrine, Halofantrine, Quinine, and Artemisinin. J Infect Dis. 2006;194(4):528–535. doi: 10.1086/507115
  • Warhurst DC. Understanding resistance to antimalarial 4-aminoquinolines, cinchona alkaloids and the highly hydrophobic arylaminoalcohols. Curr Sci. 2007;92(11):1556–1560.
  • Zhang J, Krugliak M, Ginsburg H. The fate of ferriprotoporphyrin IX in malaria infected erythrocytes in conjunction with the mode of action of antimalarial drugs. Mol Biochem Parasitol. 1999;99(1):129–141. doi: 10.1016/S0166-6851(99)00008-0
  • Rohrbach P, Sanchez CP, Hayton K, et al. Genetic linkage of pfmdr1 with food vacuolar solute import in Plasmodium falciparum. EMBO J. 2006 Jul 12;25(13):3000–3011. doi: 10.1038/sj.emboj.7601203
  • Cowman AF, Galatis D, Thompson JK. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc Natl Acad Sci, USA. 1994;91(3):1143–1147. doi: 10.1073/pnas.91.3.1143
  • Veiga MI, Ferreira PE, Malmberg M, et al. pfmdr1 amplification is related to increased Plasmodium falciparum in vitro sensitivity to the bisquinoline piperaquine. Antimicrob Agents Chemother. 2012 Jul;56(7):3615–3619. doi: 10.1128/AAC.06350-11
  • Amato R, Lim P, Miotto O, et al. Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect Dis. 2017 Feb;17(2):164–173. doi: 10.1016/S1473-3099(16)30409-1
  • Klonis N, Crespo-Ortiz MP, Bottova I, et al. Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11405–11410. doi: 10.1073/pnas.1104063108
  • Wang J, Zhang CJ, Chia WN, et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun. 2015 Dec 22;6(1):10111. doi: 10.1038/ncomms10111
  • Meshnick SR, Yang YZ, Lima V, et al. Iron-dependent free radical generation from the antimalarial agent artemisinin (Qinghaosu). Antimicrob Agents Chemother. 1993;37(5):1108–1114. doi: 10.1128/AAC.37.5.1108
  • Tilley L, Straimer J, Gnädig NF, et al. Artemisinin Action and Resistance in Plasmodium falciparum. Trends Parasitol. 2016;32(9):682–696. doi: 10.1016/j.pt.2016.05.010
  • Bridgford JL, Xie SC, Cobbold SA, et al. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat Commun. 2018 Sep 18;9(1):3801. doi: 10.1038/s41467-018-06221-1
  • Dogovski C, Xie SC, Burgio G, et al. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLoS Biol. 2015 Apr;13(4):e1002132. doi: 10.1371/journal.pbio.1002132
  • Xie SC, Ralph SA, Tilley L. K13, the Cytostome, and artemisinin resistance. Trends Parasitol. 2020 Jun;36(6):533–544. doi: 10.1016/j.pt.2020.03.006
  • Mbengue A, Bhattacharjee S, Pandharkar T, et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature. 2015 Apr 30;520(7549):683–687. doi: 10.1038/nature14412
  • Birnbaum J, Scharf S, Schmidt S, et al. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science. 2020;367(6473):51–59. doi: 10.1126/science.aax4735
  • Suresh N, Haldar K. Mechanisms of artemisinin resistance in Plasmodium falciparum malaria. Curr Opin Pharmacol. 2018 Oct;42:46–54. doi: 10.1016/j.coph.2018.06.003
  • Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med. 2017 Aug 4;23(8):917–928. doi: 10.1038/nm.4381
  • Dhingra SK, Redhi D, Combrinck JM, et al. A Variant PfCRT Isoform can Contribute to Plasmodium falciparum resistance to the first-line partner drug piperaquine. MBio. 2017 May 9;8(3). doi: 10.1128/mBio.00303-17
  • Murithi JM, Owen ES, Istvan ES, et al. Combining stage specificity and metabolomic profiling to advance antimalarial drug discovery. Cell Chem Biol. 2020 Feb 20;27(2):158–171 e3. doi: 10.1016/j.chembiol.2019.11.009
  • Witkowski B, Duru V, Khim N, et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect Dis. 2017 Feb;17(2):174–183. doi: 10.1016/S1473-3099(16)30415-7
  • Banerjee R, Liu J, Beatty W, et al. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc Natl Acad Sci U S A. 2002;99(2):990–995. doi: 10.1073/pnas.022630099
  • Loesbanluechai D, Kotanan N, de Cozar C, et al. Overexpression of plasmepsin II and plasmepsin III does not directly cause reduction in Plasmodium falciparum sensitivity to artesunate, chloroquine and piperaquine. Int J Parasitol Drugs Drug Resist. 2019 Apr;9:16–22.
