1,548
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Phage display technology and its impact in the discovery of novel protein-based drugs

&
Pages 887-915 | Received 28 Nov 2023, Accepted 07 Jun 2024, Published online: 18 Jun 2024

References

  • Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228(4705):1315–1317. doi: 10.1126/science.4001944
  • McCafferty J, Griffiths AD, Winter G, et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990;348(6301):552–554. doi: 10.1038/348552a0
  • Breitling F, Dübel S, Seehaus T, et al. A surface expression vector for antibody screening. Gene. 1991;104(2):147–153. doi: 10.1016/0378-1119(91)90244-6
  • Barbas CF 3rd, Kang AS, Lerner RA, et al. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci USA. 1991;88:7978–7982. doi: 10.1073/pnas.88.18.7978
  • Arbabi Ghahroudi M, Desmyter A, Wyns L, et al. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 1997;414(3):521–526. doi: 10.1016/S0014-5793(97)01062-4
  • Stanfield RL, Dooley H, Verdino P, et al. Maturation of shark single-domain (IgNAR) antibodies: evidence for induced-fit binding. J Mol Biol. 2007;367(2):358–372. doi: 10.1016/j.jmb.2006.12.045
  • Buschhaus MJ, Becker S, Porter AJ, et al. Isolation of highly selective IgNAR variable single-domains against a human therapeutic Fc scaffold and their application as tailor-made bioprocessing reagents. Protein Eng Des Sel. 2019;32(9):385–399. doi: 10.1093/protein/gzaa002
  • Könning D, Kolmar H. Beyond antibody engineering: directed evolution of alternative binding scaffolds and enzymes using yeast surface display. Microbe Cell Fact. 2018;17(1):17; 32. doi: 10.1186/s12934-018-0881-3
  • Qi H, Lu H, Qiu HJ, et al. Phagemid vectors for phage display: properties, characteristics and construction. J Mol Biol. 2012;417(3):129–143. doi: 10.1016/j.jmb.2012.01.038
  • Dübel S, Breitling F, Fuchs P, et al. A family of vectors for surface display and production of antibodies. Gene. 1993;128(1):97–101. doi: 10.1016/0378-1119(93)90159-Z
  • Söderlind E, Simonsson AC, Borrebaeck CA. Phage display technology in antibody engineering: design of phagemid vectors and in vitro maturation systems. Immunol Rev. 1992;130(1):109–124. doi: 10.1111/j.1600-065X.1992.tb01523.x
  • Lowman HB, Bass SH, Simpson N, et al. Selecting high-affinity binding proteins by monovalent phage display. Biochemistry. 1991;30(45):10832–10838. doi: 10.1021/bi00109a004
  • Hoogenboom HR, de Bruïne AP, Hufton SE, et al. Antibody phage display technology and its applications. Immunotechnology. 1998;4(1):1–20. doi: 10.1016/S1380-2933(98)00007-4
  • Rondot S, Koch J, Breitling F, et al. A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol. 2001;19(1):75–78. doi: 10.1038/83567
  • Barbas CF 3rd. Recent advances in phage display. Current Opinion In Biotechnology. 1993;4(5):526–530. doi: 10.1016/0958-1669(93)90072-5
  • Vaughan TJ, Williams AJ, Pritchard K, et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nature. 1996;14(3):309–314. doi: 10.1038/nbt0396-309
  • Hutchings C, Carmen S, Lennard S. Generation of naive human antibody libraries. In: Kontermann R, Dübel S, editors. Antibody Engineering. Berlin (HB): Springer Lab Manuals. Springer; 2001. p. 93–108. doi: 10.1007/978-3-662-04605-0_6
  • Lloyd C, Lowe D, Edwards B, et al. Modelling the human immune response: performance of a 1011 human antibody repertoire against a broad panel of therapeutically relevant antigens. Protein Eng Des Sel. 2009;22(3):159–168. doi: 10.1093/protein/gzn058
  • Hoet RM, Cohen EH, Kent RB, et al. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol. 2005;23(3):344–348. doi: 10.1038/nbt1067
  • Sabir JS, Atef A, El-Domyati FM, et al. Construction of naïve camelids VHH repertoire in phage display-based library. C R Biol. 2014;337(4):244–249. doi: 10.1016/j.crvi.2014.02.004
  • Smith GP, Petrenko VA. Phage display. Chem Rev. 1997;97:391–410. doi: 10.1021/cr960065d
  • Barbas CF 3rd. Phage display: a laboratory manual. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2001. doi: 10.1006/abio.2001.5085
  • de Haard HJ, van Neer N, Reurs A, et al. A large non-immunized human fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem. 1999;274(26):18218–18230. doi: 10.1074/jbc.274.26.18218
  • Knappik A, Ge L, Honegger A, et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Bio. 2000;296(1):57–86. doi: 10.1006/jmbi.1999.3444
  • Alfaleh MA, Alsaab HO, Mahmoud AB, et al. Phage display derived monoclonal antibodies: from bench to bedside. Front Immunol. 2020;11:1986. doi: 10.3389/fimmu.2020.01986
  • Moutel S, Bery N, Bernard V, et al. NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. Elife. 2016;5:e16228. doi: 10.7554/eLife.16228
  • Olichon A, de Marco A. Preparation of a naïve library of camelid single domain antibodies. Methods Mol Biol. 2012;911:65–78. doi: 10.1007/978-1-61779-968-6_5
  • Yang H, Vasylieva N, Wang J, et al. Precise isolation and structural origin of an ultra-specific nanobody against chemical compound. J Hazard Mater. 2023;458:131958. doi: 10.1016/j.jhazmat.2023.131958
  • Song BPC, Ch’ng ACW, Lim TS. A review of phage display: a jack-of-all-trades and master of most biomolecule display. Int J Biol Macromol. 2024;256(Pt 2):128455. doi: 10.1016/j.ijbiomac.2023.128455
  • França RKA, Studart IC, Bezerra MRL, et al. Progress on phage display technology: tailoring antibodies for cancer immunotherapy. Viruses. 2023;15(9):1903. doi: 10.3390/v15091903
  • Zhang Y. Evolution of phage display libraries for therapeutic antibody discovery. MAbs. 2023;15(1):2213793. doi: 10.1080/19420862.2023.2213793
  • Liu Q, Garg P, Hasdemir B, et al. Functional GLP-1R antibodies identified from a synthetic GPCR-focused library demonstrate potent blood glucose control. MAbs. 2021;13(1):1893425. doi: 10.1080/19420862.2021.1893425
  • Tikunova N, Dubrovskaya V, Morozova V, et al. The neutralizing human recombinant antibodies to pathogenic orthopoxviruses derived from a phage display immune library. Virus Res. 2012;163(1):141–150. doi: 10.1016/j.virusres.2011.09.008
  • Throsby M, van den Brink E, Jongeneelen M, et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLOS ONE. 2008;3(12):e3942. doi: 10.1371/journal.pone.0003942
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–448. doi: 10.1038/363446a0
  • Lauwereys M, Arbabi Ghahroudi M, Desmyter A, et al. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. Embo J. 1998;17(13):3512–3520. doi: 10.1093/emboj/17.13.3512
  • Nguyen TTH, Lee JS, Shim H. Construction of Rabbit Immune Antibody Libraries. Methods Mol Biol. 2023;2702:93–106. doi: 10.1007/978-1-4939-7447-4_7
  • Rojas G, Almagro JC, Acevedo B, et al. Phage antibody fragments library combining a single human light chain variable region with immune mouse heavy chain variable regions. J Biotechnol. 2002;94(3):287–298. doi: 10.1016/S0168-1656(01)00432-1
  • Jahromi ZM, Salmanian AH, Rastgoo N, et al. Isolation of BNYVV coat protein-specific single chain Fv from a mouse phage library antibody. Hybridoma (Larchmt). 2009;28(5):305–313. doi: 10.1089/hyb.2009.0004
  • Teng Y, Young JL, Edwards B, et al. Diverse human VH antibody fragments with bio-therapeutic properties from the Crescendo Mouse. N Biotechnol. 2020;55:65–76. doi: 10.1016/j.nbt.2019.10.003
  • Krawczyk K, Dunbar J, Deane CM. Computational tools for aiding rational antibody design. Methods Mol Biol. 2017;1529:399–416. doi: 10.1007/978-1-4939-6637-0_21
  • Peterson SM, Juliana CA, Hu CF, et al. Optimization of a glucagon-like peptide 1 receptor antagonist antibody for treatment of hyperinsulinism. Diabetes. 2023;72(9):1320–1329. doi: 10.2337/db22-1039
  • Pinheiro VB. [cited 2023 Nov 12]. Available from: https://pinheirolab.com/2020/04/28/dna-library-synthesis-for-directed-evolution/
  • Prassler J, Thiel S, Pracht C, et al. HuCAL PLATINUM, a synthetic fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol. 2011;413(1):261–278. doi: 10.1016/j.jmb.2011.08.012
  • Van den Brulle J, Fischer M, Langmann T, et al. A novel solid phase technology for high-throughput gene synthesis. Biotechniques. 2008;45(3):340–343. doi: 10.2144/000112953
  • Tiller T, Schuster I, Deppe D, et al. A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs. 2013;5(3):445–470. doi: 10.4161/mabs.24218
  • Söderlind E, Strandberg L, Jirholt P, et al. Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat Biotechnol. 2000;18(8):852–856. doi: 10.1038/78458
  • Teixeira AAR, Erasmus MF, D’Angelo S, et al. Drug-like antibodies with high affinity, diversity and developability directly from next-generation antibody libraries. MAbs. 2021;13(1):1980942. doi: 10.1080/19420862.2021.1980942
  • Sidhu SS, Li B, Chen Y, et al. Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions. J Mol Biol. 2004;338(2):299–310. doi: 10.1016/j.jmb.2004.02.050
  • Barbas CF 3rd, Bain JD, Hoekstra DM, et al. Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc Natl Acad Sci USA. 1992;89(10):4457–4461. doi: 10.1073/pnas.89.10.4457
  • Rothe C, Urlinger S, Löhning C, et al. The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol. 2008;376(4):1182–1200. doi: 10.1016/j.jmb.2007.12.018
  • Fellouse FA, Esaki K, Birtalan S, et al. High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J Mol Biol. 2007;373(4):924–940. doi: 10.1016/j.jmb.2007.08.005
  • Fellouse FA, Li B, Compaan DM, et al. Molecular recognition by a binary code. J Mol Biol. 2005;348(5):1153–1162. doi: 10.1016/j.jmb.2005.03.041
  • Koide A, Gilbreth RN, Esaki K, et al. High-affinity single-domain binding proteins with a binary-code interface. Proc Natl Acad Sci, USA. 2007;104(16):6632–6637. doi: 10.1073/pnas.0700149104
  • Mahon CM, Lambert MA, Glanville J, et al. Comprehensive interrogation of a minimalist synthetic CDR-H3 library and its ability to generate antibodies with therapeutic potential. J Mol Biol. 2013;425(10):1712–1730. doi: 10.1016/j.jmb.2013.02.015
  • Virnekäs B, Ge L, Plückthun A, et al. Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res. 1994;22(25):5600–5607. doi: 10.1093/nar/22.25.5600
  • Hughes RA, Ellington AD. Synthetic DNA synthesis and assembly: putting the synthetic in synthetic Biology. Cold Spring Harb Perspect Biol. 2017;9(1):a023812. doi: 10.1101/cshperspect.a023812
  • Kuiper BP, Prins RC, Billerbeck S. Oligo pools as an affordable source of synthetic DNA for cost-effective library construction in protein- and metabolic pathway engineering. Chembiochem. 2022;23(7):e202100507. doi: 10.1002/cbic.202100507
  • Yuan TZ, Garg P, Wang L, et al. Rapid discovery of diverse neutralizing SARS-CoV-2 antibodies from large-scale synthetic phage libraries. MAbs. 2022;14(1):2002236. doi: 10.1080/19420862.2021.2002236
  • Meiser LC, Antkowiak PL, Koch J, et al. Reading and writing digital data in DNA. Nat Protoc. 2020;15(1):86–101. doi: 10.1038/s41596-019-0244-5
  • Van Blarcom T, Lindquist K, Melton Z, et al. Productive common light chain libraries yield diverse panels of high affinity bispecific antibodies. MAbs. 2018;10(2):256–268. doi: 10.1080/19420862.2017.1406570
  • Atwell S, Ridgway JB, Wells JA, et al. Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J Mol Biol. 1997;270(1):26–35. doi: 10.1006/jmbi.1997.1116
  • Egloff P, Zimmermann I, Arnold FM, et al. Engineered peptide barcodes for in-depth analyses of binding protein libraries. Nat Methods. 2019;16(5):421–428. doi: 10.1038/s41592-019-0389-8
  • Shuai RW, Ruffolo JA, Gray JJ. IgLM: infilling language modeling for antibody sequence design. Cell Syst. 2023;14(11):979–989.e4. doi: 10.1016/j.cels.2023.10.001
  • Harel Inbar N, Benhar I. Selection of antibodies from synthetic antibody libraries. Arch Biochem Biophys. 2012;526(2):87–98. doi: 10.1016/j.abb.2011.12.028
  • Burkovitz A, Ofran Y. Understanding differences between synthetic and natural antibodies can help improve antibody engineering. MAbs. 2016;8(2):278–287. doi: 10.1080/19420862.2015.1123365
  • Adolf-Bryfogle J, Xu Q, North B, et al. PyIgClassify: a database of antibody CDR structural classifications. Nucleic Acids Res. 2015;43(Database issue):D432–8. doi: 10.1093/nar/gku1106
  • Abanades B, Georges G, Bujotzek A, et al. ABlooper: fast accurate antibody CDR loop structure prediction with accuracy estimation. Bioinformatics. 2022;38(7):1877–1880. doi: 10.1093/bioinformatics/btac016
  • Raybould MIJ, Marks C, Krawczyk K, et al. Five computational developability guidelines for therapeutic antibody profiling. Proc Natl Acad Sci, USA. 2019;116(10):4025–4030. doi: 10.1073/pnas.1810576116
  • Abanades B, Olsen TH, Raybould MIJ, et al. The patent and literature antibody database (PLAbDab): an evolving reference set of functionally diverse, literature-annotated antibody sequences and structures. Nucleic Acids Res. 2024;52(D1):D545–D551. doi: 10.1093/nar/gkad1056
  • Abanades B, Wong WK, Boyles F, et al. ImmuneBuilder: deep-learning models for predicting the structures of immune proteins. Commun Biol. 2023;6(1):575. doi: 10.1038/s42003-023-04927-7
  • Spoendlin FC, Abanades B, Raybould MIJ, et al. Improved computational epitope profiling using structural models identifies a broader diversity of antibodies that bind to the same epitope. Front Mol Biosci. 2023;10:1237621. doi: 10.3389/fmolb.2023.1237621
  • DeKosky BJ, Lungu OI, Park D, et al. Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc Natl Acad Sci, USA. 2016;113(19):E2636–45. doi: 10.1073/pnas.1525510113
  • Vaisman-Mentesh A, Wine Y. Monitoring Phage Biopanning by Next-Generation Sequencing. Methods Mol Biol. 2018;1701:463–473. doi: 10.1007/978-1-4939-7447-4_26
  • Available from: https://www.specifica.bio/abxtract/
  • Conrath KE, Lauwereys M, Wyns L, et al. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J Biol Chem. 2001;276(10):7346–7350. doi: 10.1074/jbc.M007734200
  • Muyldermans S. A guide to: generation and design of nanobodies. FEBS J. 2021;288(7):2084–2102. doi: 10.1111/febs.15515
  • Bannas P, Hambach J, Koch-Nolte F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol. 2017;8:1603. doi: 10.3389/fimmu.2017.01603
  • Vanlandschoot P, Stortelers C, Beirnaert E, et al. Nanobodies®: new ammunition to battle viruses. Antiviral Res. 2011;92(3):389–407. doi: 10.1016/j.antiviral.2011.09.002
  • Hultberg A, Temperton NJ, Rosseels V, et al. Llama-derived single domain antibodies to build multivalent, superpotent and broadened neutralizing anti-viral molecules. PLOS ONE. 2011;6(4):e17665. doi: 10.1371/journal.pone.0017665
  • Ulrichts H, Silence K, Schoolmeester A, et al. Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared with currently marketed antiplatelet drugs. Blood. 2011;118(3):757–765. doi: 10.1182/blood-2010-11-317859
  • Callewaert F, Roodt J, Ulrichts H, et al. Evaluation of efficacy and safety of the anti-VWF nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood. 2012;120(17):3603–3610. doi: 10.1182/blood-2012-04-420943