  • Agrawal S, Moser KA, Morton L, et al. Association of a novel mutation in the Plasmodium falciparum chloroquine resistance transporter with decreased piperaquine sensitivity. J Infect Dis. 2017 Aug 15;216(4):468–476. doi: 10.1093/infdis/jix334
  • Mok S, Yeo T, Hong D, et al. Mapping the genomic landscape of multidrug resistance in Plasmodium falciparum and its impact on parasite fitness. bioRxiv. 2023 Jun 3. doi: 10.2023/06.02.543338
  • Mukherjee A, Gagnon D, Wirth DF, et al. Inactivation of Plasmepsins 2 and 3 Sensitizes Plasmodium falciparum to the Antimalarial Drug Piperaquine. Antimicrob Agents Chemother. 2018 Apr;62(4). doi: 10.1128/AAC.02309-17
  • Bopp S, Magistrado P, Wong W, et al. Plasmepsin II-III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum. Nat Commun. 2018 May 2;9(1):1769. doi: 10.1038/s41467-018-04104-z
  • Witkowski B, Amaratunga C, Khim N, et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis. 2013 Dec;13(12):1043–1049. doi: 10.1016/S1473-3099(13)70252-4
  • About us: https://www.mmv.org/about-us; [ cited 2023 17.01.2023].
  • Keeping the promise: product development partnership’s role in the new age of health research and product development. World Health Org. 2021. https://www.keepingthepromisereport.org/s/KeepingThePromise-Report_2021.pdf
  • Burrows JN, Duparc S, Gutteridge WE, et al. New developments in anti-malarial target candidate and product profiles. Malar J. 2017 Jan 13;16(1):26. doi: 10.1186/s12936-016-1675-x
  • Strategy to respond to antimalarial drug resistance in Africa. Geneva: World Health Organization; 2022.
  • Duffey M, Blasco B, Burrows JN, et al. Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials. Trends Parasitol. 2021 Aug;37(8):709–721. doi: 10.1016/j.pt.2021.04.006
  • Kuhen KL, Chatterjee AK, Rottmann M, et al. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission. Antimicrob Agents Chemother. 2014 Sep;58(9):5060–5067. doi: 10.1128/AAC.02727-13
  • Lim MY, LaMonte G, Lee MCS, et al. UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nat Microbiol. 2016 Sep 19;1(12):16166. doi: 10.1038/nmicrobiol.2016.166
  • Ganaplacide-lumefantrine: https://www.mmv.org/mmv-pipeline-antimalarial-drugs/ganaplacide-lumefantrine; [ cited 2023 19.05.2023].
  • LaMonte GM, Rocamora F, Marapana DS, et al. Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nat Commun. 2020 Apr 14;11(1):1780. doi: 10.1038/s41467-020-15440-4
  • Rottmann M, McNamara C, Yeung BKS, et al. Spiroindolones, a potent compound class for the treatment of malaria. Science. 2010;329(5996):1175–1180. doi: 10.1126/science.1193225
  • Schmitt EK, Ndayisaba G, Yeka A, et al. Efficacy of cipargamin (KAE609) in a randomized, phase ii dose-escalation study in adults in Sub-Saharan Africa with uncomplicated Plasmodium falciparum malaria. Clin Infect Dis. 2022 May 30;74(10):1831–1839. doi: 10.1093/cid/ciab716
  • Cipargamin: https://www.mmv.org/mmv-pipeline-antimalarial-drugs/cipargamin; [ cited 2023 19.05.2023].
  • Qiu D, Pei JV, Rosling JEO, et al. A G358S mutation in the Plasmodium falciparum Na(+) pump PfATP4 confers clinically-relevant resistance to cipargamin. Nat Commun. 2022 Sep 30;13(1):5746. doi: 10.1038/s41467-022-33403-9
  • Vaidya AB, Morrisey JM, Zhang Z, et al. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum. Nat Commun. 2014 Nov 25;5(1):5521. doi: 10.1038/ncomms6521
  • Henry M, Briolant S, Fontaine A, et al. In vitro activity of ferroquine is independent of polymorphisms in transport protein genes implicated in quinoline resistance in Plasmodium falciparum. Antimicrob Agents Chemother. 2008 Aug;52(8):2755–2759. doi: 10.1128/AAC.00060-08
  • Dubar F, Egan TJ, Pradines B, et al. The antimalarial ferroquine: role of the metal and intramolecular hydrogen bond in activity and resistance. ACS Chem Biol. 2011 Mar 18;6(3):275–287. doi: 10.1021/cb100322v
  • Gansane A, Lingani M, Yeka A, et al. Randomized, open-label, phase 2a study to evaluate the contribution of artefenomel to the clinical and parasiticidal activity of artefenomel plus ferroquine in African patients with uncomplicated Plasmodium falciparum malaria. Malar J. 2023 Jan 3;22(1):2. doi: 10.1186/s12936-022-04420-2
  • ZY19489+ferroquine: https://www.mmv.org/mmv-pipeline-antimalarial-drugs/zy19489-ferroquine; [ cited 2023 May 19].
  • Daher W, Biot C, Fandeur T, et al. Assessment of Plasmodium falciparum resistance to ferroquine (SSR97193) in field isolates and in W2 strain under pressure. Malar J. 2006 Feb 7;5(1):11. doi: 10.1186/1475-2875-5-11
  • Barber BE, Fernandez M, Patel HB, et al. Safety, pharmacokinetics, and antimalarial activity of the novel triaminopyrimidine ZY-19489: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study, pilot food-effect study, and volunteer infection study. Lancet Infect Dis. 2022;22(6):879–890. doi: 10.1016/S1473-3099(21)00679-4
  • Rottmann M, Jonat B, Gumpp C, et al. Preclinical antimalarial combination study of M5717, a Plasmodium falciparum Elongation Factor 2 inhibitor, and Pyronaridine, a hemozoin formation inhibitor. Antimicrob Agents Chemother. 2020 Mar 24;64(4). doi: 10.1128/AAC.02181-19
  • M5717+pyronaridine: https://www.mmv.org/mmv-pipeline-antimalarial-drugs/m5717pyronaridine; [ cited 2023 19.05.2023].
  • Baragana B, Hallyburton I, Lee MC, et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature. 2015 Jun 18;522(7556):315–320. doi: 10.1038/nature14451
  • Frontrunner Templates 2021/2022 [ 25.07.2023]. Available from: https://www.mmv.org/frontrunner-templates
  • Katsuno K, Burrows JN, Duncan K, et al. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat Rev Drug Discov. 2015 Nov;14(11):751–758. doi: 10.1038/nrd4683
  • Samby K, Willis PA, Burrows JN, et al. Actives from MMV open access boxes? A suggested way forward. PLOS Pathog. 2021 Apr;17(4):e1009384. doi: 10.1371/journal.ppat.1009384
  • Laís Pessanha de Carvalho, Elena Niepoth, Arbreshe Mavraj-Husejni, Andrea Kreidenweiss, Jennifer Herrmann, Rolf Müller, Tanja Knaab, Bjoern B. Burckhardt, Thomas Kurz, Jana Held, Quantification of Plasmodium falciparum HRP-2 as an alternative method to [3H]hypoxanthine incorporation to measure the parasite reduction ratio in vitro,International Journal of Antimicrobial Agents, 62(3), 2022.