  • Jindal S, Pedersen DV, Gera N, et al. Characterization of the bispecific VHH antibody gefurulimab (ALXN1720) targeting complement component 5, and designed for low volume subcutaneous administration. Mol Immunol. 2024;65:29–41. doi: 10.1016/j.molimm.2023.12.004
  • Tanaka Y. Ozoralizumab: first Nanobody® therapeutic for rheumatoid arthritis. Expert Opin Biol Ther. 2023;23(7):579–587. doi: 10.1080/14712598.2023.2231344
  • Papp KA, Weinberg MA, Morris A, et al. IL17A/F nanobody sonelokimab in patients with plaque psoriasis: a multicentre, randomised, placebo-controlled, phase 2b study. Lancet. 2021;397(10284):1564–1575. doi: 10.1016/S0140-6736(21)00440-2
  • Roberts BL, Markland W, Siranosian K, et al. Protease inhibitor display M13 phage: selection of high-affinity neutrophil elastase inhibitors. Gene. 1992;121(1):9–15. doi: 10.1016/0378-1119(92)90156-J
  • Dennis MS, Lazarus RA. Kunitz domain inhibitors of tissue factor-factor VIIa. I. Potent inhibitors selected from libraries by phage display. J Biol Chem. 1994;269(35):22137–22144. doi: 10.1016/S0021-9258(17)31766-0
  • Dennis MS, Herzka A, Lazarus RA. Potent and selective Kunitz domain inhibitors of plasma kallikrein designed by phage display. J Biol Chem. 1995;270(43):25411–25417. doi: 10.1074/jbc.270.43.25411
  • Skerra A. ‘Anticalins’: a new class of engineered ligand-binding proteins with antibody-like properties. J Biotechnol. 2001;74(4):257–275. doi: 10.1016/S1389-0352(01)00020-4
  • Möller M, Jönsson M, Lundqvist M, et al. An easy-to-use high-throughput selection system for the discovery of recombinant protein binders from alternative scaffold libraries. Protein Eng Des Sel. 2023;36:gzad011. doi: 10.1093/protein/gzad011
  • Jönsson M, Scheffel J, Larsson E, et al. CaRA - a multi-purpose phage display library for selection of calcium-regulated affinity proteins. Nat Biotechnol. 2022;72:159–167. doi: 10.1016/j.nbt.2022.11.005
  • Hjelm LC, Dahlsson Leitao C, Ståhl S, et al. Selection of affibody molecules using phage display. Cold Spring Harb Protoc. 2023 Jul 25. doi: 10.1101/pdb.prot108399
  • Lipovsek D. Adnectins: engineered target-binding protein therapeutics. Protein Eng Des Sel. 2011;24(1–2):3–9. doi: 10.1093/protein/gzq097
  • Jeong KJ, Mabry R, Georgiou G. Avimers hold their own. Nat Biotechnol. 2005;23(12):1493–1494. doi: 10.1038/nbt1205-1493
  • Griffiths K, Dolezal O, Cao B, et al. i-bodies, Human single domain antibodies that antagonize chemokine receptor CXCR4. J Biol Chem. 2016;291(24):12641–12657. doi: 10.1074/jbc.M116.721050
  • Stolz LE, Horn PT. Ecallantide: a plasma kallikrein inhibitor for the treatment of acute attacks of hereditary angioedema. Drugs Today (Barc). 2010;46(8):547–555. doi: 10.1358/dot.2010.46.8.1507205
  • Thompson CA. FDA approves kallikrein inhibitor to treat hereditary angioedem. Am J Health Syst Pharm. 2010;67(2):93. doi: 10.2146/news100005
  • Hosse RJ, Rothe A, Power BE. A new generation of protein display scaffolds for molecular recognition. Protein Sci. 2006;15(1):14–27. doi: 10.1110/ps.051817606
  • Luo R, Liu H, Cheng Z. Protein scaffolds: antibody alternatives for cancer diagnosis and therapy. RSC Chem Biol. 2022;3(7):830–847. doi: 10.1039/D2CB00094F
  • Koide A, Bailey CW, Huang X, et al. The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol. 1998;284(4):1141–1151. doi: 10.1006/jmbi.1998.2238
  • Akkapeddi P, Hattori T, Khan I, et al. Exploring switch II pocket conformation of KRAS(G12D) with mutant-selective monobody inhibitors. Proc Natl Acad Sci, USA. 2023;120(28):e2302485120. doi: 10.1073/pnas.2302485120
  • Roberts RW, Szostak JW. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci. 1997;94(23):12297–12302. doi: 10.1073/pnas.94.23.12297
  • Kurz M, Gu K, Lohse PA. Psoralen photo-crosslinked mRNA-puromycin conjugates: a novel template for the rapid and facile preparation of mRNA-protein fusions. Nucleic Acids Research. 2000;28(18):83e–83. doi: 10.1093/nar/28.18.e83
  • Liu R, Barrick JE, Szostak JW, et al. Optimized synthesis of RNA-protein fusions for in vitro protein selection. Methods Enzymol. 2000;318:268–293. doi: 10.1016/s0076-6879(00)18058-9
  • Beste G, Schmidt FS, Stibora T, et al. Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc Natl Acad Sci, USA. 1999;96:1898–1903. doi: 10.1073/pnas.96.5.1898
  • Rothe C, Skerra A. Anticalin® proteins as therapeutic agents in human diseases. BioDrugs. 2018;32(3):233–243. doi: 10.1007/s40259-018-0278-1
  • Gebauer M, Schiefner A, Matschiner G, et al. Combinatorial design of an anticalin directed against the extra-domain b for the specific targeting of oncofetal fibronectin. J Mol Biol. 2013;425(4):780–802. doi: 10.1016/j.jmb.2012.12.004
  • Goetz DH, Holmes MA, Borregaard N, et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 2002;10(5):1033–1043. doi: 10.1016/S1097-2765(02)00708-6
  • Gebauer M, Skerra A. Anticalins small engineered binding proteins based on the lipocalin scaffold. Methods Enzymol. 2012;503:157–188. doi: 10.1016/B978-0-12-396962-0.00007-0
  • Siegemund M, Oak P, Hansbauer EM, et al. Pharmacokinetic engineering of OX40-blocking anticalin proteins using monomeric plasma half-life extension domains. Front Pharmacol. 2021;12:759337. doi: 10.3389/fphar.2021.759337
  • Schlehuber S, Skerra A. Duocalins: engineered ligand-binding proteins with dual specificity derived from the lipocalin fold. Biol Chem. 2001;382(9):1335–1342. doi: 10.1515/BC.2001.166
  • Wachter S, Angevin T, Bubna N, et al. Application of platform process development approaches to the manufacturing of Mabcalin™ bispecifics. J Biotech. 2023;377:13–22. doi: 10.1016/j.jbiotec.2023.10.003
  • [cited 2024 Feb 6]. Available from: https://www.pieris.com/investors/sec-filings/all-sec-filings/content/0001193125-15-109883/0001193125-15-109883.pdf
  • Barinka C, Ptacek J, Richter A, et al. Selection and characterization of anticalins targeting human prostate-specific membrane antigen (PSMA). Protein Eng Des Sel. 2016;29(3):105–115. doi: 10.1093/protein/gzv065
  • Nord K, Nilsson J, Nilsson B, et al. A combinatorial library of an α-helical bacterial receptor domain. Protein Eng. 1995;8(6):601–608. doi: 10.1093/protein/8.6.601
  • Grönwall C, Sjöberg A, Ramström M, et al. Affibody-mediated transferrin depletion for proteomics applications. Biotech J. 2007;2(11):1389–1398. doi: 10.1002/biot.200700053
  • Kronqvist N, Malm M, Göstring L, et al. Combining phage and staphylococcal surface display for generation of ErbB3-specific affibody molecules. Protein Eng Des Sel. 2011;24(4):385–396. doi: 10.1093/protein/gzq118
  • Kronqvist N, Löfblom J, Severa D, et al. Simplified characterization through site-specific protease-mediated release of affinity proteins selected by staphylococcal display. FEMS Microbiol Lett. 2008;278(1):128–136. doi: 10.1111/j.1574-6968.2007.00990.x
  • Orlova A, Magnusson M, Eriksson TL, et al. Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res. 2006;66(8):4339–4348. doi: 10.1158/0008-5472.CAN-05-3521
  • Alhuseinalkhudhur A, Lindman H, Liss P, et al. A phase II study of 68Ga-ABY-025 PET for non-invasive quantification of HER2 expression in breast cancer. In: Proceedings of the 2021 San Antonio Breast Cancer Symposium; 2021 Dec 7-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res. 2022;82(4 Suppl): Abstract nr P3-02-06).
  • Malm M, Bass T, Gudmundsdotter L, et al. Engineering of a bispecific affibody molecule towards HER2 and HER3 by addition of an albumin-binding domain allows for affinity purification and in vivo half-life extension. Biotechnol J. 2014;9(9):1215–1222. doi: 10.1002/biot.201400009
  • Jonsson A, Dogan J, Herne N, et al. Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng Des Sel. 2008;21(8):515–527. doi: 10.1093/protein/gzn028
  • Jussing E, Lu L, Grafström J, et al. [68Ga]ABY-028: an albumin-binding domain (ABD) protein-based imaging tracer for positron emission tomography (PET) studies of altered vascular permeability and predictions of albumin-drug conjugate transport. EJNMMI Res. 2020;10(1):106. doi: 10.1186/s13550-020-00694-2
  • Yu F, Gudmundsdotter L, Akal A, et al. An affibody-adalimumab hybrid blocks combined IL-6 and TNF-triggered serum amyloid A secretion in vivo. MAbs. 2014;6(6):1598–1607. doi: 10.4161/mabs.36089
  • LaFleur DW, Abramyan D, Kanakaraj P, et al. Monoclonal antibody therapeutics with up to five specificities: functional enhancement through fusion of target-specific peptides. MAbs. 2013;5(2):208–218. doi: 10.4161/mabs.23043
  • Volk AL, Mebrahtu A, Ko BK, et al. Bispecific antibody molecule inhibits tumor cell proliferation more efficiently than the two-molecule combination. Drugs RD. 2021;21(2):157–168. doi: 10.1007/s40268-021-00339-2
  • Mega A, Mebrahtu A, Aniander G, et al. A PDGFRB- and CD40-targeting bispecific AffiMab induces stroma-targeted immune cell activation. MAbs. 2023;15(1):2223750. doi: 10.1080/19420862.2023.2223750
  • Available from: https://www.abclon.com/en/
  • Mebrahtu A, Aniander G, Mega A, et al. Co-culture platform for tuning of cancer receptor density allows for evaluation of bispecific immune cell engagers. N Biotechnol. 2024;79:120–126. doi: 10.1016/j.nbt.2023.12.012
  • Klint S, Feldwisch J, Gudmundsdotter L, et al. Izokibep: preclinical development and first-in-human study of a novel IL-17A neutralizing Affibody molecule in patients with plaque psoriasis. MAbs. 2023;15(1):2209920. doi: 10.1080/19420862.2023.2209920
  • Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science. 1990;249(4967):386–390. doi: 10.1126/science.1696028
  • Greenwood J, Willis AE, Perham RN. Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from Plasmodium falciparum circumsporozoite protein as antigens. J Mol Biol. 1991;220(4):821–827. doi: 10.1016/0022-2836(91)90354-9
  • McConnell SJ, Uveges AJ, Fowlkes DM, et al. Construction and screening of M13 phage libraries displaying long random peptides. Mol Divers. 1996;1(3):165–176. doi: 10.1007/BF01544954
  • Cortese R, Monaci P, Nicosia A, et al. Identification of biologically active peptides using random libraries displayed on phage. Curr Opin Biotech. 1995;6(1):73–80. doi: 10.1016/0958-1669(95)80012-3
  • Clackson T, Wells JA. In vitro selection from protein and peptide libraries. Trends Biotechnol. 1994;12(5):173–184. doi: 10.1016/0167-7799(94)90079-5
  • Sato AK, Sexton DJ, Morganelli LA, et al. Development of mammalian serum albumin affinity purification media by peptide phage display. Biotech Prog. 2002;18(2):182–192. doi: 10.1021/bp010181o
  • Ladner RC, Sato AK, Gorzelany J, et al. Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discov Today. 2004;9(12):525–529. doi: 10.1016/S1359-6446(04)03104-6
  • Huang L, Sexton DJ, Skogerson K, et al. Novel peptide inhibitors of angiotensin-converting enzyme 2. J Biol Chem. 2003;278(18):15532–15540. doi: 10.1074/jbc.M212934200
  • Schumacher TN, Mayr LM, Minor DL Jr, et al. Identification of D-peptide ligands through mirror-image phage display. Science. 1996;271(5257):1854–1857. doi: 10.1126/science.271.5257.1854
  • Malhis M, Funke SA. Mirror-image phage display for the selection of D-amino acid peptide ligands as potential therapeutics. Curr Protoc. 2024;4(2):e957. doi: 10.1002/cpz1.957
  • Sato AK, Viswanathan M, Kent RB, et al. Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol. 2006;17(6):638–642. doi: 10.1016/j.copbio.2006.10.002
  • Heinis C, Rutherford T, Freund S, et al. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat Chem Biol. 2009;5(7):502–507. doi: 10.1038/nchembio.184
  • Simonetti L, Ivarsson Y. Genetically encoded cyclic peptide phage display libraries. ACS Cent Sci. 2020;6(3):336–338. doi: 10.1021/acscentsci.0c00087
  • Miki T, Namii K, Seko K, et al. Pattern enrichment analysis for phage selection of stapled peptide ligands. Chem Sci. 2022;13(43):12634–12642. doi: 10.1039/D2SC04058A
  • Guerlavais V, Sawyer TK, Carvajal L, et al. Discovery of sulanemadlin (ALRN-6924), the first cell-permeating, stabilized α-helical peptide in clinical development. J Med Chem. 2023;66(14):9401–9417. doi: 10.1021/acs.jmedchem.3c00623
  • Smith GP, Patel SU, Windass JD, et al. Small binding proteins selected from a combinatorial repertoire of knottins displayed on phage. J Mol Biol. 1998;277(2):317–332. doi: 10.1006/jmbi.1997.1621
  • Lui BG, Salomon N, Wüstehube-Lausch J, et al. Targeting the tumor vasculature with engineered cystine-knot miniproteins. Nat Commun. 2020;11(1):295. doi: 10.1038/s41467-019-13948-y
  • Wang L, Xu J, Kong Y, et al. Engineering a novel antibody-peptide bispecific fusion protein against MERS-CoV. Antibodies (Basel). 2019;8(4):53. doi: 10.3390/antib8040053
  • Huang R, Warner Jenkins G, Kim Y, et al. The smallest functional antibody fragment: ultralong CDR H3 antibody knob regions potently neutralize SARS-CoV-2. Proc Natl Acad Sci USA. 2023;120(39):e2303455120. doi: 10.1073/pnas.2303455120
  • Lehmann A. Ecallantide (DX-88), a plasma kallikrein inhibitor for the treatment of hereditary angioedema and the prevention of blood loss in on-pump cardiothoracic surgery. Exp Opin Biol Ther. 2008;8(8):1187–1199. doi: 10.1517/14712598.8.8.1187