  • Abraham M, Gagaring K, Martino ML, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis 2020 Apr 10;6(4):613-628.
  • Dembele L, Gego A, Zeeman AM, et al. Towards an in vitro model of Plasmodium hypnozoites suitable for drug discovery. PLoS One. 2011 Mar 31;6(3):e18162.
  • Ruecker A, Mathias DK, Straschil U, et al. A male and female gametocyte functional viability assay to identify biologically relevant malaria transmission-blocking drugs. Antimicrob Agents Chemother. 2014 Dec;58(12):7292-302.
  • de Carvalho LP, Sandri TL, Jose Tenorio de Melo E, et al. Ivermectin Impairs the Development of Sexual and Asexual Stages of Plasmodium falciparum In Vitro. Antimicrob Agents Chemother. 2019 Aug;63(8).
  • Snider D, Weathers PJ. In vitro reduction of Plasmodium falciparum gametocytes: Artemisia spp. tea infusions vs. artemisinin. J Ethnopharmacol. 2021;268.
  • de Carvalho LP, Groeger-Otero S, Kreidenweiss A, et al. Boromycin has Rapid-Onset Antibiotic Activity Against Asexual and Sexual Blood Stages of Plasmodium falciparum. Front Cell Infect Microbiol. 2021;11:802294.
  • Lawong A, Gahalawat S, Okombo J, et al. Novel Antimalarial Tetrazoles and Amides Active against the Hemoglobin Degradation Pathway in Plasmodium falciparum. J Med Chem. 2021 Mar 11;64(5):2739-2761.
  • Knaab TC, Held J, Burckhardt BB, et al. 3-Hydroxy-propanamidines, a New Class of Orally Active Antimalarials Targeting Plasmodium falciparum. J Med Chem. 2021 Mar Mar 25;64(6):3035-3047.
  • Churcher TS, Blagborough AM, Delves M, et al. Measuring the blockade of malaria transmission--an analysis of the Standard Membrane Feeding Assay. Int J Parasitol. 2021 Oct;42(11):1037-44.
  • Metzger WG, Theurer A, Pfleiderer A, et al. Ivermectin for causal malaria prophylaxis: a randomised controlled human infection trial. Trop Med Int Health. 2020 Mar;25(3):380-386.
  • Prashar C, Thakur N, Chakraborti S, et al. The landscape of nature-derived antimalarials-potential of marine natural products in countering the evolving Plasmodium. Front Drug Des. 2022;2: doi: 10.3389/fddsv.2022.1065231
  • Zhou B, Yue JM. Natural products are the treasure pool for antimalarial agents. Natl Sci Rev. 2022 Nov;9(11):nwac112. doi: 10.1093/nsr/nwac112
  • Dechering KJ, Timmerman M, Rensen K, et al. Replenishing the malaria drug discovery pipeline: Screening and hit evaluation of the MMV hit generation library 1 (HGL1) against asexual blood stage Plasmodium falciparum, using a nano luciferase reporter read-out. SLAS Discov. 2022 Sep;27(6):337–348. doi: 10.1016/j.slasd.2022.07.002
  • Johnson JD, Dennull RA, Gerena L, et al. Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening. Antimicrob Agents Chemother. 2007 Jun;51(6):1926–1933. doi: 10.1128/AAC.01607-06
  • Noedl H, Wongsrichanalai C, Wernsdorfer WH. Malaria drug-sensitivity testing: new assays, new perspectives. Trends Parasitol. 2003 Apr;19(4):175–181. doi: 10.1016/S1471-4922(03)00028-X
  • Gamo FJ, Sanz LM, Vidal J, et al. Thousands of chemical starting points for antimalarial lead identification. Nature. 2010 May 20;465(7296):305–310. doi: 10.1038/nature09107
  • Yang T, Ottilie S, Istvan ES, et al. MalDA, Accelerating malaria drug discovery. Trends Parasitol. 2021 Jun;37(6):493–507. doi: 10.1016/j.pt.2021.01.009