  • Molineux G, Newland A. Development of romiplostim for the treatment of patients with chronic immune thrombocytopenia: from bench to bedside. Br J Hematol. 2010;150(1):9–20. doi: 10.1111/j.1365-2141.2010.08140.x
  • Nixon AE, Sexton DJ, Ladner RC. Drugs derived from phage display: from candidate identification to clinical practice. MAbs. 2014;6(1):73–78. doi: 10.4161/mabs.27240
  • Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279(5349):377–380. doi: 10.1126/science.279.5349.377
  • Drin G, Rousselle C, Scherrmann JM, et al. Peptide delivery to the brain via adsorptive-mediated endocytosis: advances with SynB vectors. AAPS Pharm Sci. 2002;4(4):E26. doi: 10.1208/ps040426
  • Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature. 1996;380(6572):364–366. doi: 10.1038/380364a0
  • Giordano RJ, Edwards JK, Tuder RM, et al. Combinatorial ligand-directed lung targeting. Proc Am Thorac Soc. 2009;6(5):411–415. doi: 10.1513/pats.200903-014AW
  • Driessen WH, Bronk LF, Edwards JK, et al. On the synergistic effects of ligand-mediated and phage-intrinsic properties during in vivo selection. Adv Genet. 2010;69:115–133. doi: 10.1016/S0065-2660(10)69005-0
  • Staquicini DI, Barbu EM, Zemans RL, et al. Targeted phage display-based pulmonary vaccination in mice and non-human primates. Med. 2021;2(3):321–342. doi: 10.1016/j.medj.2020.10.005
  • Loi M, Di Paolo D, Soster M, et al. Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings. J Control Release. 2013;170(2):233–241. doi: 10.1016/j.jconrel.2013.04.029
  • Chang DK, Lin CT, Wu CH, et al. A novel peptide enhances therapeutic efficacy of liposomal anti-cancer drugs in mice models of human lung cancer. PLOS ONE. 2009;4(1):e4171. doi: 10.1371/journal.pone.0004171
  • Gray BP, Li S, Brown KC. From phage display to nanoparticle delivery: functionalizing liposomes with multivalent peptides improves targeting to a cancer biomarker. Bioconjug Chem. 2013;24(1):85–96. doi: 10.1021/bc300498d
  • Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell. 2019;10(11):787–807. doi: 10.1007/s13238-019-0639-7
  • Parmley SF, Smith GP. Filamentous fusion phage cloning vectors for the study of epitopes and design of vaccines. Adv Exp Med Biol. 1989;251:215–218. doi: 10.1007/978-1-4757-2046-4_21
  • Perham RN, Terry TD, Willis AE, et al. Engineering a peptide epitope display system on filamentous bacteriophage. FEMS Microbiol Rev. 1995;17(1–2):25–31. doi: 10.1111/j.1574-6976.1995.tb00184.x
  • Rangel R, Guzman-Rojas L, le Roux LG, et al. Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells. Nat Commun. 2012;3:788. doi: 10.1038/ncomms1773
  • Wu CH, Liu IJ, Lu RM, et al. Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci. 2016;23:8. doi: 10.1186/s12929-016-0223-x
  • Fairbrother WJ, Christinger HW, Cochran AG, et al. Novel peptides selected to bind vascular endothelial growth factor target the receptor-binding site. Biochemistry. 1998;37(51):17754–17764. doi: 10.1021/bi981931e
  • Fleming TJ, Sachdeva M, Delic M, et al. Discovery of high-affinity peptide binders to BLyS by phage display. J Mol Recognit. 2005;18(1):94–102. doi: 10.1002/jmr.722
  • Landon LA, Zou J, Deutscher SL. Is phage display technology on target for developing peptide-based cancer drugs? Curr Drug Discov Technol. 2004;1(2):113–132. doi: 10.2174/1570163043335108
  • Sato AK, Sexton DJ, Dransfield DT, et al. KDR and VEGF/KDR binding peptides and their use in diagnosis and therapy. WO03074005. 2003.
  • Rich SJ, Bello-Quintero CE. Advancements in the treatment of psoriasis: role of biologic agents. J Manag Care Pharm. 2004;10(4):318–325. doi: 10.18553/jmcp.2004.10.4.318
  • Balan V, Nelson DR, Sulkowski MS, et al. A Phase I/II study evaluating escalating doses of recombinant human albumin-interferon-alpha fusion protein in chronic hepatitis C patients who have failed previous interferon-alpha-based therapy. Antivir Ther. 2006;11(1):35–45. doi: 10.1177/135965350601100111
  • Fishbane S, Roger SD, Martin E, et al. Peginesatide for maintenance treatment of anemia in hemodialysis and nondialysis patients previously treated with darbepoetin alfa. Clin J Am Soc Nephrol. 2013;8(4):538–545. doi: 10.2215/CJN.03440412
  • Véniant MM, Lu SC, Atangan L, et al. A GIPR antagonist conjugated to GLP-1 analogues promotes weight loss with improved metabolic parameters in preclinical and phase 1 settings. Nat Metab. 2024;6(2):290–303. doi: 10.1038/s42255-023-00966-w
  • Rebar EJ, Greisman HA, Pabo CO. Phage display methods for selecting zinc finger proteins with novel DNA-binding specificities. Methods Enzymol. 1996;267:129–149. doi: 10.1016/s0076-6879(96)67010-4
  • Wu H, Yang WP, Barbas CF 3rd. Building zinc fingers by selection: toward a therapeutic application. Proc Natl Acad Sci, USA. 1995;92(2):344–348. doi: 10.1073/pnas.92.2.344
  • Hutchings CJ, Cseke G, Osborne G, et al. Monoclonal anti-β1-adrenergic receptor antibodies activate G protein signaling in the absence of β-arrestin recruitment. MAbs. 2014;6(1):246–261. doi: 10.4161/mabs.27226
  • Mileni M. Modified membrane spanning proteins and methods for the preparation and use thereof. US 0123956. 2016.
  • Schütz M, Schöppe J, Sedlák E, et al. Directed evolution of G protein-coupled receptors in yeast for higher functional production in eukaryotic expression hosts. Sci Rep. 2016;6:21508. doi: 10.1038/srep21508
  • Scott DJ, Kummer L, Egloff P, et al. Improving the apo-state detergent stability of NTS1 with CHESS for pharmacological and structural studies. Biochim Biophys Acta. 2014;1838(11):2817–2824. doi: 10.1016/j.bbamem.2014.07.015
  • Gardill B, Huang J, Tu L, et al. Nanodisc technology facilitates identification of monoclonal antibodies targeting multi-pass membrane proteins. Sci Rep. 2020;10(1):1130. doi: 10.1038/s41598-020-58002-w
  • Doranz BJ, Willis S. Lipoparticles comprising proteins, methods of making, and using the same. US 8574590. 2004.