  • Mandt REK, Lafuente-Monasterio M, Sakata-Kato T, et al. In vitro selection predicts malaria parasite resistance to dihydroorotate dehydrogenase inhibitors in a mouse infection model. Sci Transl Med. 2019;11(521):eaav1636. doi: 10.1126/scitranslmed.aav1636
  • Walliker D, Quakyi IA, Wellems TE, et al. Genetic analysis of the human malaria parasite Plasmodium falciparum. Science. 1987;236(4809):1661–1666. doi: 10.1126/science.3299700
  • Oduola AMJ, Weatherly NF, Bowdre JH, et al. Plasmodium falciparum: Cloning by single-erythrocyte micromanipulation and heterogeneity in vitro. Exp Parasitol. 1988;66(1):86–95. doi: 10.1016/0014-4894(88)90053-7
  • Kidgell C, Volkman SK, Daily J, et al. A systematic map of genetic variation in Plasmodium falciparum. PLOS Pathog. 2006 Jun;2(6):e57. doi: 10.1371/journal.ppat.0020057
  • Chugh M, Scheurer C, Sax S, et al. Identification and deconvolution of cross-resistance signals from antimalarial compounds using multidrug-resistant Plasmodium falciparum strains. Antimicrob Agents Chemother. 2015 Feb;59(2):1110–1118. doi: 10.1128/AAC.03265-14
  • Van Schalwyk DA, Burrow R, Henriques G, et al. Culture-adapted Plasmodium falciparum isolates from UK travellers: in vitro drug sensitivity, clonality and drug resistance markers. Malar J. 2013;12(320): doi: 10.1186/1475-2875-12-320
  • Kulangara C, Kajava AV, Corradin G, et al. Sequence conservation in Plasmodium falciparum alpha-helical coiled coil domains proposed for vaccine development. PLoS One. 2009 May 25;4(5):e5419. doi: 10.1371/journal.pone.0005419
  • Bhasin VK, Trager W. Gametocyte-forming and non-gametocyte-forming clones of Plasmodium Falciparum. Am J Trop Med. 1984;33(4):534–537. doi: 10.4269/ajtmh.1984.33.534
  • Peterson DS, Milhous WK, Wellems TE. Molecular Basis of Differential Resistance to Cycloguanil and Pyrimethamine in Plasmodium falciparum Malaria. Proc Natl Acad Sci U S A. 1990;87(8):3018–3022. doi: 10.1073/pnas.87.8.3018
  • Masseno V, Muriithi S, Nzila A. In vitro chemosensitization of Plasmodium falciparum to antimalarials by verapamil and probenecid. Antimicrob Agents Chemother. 2009 Jul;53(7):3131–3134. doi: 10.1128/AAC.01689-08
  • Nankoberanyi S, Mbogo GW, LeClair NP, et al. Validation of the ligase etection reaction fluorescent microsphere assay for the detection of Plasmodium falciparum resistance mediating polymorphisms in Uganda. Malar J. 2014;13(95): doi: 10.1186/1475-2875-13-95
  • Taylor SM, Parobek CM, Aragam N, et al. Pooled deep sequencing of Plasmodium falciparum isolates: an efficient and scalable tool to quantify prevailing malaria drug-resistance genotypes. J Infect Dis. 2013 Dec 15;208(12):1998–2006. doi: 10.1093/infdis/jit392
  • Hrycyna CA, Summers RL, Lehane AM, et al. Quinine dimers are potent inhibitors of the Plasmodium falciparum chloroquine resistance transporter and are active against quinoline-resistant P. falciparum. ACS Chem Biol. 2014 Mar 21;9(3):722–730. doi: 10.1021/cb4008953
  • Kanai M, Yeo T, Asua V, et al. Comparative analysis of Plasmodium falciparum genotyping via SNP detection, microsatellite profiling, and whole-genome sequencing. Antimicrob Agents Chemother. 2022;66(1):e01163–21. doi: 10.1128/AAC.01163-21
  • Smilkstein MJ, Forquer I, Kanazawa A, et al. A drug-selected Plasmodium falciparum lacking the need for conventional electron transport. Mol Biochem Parasitol. 2008;159(1):64–68. doi: 10.1016/j.molbiopara.2008.01.002