  • Suharni, Nomura Y, Arakawa T, et al. Proteoliposome-based selection of a recombinant antibody fragment against the human M2 muscarinic acetylcholine receptor. Monoclon Antib Immunodiagn Immunother. 2014;33(6):378–385. doi: 10.1089/mab.2014.0041
  • Sharma P, Plant M, Lam SK, et al. Kinetic analysis of antibody binding to integral membrane proteins stabilized in SMALPs. BBA Adv. 2021;1:100022. doi: 10.1016/j.bbadva.2021.100022
  • Kristensen P, Winter G. Proteolytic selection for protein folding using filamentous bacteriophages. Fold Des. 1998;3(5):321–328. doi: 10.1016/S1359-0278(98)00044-3
  • Dobson CL, Devine PW, Phillips JJ, et al. Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Sci Rep. 2016;6(1):38644. doi: 10.1038/srep38644
  • Tulika T, Pederson RW, Rimbault C, et al. Phage display assisted discovery of a pH-dependent anti-α-cobratoxin antibody from a natural variable domain library. Protein Sci. 2023 Oct;32(12):e4821. doi: 10.1002/pro.4821
  • Bracken CJ, Lim SA, Solomon P, et al. Bi-paratopic and multivalent human VH domains neutralize SARS-CoV-2 by targeting distinct epitopes within the ACE2 binding interface of Spike. bio Rxiv. 2020. doi: 10.1101/2020.08.08.242511
  • Parsons HL, Earnshaw JC, Wilton J, et al. Directing phage selections towards specific epitopes. Protein Eng. 1996;9(11):1043–1049. doi: 10.1093/protein/9.11.1043
  • Zeng X, Li L, Lin J, et al. Isolation of a human monoclonal antibody specific for the receptor binding domain of SARS-CoV-2 using a competitive phage biopanning strategy. Antib Ther. 2020;3(2):95–100. doi: 10.1093/abt/tbaa008
  • Fitting J, Blume T, Ten Haaf A, et al. Phage display-based generation of novel internalizing antibody fragments for immunotoxin-based treatment of acute myeloid leukemia. MAbs. 2015;7(2):390–402. doi: 10.1080/19420862.2015.1007818
  • Peissert F, Pedotti M, Corbellari R, et al. Adapting neutralizing antibodies to viral variants by structure-guided affinity maturation using phage display technology. Glob Chall. 2023;7(10):2300088. doi: 10.1002/gch2.202300088
  • Jespers LS, Roberts A, Mahler SM, et al. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology. 2004;12(9):899–903. doi: 10.1038/nbt0994-899
  • Lowe DC, Gerhardt S, Ward A, et al. Engineering a high-affinity anti-IL-15 antibody: crystal structure reveals an α-helix in VH CDR3 as key component of paratope. J Mol Biol. 2011;406(1):160–175. doi: 10.1016/j.jmb.2010.12.017
  • Cannon DA, Shan L, Du Q, et al. Experimentally guided computational antibody affinity maturation with de novo docking, modelling and rational design. PLoS Comput Bio. 2019;15(5):e1006980. doi: 10.1371/journal.pcbi.1006980
  • Nelson MH, Fritzell S, Miller R, et al. The bispecific tumor antigen-conditional 4-1BB x 5T4 agonist, ALG.APV-527, mediates strong T-Cell activation and potent antitumor activity in preclinical studies. Mol Cancer Ther. 2023;22(1):89–101. doi: 10.1158/1535-7163.MCT-22-0395
  • Nimrod G, Fischman S, Austin M, et al. Computational design of epitope-specific functional antibodies. Cell Rep. 2018;25(8):2121–2131. doi: 10.1016/j.celrep.2018.10.081
  • Grihalde ND, Collins CA, Pellacani AU, et al. GLP-1 receptor agonist and allosteric modulator monoclonal antibodies and uses thereof. US0275288. 2006.
  • Hermann T, Bueltmann A. Antibodies targeting specifically human CXCR2. US0060347. 2016.
  • Hutchings CJ, Koglin M, Marshall FH. Therapeutic antibodies directed at G protein-coupled receptors. MAbs. 2010;2(6):594–606. doi: 10.4161/mabs.2.6.13420
  • Hutchings CJ, Koglin M, Olson WC, et al. Opportunities for therapeutic antibodies directed at G protein-coupled receptors. Nat Rev Drug Discov. 2017;16(9):661. doi: 10.1038/nrd.2017.173
  • Kelil A, Gallo E, Banerjee S, et al. CellectSeq: In silico discovery of antibodies targeting integral membrane proteins combining in situ selections and next-generation sequencing. Commun Biol. 2021;4(1):561. doi: 10.1038/s42003-021-02066-5
  • Philpott DN, Gomis S, Wang H, et al. Rapid on-cell selection of high-performance human antibodies. ACS Cent Sci. 2022;8(1):102–109. doi: 10.1021/acscentsci.1c01205
  • André AS, Moutinho I, Jnr D, et al. In vivo Phage Display: A promising selection strategy for the improvement of antibody targeting and drug delivery properties. Front Microbiol. 2022;13:962124. doi: 10.3389/fmicb.2022.962124
  • Zou J, Dickerson MT, Owen NK, et al. Biodistribution of filamentous phage peptide libraries in mice. Mol Biol Rep. 2004;31(2):121–129. doi: 10.1023/B:MOLE.0000031459.14448.af
  • Zurita AJ, Troncoso P, Cardó-Vila M, et al. Combinatorial screenings in patients: the interleukin-11 receptor alpha as a candidate target in the progression of human prostate cancer. Cancer Res. 2004;64(2):435–439. doi: 10.1158/0008-5472.CAN-03-2675
  • Deramchia K, Jacobin-Valat MJ, Vallet A, et al. In vivo phage display to identify new human antibody fragments homing to atherosclerotic endothelial and subendothelial tissues. Am J Pathol. 2012;180(6):2576–2589. doi: 10.1016/j.ajpath.2012.02.013
  • Hemadou A, Fontayne A, Laroche-Traineau J, et al. In vivo human single-chain fragment variable phage display-assisted identification of Galectin-3 as a new biomarker of atherosclerosis. J Am Heart Assoc. 2021;10(19):e016287. doi: 10.1161/JAHA.120.016287
  • Ueberberg S, Schneider S. Phage library-screening: a powerful approach for generation of targeting-agents specific for normal pancreatic islet-cells and islet-cell carcinoma in vivo. Regul Pept. 2010;160(1–3):1–8. doi: 10.1016/j.regpep.2009.11.017
  • Krag DN, Shukla GS, Shen GP, et al. Selection of tumor-binding ligands in cancer patients with phage display libraries. Cancer Res. 2006;66(15):7724–7733. doi: 10.1158/0008-5472.CAN-05-4441
  • van Lith SA, Roodink I, Verhoeff JJ, et al. In vivo phage display screening for tumor vascular targets in glioblastoma identifies a llama nanobody against dynactin-1-p150Glued. Oncotarget. 2016;7(44):71594–71607. doi: 10.18632/oncotarget.12261
  • Aguiar SI, Dias JNR, André AS, et al. Highly specific blood-brain barrier transmigrating single-domain antibodies selected by an In vivo phage display screening. Pharmaceutics. 2021;13(10):1598. doi: 10.3390/pharmaceutics13101598
  • André AS, Dias JNR, Aguiar SI, et al. Rabbit derived VL single-domains as promising scaffolds to generate antibody–drug conjugates. Sci Rep. 2023;13(1):4837. doi: 10.1038/s41598-023-31568-x
  • Ravn U, Gueneau F, Baerlocher L, et al. By-passing in vitro screening–next generation sequencing technologies applied to antibody display and in silico candidate selection. Nucleic Acids Res. 2010;38(21):e193. doi: 10.1093/nar/gkq789
  • Barreto K, Maruthachalam BV, Hill W, et al. Next-generation sequencing-guided identification and reconstruction of antibody CDR combinations from phage selection outputs. Nucleic Acids Res. 2019;47(9):e50. doi: 10.1093/nar/gkz131
  • D’Angelo S, Kumar S, Naranjo L, et al. From deep sequencing to actual clones. Protein Eng Des Sel. 2014;27(10):301–307. doi: 10.1093/protein/gzu032
  • Yang W, Yoon A, Lee S, et al. Next-generation sequencing enables the discovery of more diverse positive clones from a phage-displayed antibody library. Exp Mol Med. 2017;49(3):e308. doi: 10.1038/emm.2017.22
  • Park M, de Villavicencio Diaz TN, Lange V, et al. Exploring the sheep (Ovis aries) immunoglobulin repertoire by next generation sequencing. Mol Immunol. 2023;156:20–30. doi: 10.1016/j.molimm.2023.02.008
  • Fischer N. Sequencing antibody repertoires: the next generation. MAbs. 2011;3(1):17–20. doi: 10.4161/mabs.3.1.14169
  • Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–351. doi: 10.1038/nrg.2016.49
  • Rouet R, Jackson KJL, Langley DB, et al. Next-generation sequencing of antibody display repertoires. Front Immunol. 2018;9:118. doi: 10.3389/fimmu.2018.00118
  • Hu T, Chitnis N, Monos D, et al. Next-generation sequencing technologies: An overview. Hum Immunol. 2021;82(11):801–811. doi: 10.1016/j.humimm.2021.02.012
  • Unkauf T, Miethe S, Fühner V, et al. Generation of recombinant antibodies against toxins and viruses by phage display for diagnostics and therapy. Adv Exp Med Biol. 2016;917:55–76.