  • Canfield CJ, Pudney M, Gutteridge WE. Interactions of atovaquone with other antimalarial drugs against Plasmodium falciparum in vitro. Exp Parasitol. 1995;80(3):373–381. doi: 10.1006/expr.1995.1049
  • Ross LS, Dhingra SK, Mok S, et al. Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nat Commun. 2018 Aug 17;9(1):3314. doi: 10.1038/s41467-018-05652-0
  • Flannery EL, Chatterjee AK, Winzeler EA. Antimalarial drug discovery - approaches and progress towards new medicines. Nat Rev Microbiol. 2013 Dec;11(12):849–862. doi: 10.1038/nrmicro3138
  • Simwela NV, Waters AP. Current status of experimental models for the study of malaria. Parasitology. 2022 Feb 21;149(6):1–22. doi: 10.1017/S0031182021002134
  • Minkah NK, Schafer C, Kappe SHI. Humanized mouse models for the study of human malaria parasite biology, pathogenesis, and immunity. Front Immunol. 2018;9:807. doi: 10.3389/fimmu.2018.00807
  • Moreno A, Ferrer E, Arahuetes S, et al. The course of infections and pathology in immunomodulated NOD/LtSz-SCID mice inoculated with Plasmodium falciparum laboratory lines and clinical isolates. Int J Parasitol. 2006 Mar;36(3):361–369. doi: 10.1016/j.ijpara.2005.10.012
  • Gatton ML, Martin LB, Cheng Q. Evolution of Resistance to Sulfadoxine-Pyrimethamine in Plasmodium falciparum. Antimicrob Agents Chemother. 2004;48(6):2116–2123. doi: 10.1128/AAC.48.6.2116-2123.2004
  • Ataide R, Ashley EA, Powell R, et al. Host immunity to Plasmodium falciparum and the assessment of emerging artemisinin resistance in a multinational cohort. Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3515–3520. doi: 10.1073/pnas.1615875114
  • Cowell AN, Istvan ES, Lukens AK, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191–199. doi: 10.1126/science.aan4472
  • Luth MR, Gupta P, Ottilie S, et al. Using in vitro evolution and whole genome analysis to discover next generation targets for antimalarial drug discovery. ACS Infect Dis. 2018 Mar 9;4(3):301–314. doi: 10.1021/acsinfecdis.7b00276
  • White NJ, Pongtavornpinyo W. The de novo selection of drug–resistant malaria parasites.Proc Biol Sci. 1514. 2003 Mar 7;270(1514):545–554. DOI:10.1098/rspb.2002.2241
  • Cowell AN, Winzeler EA. Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Med. 2019 Oct 22;11(1):63. doi: 10.1186/s13073-019-0673-3
  • Yu X, Feng G, Zhang Q, et al. From metabolite to metabolome: metabolomics applications in plasmodium research. Front Microbiol. 2020;11:626183. doi: 10.3389/fmicb.2020.626183
  • Lu KY, Mansfield CR, Fitzgerald MC, et al. Chemoproteomics for Plasmodium parasite drug target discovery. Chembiochem. 2021 Aug 17;22(16):2591–2599. doi: 10.1002/cbic.202100155
  • Hughes JP, Rees S, Kalindjian SB, et al. Principles of early drug discovery. Br J Pharmacol. 2011 Mar;162(6):1239–1249. doi: 10.1111/j.1476-5381.2010.01127.x
  • Stanisic DI, McCarthy JS, Good MF, et al. Controlled human malaria infection: applications, advances, and challenges. Infect Immun. 2018 Jan;86(1). doi: 10.1128/IAI.00479-17
  • Kublin JG, Murphy SC, Maenza J, et al. Safety, pharmacokinetics, and causal prophylactic efficacy of KAF156 in a Plasmodium falciparum human infection study. Clin Infect Dis. 2021 Oct 5;73(7):e2407–e2414. doi: 10.1093/cid/ciaa952
  • McCarthy JS, Abd-Rahman AN, Collins KA, et al. Defining the antimalarial activity of cipargamin in healthy volunteers experimentally infected with blood-stage Plasmodium falciparum. Antimicrob Agents Chemother. 2021;65(2):e01423–20. doi: 10.1128/AAC.01423-20
  • McCarthy JS, Donini C, Chalon S, et al. A phase 1, placebo-controlled, randomized, single ascending dose study and a volunteer infection study to characterize the safety, pharmacokinetics, and antimalarial activity of the Plasmodium Phosphatidylinositol 4-Kinase inhibitor MMV390048. Clin Infect Dis. 2020 Dec 17;71(10):e657–e664. doi: 10.1093/cid/ciaa368
  • McCarthy JS, Lotharius J, Ruckle T, et al. Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised study. Lancet Infect Dis. 2017 Jun;17(6):626–635. doi: 10.1016/S1473-3099(17)30171-8
  • McCarthy JS, Rückle T, Elliott SL, et al. A single-dose combination study with the experimental antimalarials artefenomel and DSM265 to determine safety and antimalarial activity against blood-stage Plasmodium falciparum in healthy volunteers. Antimicrob Agents Chemother. 2020;64(1):e01371–19. doi: 10.1128/AAC.01371-19
  • McCarthy JS, Yalkinoglu O, Odedra A, et al. Safety, pharmacokinetics, and antimalarial activity of the novel plasmodium eukaryotic translation elongation factor 2 inhibitor M5717: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study and volunteer infection study. Lancet Infect Dis. 2021 Dec;21(12):1713–1724. doi: 10.1016/S1473-3099(21)00252-8
  • Wattanakul T, Baker M, Mohrle J, et al. Semimechanistic Pharmacokinetic and Pharmacodynamic modeling of Piperaquine in a Volunteer infection Study with Plasmodium falciparum Blood-Stage Malaria. Antimicrob Agents Chemother. 2021;65(4):e01583–20. doi: 10.1128/AAC.01583-20
  • Watts RE, Odedra A, Marquart L, et al. Safety and parasite clearance of artemisinin-resistant Plasmodium falciparum infection: A pilot and a randomised volunteer infection study in Australia. PLOS Med. 2020 Aug;17(8):e1003203. doi: 10.1371/journal.pmed.1003203
  • Khin HS, Aung T, Thi A, et al. Oral artemisinin monotherapy removal from the private sector in Eastern Myanmar between 2012 and 2014. Malar J. 2016 May 23;15(1):286. doi: 10.1186/s12936-016-1292-8
  • Group AC, Ujuju C, Anyanti J, et al. When it just won’t go away: oral artemisinin monotherapy in Nigeria, threatening lives, threatening progress. Malar J. 2017 Dec 15;16(1):489. doi: 10.1186/s12936-017-2102-7
  • Artemisinin monotherapy replacement project (AMTR). Independent evaluation of artemisinin monotherapy replacement in the private sector to support the containment of Artemisinin resistant malaria in Burma. 2018. https://assets.publishing.service.gov.uk/media/5aface34e5274a25edd32776/Myanmar-Artemisinin-Monotherapy-Replacement-Malaria-Project.pdf
  • Nwokolo E, Ujuju C, Anyanti J, et al. Misuse of artemisinin combination therapies by clients of medicine retailers suspected to have malaria without prior parasitological confirmation in Nigeria. Int J Health Policy Manag. 2018 Jun 1;7(6):542–548. doi: 10.15171/ijhpm.2017.122
  • Guissou RM, Amaratunga C, de Haan F, et al. The impact of anti-malarial markets on artemisinin resistance: perspectives from Burkina Faso. Malar J. 2023 Sep 13;22(1):269. doi: 10.1186/s12936-023-04705-0
  • White NJ, Pongtavornpinyo W, Maude RJ, et al. Hyperparasitaemia and low dosing are an important source of anti-malarial drug resistance. Malar J. 2009 Nov 11;8(1):253. doi: 10.1186/1475-2875-8-253