  • Eddleston M, Senarathna L, Mohammed F, et al. Deaths due to the lack of an affordable antitoxin for plant poisoning. Lancet. 2003;362(9389):1041–1044. doi: 10.1016/S0140-6736(03)14415-7
  • Sinclair AJ, Hewick DS, Johnston PC, et al. Kinetics of digoxin and anti-digoxin antibody fragments during treatment of digoxin toxicity. Br J Clin Pharmacol. 1989;28(3):352–356. doi: 10.1111/j.1365-2125.1989.tb05437.x
  • Kini RM, Sidhu S, Laustsen AH. Biosynthetic oligoclonal antivenom (BOA) for snakebite and next-generation treatments for snakebite victims. Toxins (Basel). 2018;10(12):534. doi: 10.3390/toxins10120534
  • Laustsen AH, Karatt-Vellatt A, Masters EW, et al. In vivo neutralization of dendrotoxin-mediated neurotoxicity of black mamba venom by oligoclonal human IgG antibodies. Nat Commun. 2018;9(1):4957. doi: 10.1038/s41467-018-07480-8
  • Luz D, Gómez FD, Ferreira RL, et al. The deleterious effects of shiga toxin type 2 are neutralized in vitro by FabF8: Stx2 recombinant monoclonal antibody. Toxins (Basel). 2021;13(11):825. doi: 10.3390/toxins13110825
  • Ledsgaard L, Laustsen AH, Pus U, et al. In vitro discovery of a human monoclonal antibody that neutralizes lethality of cobra snake venom. MAbs. 2022;14(1):2085536. doi: 10.1080/19420862.2022.2085536
  • Richard G, Meyers AJ, McLean MD, et al. In vivo neutralization of α-cobratoxin with high-affinity llama single-domain antibodies (VHHs) and a VHH-Fc antibody. PLoS One. 2013;8(7):e69495. doi: 10.1371/journal.pone.0069495
  • Bailon Calderon H, Yaniro Coronel VO, Cáceres Rey OA, et al. Development of nanobodies against hemorrhagic and myotoxic components of bothrops atrox snake venom. Front Immunol. 2020;11:655. doi: 10.3389/fimmu.2020.00655
  • Jenkins TP, Fryer T, Dehli RI, et al. Toxin neutralization using alternative binding proteins. Toxins (Basel). 2019;11(1):53. doi: 10.3390/toxins11010053
  • Jenkins TP, Laustsen AH. Cost of Manufacturing for recombinant snakebite antivenoms. Front Bioeng & Biotech. 2020;8:703. doi: 10.3389/fbioe.2020.00703
  • Alonso Villela SM, Kraïem-Ghezal H, Bouhaouala-Zahar B, et al. Production of recombinant scorpion antivenoms in E. coli: current state and perspective. Appl Microbiol Biotechnol. 2023;107(13):4133–4152. doi: 10.1007/s00253-023-12578-1
  • Raeisi H, Azimirad M, Nabavi-Rad A, et al. Application of recombinant antibodies for treatment of Clostridioides difficile infection: current status and future perspective. Front Immunol. 2022;13:972930. doi: 10.3389/fimmu.2022.972930
  • Boruah BM, Liu D, Ye D, et al. Single domain antibody multimers confer protection against rabies infection. PLOS ONE. 2013;8(8):e71383. doi: 10.1371/journal.pone.0071383
  • Turki I, Hammami A, Kharmachi H, et al. Engineering of a recombinant trivalent single-chain variable fragment antibody directed against rabies virus glycoprotein G with improved neutralizing potency. Mol Immunol. 2014;57(2):66–73. doi: 10.1016/j.molimm.2013.08.009
  • Guo Y, Ouyang Z, He W, et al. Screening and epitope characterization of diagnostic nanobody against total and activated Bacteroides fragilis toxin. Front Immunol. 2023;14:1065274. doi: 10.3389/fimmu.2023.1065274
  • Wenzel EV, Bosnak M, Tierney R, et al. Human antibodies neutralizing diphtheria toxin in vitro and in vivo. Sci Rep. 2020;10(1):571. doi: 10.1038/s41598-019-57103-5
  • Li Y, Moysey R, Peter E, et al. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat Biotechnol. 2005;23(3):349–354. doi: 10.1038/nbt1070
  • Boulter JM, Glick M, Todorov P, et al. Stable, soluble T-cell receptor molecules for crystallization and therapeutics. Protein Eng. 2003;6(9):707–711. doi: 10.1093/protein/gzg087
  • Palma M. Epitopes and mimotopes identification using phage display for vaccine development against infectious pathogens. Vaccines (Basel). 2023;11(7):1176. doi: 10.3390/vaccines11071176
  • Sato AK. Phage libraries. In: Morrow W, Sheikh N, Schmidt C, Davies D, editors. Vaccinology: principles and practice. Wiley; 2012. doi: 10.1002/9781118345313.ch11
  • Ballmann R, Hotop SK, Bertoglio F, et al. ORFeome phage display reveals a major immunogenic epitope on the S2 Subdomain of SARS-CoV-2 spike protein. Viruses. 2022;14(6):1326. doi: 10.3390/v14061326
  • Khurana S, Wu J, Verma N, et al. H5N1 virus-like particle vaccine elicits cross-reactive neutralizing antibodies that preferentially bind to the oligomeric form of influenza virus hemagglutinin in humans. J Virol. 2011;85(21):10945–10954. doi: 10.1128/JVI.05406-11
  • Wang L, Deng X, Liu H, et al. The mimic epitopes of Mycobacterium tuberculosis screened by phage display peptide library have serodiagnostic potential for tuberculosis. Pathog Dis. 2016;74(8):ftw091. doi: 10.1093/femspd/ftw091
  • Eda S, Sherman IW. Selection of peptides recognized by human antibodies against the surface of Plasmodium falciparum-infected erythrocytes. Parasitology. 2005;130(Pt 1):1–11. doi: 10.1017/S0031182004006328
  • Palma M. Aspects of phage-based vaccines for protein and epitope immunization. Vaccines (Basel). 2023;11(2):436. doi: 10.3390/vaccines11020436
  • Becker M, Felsberger A, Frenzel A, et al. Application of M13 phage display for identifying immunogenic proteins from tick (Ixodes scapularis) saliva. BMC Biotechnol. 2015;15:43. doi: 10.1186/s12896-015-0167-3
  • Mendonça M, Moreira GM, Conceição FR, et al. Fructose 1,6-bisphosphate aldolase, a novel immunogenic surface protein on listeria species. PLOS ONE. 2016;11(8):e0160544. doi: 10.1371/journal.pone.0160544
  • Moreira GMSG, Köllner SMS, Helmsing S, et al. Pyruvate dehydrogenase complex—enzyme 2, a new target for Listeria spp. detection identified using combined phage display technologies. Sci Rep. 2020;10(1):15267. doi: 10.1038/s41598-020-72159-4
  • Ramli SR, Moreira GMSG, Zantow J, et al. Discovery of Leptospira spp. seroreactive peptides using ORFeome phage display. PLOS Negl Trop Dis. 2019;13(1):e0007131. doi: 10.1371/journal.pntd.0007131
  • Heine PA, Ballmann R, Thevarajah P, et al. Biomarker Discovery by ORFeome Phage Display. Methods Mol Biol. 2023;2702:543–561. doi: 10.1007/978-1-0716-3381-6_27
  • Li W. ORF phage display to identify cellular proteins with different functions. Methods. 2012;58(1):2–9. doi: 10.1016/j.ymeth.2012.07.013
  • Baum A, Fulton BO, Wloga E, et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science. 2020;69(6506):1014–1018. doi: 10.1126/science.abd0831
  • Hansen J, Baum A, Pascal KE, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science. 2020;369(6506):1010–1014. doi: 10.1126/science.abd0827
  • Jones BE, Brown-Augsburger PL, Corbett KS, et al. The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Sci Transl Med. 2021;3(593):eabf1906. doi: 10.1126/scitranslmed.abf1906
  • Bell BN, Powell AE, Rodriguez C, et al. Neutralizing antibodies targeting the SARS-CoV-2 receptor binding domain isolated from a naïve human antibody library. Protein Sci. 2021;30(4):716–727. doi: 10.1002/pro.4044
  • Chen X, Gentili M, Hacohen N, et al. A cell-free nanobody engineering platform rapidly generates SARS-CoV-2 neutralizing nanobodies. Nat Commun. 2021;12(1):5506. doi: 10.1038/s41467-021-25777-z