  • Krishna S. Triple artemisinin-containing combination anti-malarial treatments should be implemented now to delay the emergence of resistance: the case against. Malar J. 2019 Oct 3;18(1):339. doi: 10.1186/s12936-019-2976-7
  • Thu AM, Phyo AP, Landier J, et al. Combating multidrug-resistant Plasmodium falciparum malaria. FEBS J. 2017 Aug;284(16):2569–2578. doi: 10.1111/febs.14127
  • Boni MF, White NJ, Baird JK. The Community as the patient in malaria-endemic areas: Preempting drug resistance with multiple first-line therapies. PLOS Med. 2016 Mar;13(3):e1001984. doi: 10.1371/journal.pmed.1001984
  • Chen I, Hsiang MS. Triple artemisinin-based combination therapies for malaria: a timely solution to counter antimalarial drug resistance. Lancet Infect Dis. 2022 Jun;22(6):751–753. doi: 10.1016/S1473-3099(21)00748-9
  • Kabore JMT, Siribie M, Hien D, et al. Feasibility and acceptability of a strategy deploying multiple first-line artemisinin-based combination therapies for uncomplicated malaria in the Health District of Kaya, Burkina Faso. Trop Med Infect Dis. 2023 Mar 28;8(4):195. doi: 10.3390/tropicalmed8040195
  • van der Pluijm RW, Tripura R, Hoglund RM, et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet. 2020 Apr 25;395(10233):1345–1360. doi: 10.1016/S0140-6736(20)30552-3
  • Peto TJ, Tripura R, Callery JJ, et al. Triple therapy with artemether-lumefantrine plus amodiaquine versus artemether-lumefantrine alone for artemisinin-resistant, uncomplicated falciparum malaria: an open-label, randomised, multicentre trial. Lancet Infect Dis. 2022 Jun;22(6):867–878. doi: 10.1016/S1473-3099(21)00692-7
  • van der Pluijm RW, Phyo AP, Lek D, et al. Triple artemisinin-based combination therapies for malaria: proceed with caution - authors’ reply. Lancet. 2021 Dec 19;396(10267):1976–1977. doi: 10.1016/S0140-6736(20)32677-5
  • van der Pluijm RW, Amaratunga C, Dhorda M, et al. Triple artemisinin-based combination therapies for malaria - a new Paradigm? Trends Parasitol. 2021 Jan;37(1):15–24. doi: 10.1016/j.pt.2020.09.011
  • Rasmussen C, Ringwald P. Is triple artemisinin-based combination therapy necessary for uncomplicated malaria? Lancet Infect Dis. 2022 May;22(5):586–587. doi: 10.1016/S1473-3099(22)00209-2
  • Xu C, Wong YK, Liao FL, et al. Is triple artemisinin-based combination therapy necessary for uncomplicated malaria? Lancet Infect Dis. 2022 May;22(5):585–586. doi: 10.1016/S1473-3099(22)00208-0
  • Mairet-Khedim M, Leang R, Marmai C, et al. Clinical and In Vitro Resistance of Plasmodium falciparum to Artesunate-Amodiaquine in Cambodia. Clin Infect Dis. 2021 Aug 2;73(3):406–413. doi: 10.1093/cid/ciaa628
  • Stokes BH, Yoo E, Murithi JM, et al. Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents. PLOS Pathog. 2019 Jun;15(6):e1007722. doi: 10.1371/journal.ppat.1007722
  • Zhan W, Li D, Subramanyaswamy SB, et al. Dual-pharmacophore artezomibs hijack the Plasmodium ubiquitin-proteasome system to kill malaria parasites while overcoming drug resistance. Cell Chem Biol. 2023 May 18;30(5):457–469 e11. doi: 10.1016/j.chembiol.2023.04.006
  • Drugs mCGo. A research agenda for malaria eradication: drugs. PLOS Med. 2011 Jan 25;8(1):e1000402. doi: 10.1371/journal.pmed.1000402

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.