  • Cantera JL, Cate DM, Golden A, et al. Screening antibodies raised against the spike glycoprotein of SARS-CoV-2 to support the development of rapid antigen assays. ACS Omega. 2021;6(31):20139–20148. doi: 10.1021/acsomega.1c01321
  • Hastie KM, Li H, Bedinger D, et al. Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: a global consortium study. Science. 2021;374(6566):472–478. doi: 10.1126/science.abh2315
  • Bertoglio F, Fühner V, Ruschig M, et al. A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients binds to the ACE2-RBD interface and is tolerant to most known RBD mutations. Cell Rep. 2021;6(4):109433. doi: 10.1016/j.celrep.2021.109433
  • Bertoglio F, Meier D, Langreder N, et al. SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface. Nat Commun. 2021;12(1):1577. doi: 10.1038/s41467-021-21609-2
  • Ferrara F, Erasmus MF, D’Angelo S, et al. A pandemic-enabled comparison of discovery platforms demonstrates a naïve antibody library can match the best immune-sourced antibodies. Nat Commun. 2022;13(1):462. doi: 10.1038/s41467-021-27799-z
  • Kügler J, Wilke S, Meier D, et al. Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol. 2015;15:10. doi: 10.1186/s12896-015-0125-0
  • Rouet R, Mazigi O, Walker GJ, et al. Potent SARS-CoV-2 binding and neutralization through maturation of iconic SARS-CoV-1 antibodies. MAbs. 2021;13(1):1922134. doi: 10.1080/19420862.2021.1922134
  • Zhao F, Keating C, Ozorowski G, et al. Engineering SARS-CoV-2 neutralizing antibodies for increased potency and reduced viral escape pathways. iScience. 2022;25(9):104914. doi: 10.1016/j.isci.2022.104914
  • Zhao F, Yuan M, Keating C, et al. Broadening a SARS-CoV-1-neutralizing antibody for potent SARS-CoV-2 neutralization through directed evolution. Sci Signal. 2023;16(798):eabk3516. doi: 10.1126/scisignal.abk3516
  • Fedry J, Hurdiss DL, Wang C, et al. Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11. Sci Adv. 2021;7(23):eabf5632. doi: 10.1126/sciadv.abf5632
  • Starr TN, Greaney AJ, Dingens AS, et al. Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep Med. 2021;2(4):100255. doi: 10.1016/j.xcrm.2021.100255
  • Yuan TZ, Lucas C, Monteiro VS, et al. A synthetic bispecific antibody capable of neutralizing SARS-CoV-2 delta and omicron. bio Rxiv. 2022. doi: 10.1101/2022.01.04.474803
  • Hanes J, Plückthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci, USA. 1997;94(10):4937–4942. doi: 10.1073/pnas.94.10.4937
  • Hanes J, Jermutus L, Weber-Bornhauser S. Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci, USA. 1998;5(24):14130–14135. doi: 10.1073/pnas.95.24.14130
  • Bencurova E, Pulzova L, Flachbartova Z, et al. A rapid and simple pipeline for synthesis of mRNA-ribosome-V(H)H complexes used in single-domain antibody ribosome display. Mol Biosyst. 2015;11(6):1515–1524. doi: 10.1039/C5MB00026B
  • Schilling J, Schöppe J, Plückthun A. From DARPins to LoopDARPins: novel LoopDARPin design allows the selection of low picomolar binders in a single round of ribosome display. J Mol Biol. 2014;426(3):691–721. doi: 10.1016/j.jmb.2013.10.026
  • Thom G, Minter R. Optimization of CAT-354, a therapeutic antibody directed against interleukin-13, using ribosome display. Methods Mol Biol. 2012;805:393–401. doi: 10.1007/978-1-61779-379-0_22
  • Adimab LLC. Rationally designed synthetic antibody libraries and uses therefor. WO2009036379. 2009.
  • Arras P, Yoo HB, Pekar L, et al. AI/ML combined with next-generation sequencing of VHH immune repertoires enables the rapid identification of de novo humanized and sequence-optimized single domain antibodies: a prospective case study. Front Mol Biosci. 2023;10:1249247. doi: 10.3389/fmolb.2023.1249247
  • Koide A, Koide S. Affinity maturation of single-domain antibodies by yeast surface display. Methods Mol Biol. 2012;911:431–443. doi: 10.1007/978-1-61779-968-6_26
  • Parthiban K, Perera RL, Sattar M, et al. A comprehensive search of functional sequence space using large mammalian display libraries created by gene editing. MAbs. 2019;11(5):884–898. doi: 10.1080/19420862.2019.1618673
  • Odegrip R, Coomber D, Eldridge B, et al. CIS display: In vitro selection of peptides from libraries of protein-DNA complexes. Proc Natl Acad Sci, USA. 2004;101(9):2806–2810. doi: 10.1073/pnas.0400219101
  • Dyson MR, Masters E, Pazeraitis D, et al. Beyond affinity: selection of antibody variants with optimal biophysical properties and reduced immunogenicity from mammalian display libraries. MAbs. 2020;12(1):1829335. doi: 10.1080/19420862.2020.1829335
  • Erasmus MF, Ferrara F, D’Angelo S, et al. Insights into next generation sequencing guided antibody selection strategies. Sci Rep. 2023;13(1):18370. doi: 10.1038/s41598-023-45538-w
  • Trkulja CL, Jungholm O, Davidson M, et al. Rational antibody design for undruggable targets using kinetically controlled biomolecular probes. Sci Adv. 2021;7(16):eabe6397. doi: 10.1126/sciadv.abe6397
  • Ow SY, Kapp EA, Tomasetig V, et al. HDX-MS study on garadacimab binding to activated FXII reveals potential binding interfaces through differential solvent exposure. MAbs. 2023;15(1):2163459. doi: 10.1080/19420862.2022.2163459
  • Minkoff BB, Blatz JM, Choudhury FA, et al. Plasma-generated OH radical production for analyzing three-dimensional structure in protein therapeutics. Sci Rep. 2017;7(1):12946. doi: 10.1038/s41598-017-13371-7
  • Sun H, Hu N, Wang J. Application of microfluidic technology in antibody screening. Biotech J. 2022;17(8):e2100623. doi: 10.1002/biot.202100623
  • Sanluis-Verdes A, Peñaherrera A, Torán JL, et al. Selection of phage-displayed antibodies with high affinity and specificity by electrophoresis in microfluidic devices. Electrophoresis. 2023;44(9–10):864–872. doi: 10.1002/elps.202200187
  • Zehnaker A, Vallet A, Gourdon J, et al. Combined multiplexed phage display, high-throughput sequencing, and functional assays as a platform for identifying modulatory VHHs targeting the FSHR. Int J Mol Sci. 2023;4(21):15961. doi: 10.3390/ijms242115961
  • Xiao X, Douthwaite JA, Chen Y, et al. A high-throughput platform for population reformatting and mammalian expression of phage display libraries to enable functional screening as full-length IgG. MAbs. 2017;9(6):996–1006. doi: 10.1080/19420862.2017.1337617
  • Fisher SM, Trail D, Hecht RI. The high throughput purification of Fc-fusion proteins. Process Biochemistry. 2006;41:2473–2476. doi: 10.1016/j.procbio.2006.06.010
  • Gaston J, Maestrali N, Lalle G, et al. Intracellular delivery of therapeutic antibodies into specific cells using antibody-peptide fusions. Sci Rep. 2019;9(1):18688. doi: 10.1038/s41598-019-55091-0
  • Peng X, Liu X, Kim JY, et al. Brain-penetrating peptide shuttles across the blood-brain-barrier and extracellular-like space. Bioconjug Chem. 2023;34(12):2319–2336. doi: 10.1021/acs.bioconjchem.3c00446
  • Hong FU, Castro M, Linse K. Tumor specifically internalizing peptide ‘HN-1’: targeting the putative receptor retinoblastoma-regulated discoidin domain receptor 1 involved in metastasis. World J Clin Oncol. 2022;13(5):323–338. doi: 10.5306/wjco.v13.i5.323
  • Rangel R, Dobroff AS, Guzman-Rojas L, et al. Targeting mammalian organelles with internalizing phage (iPhage) libraries. Nat Protoc. 2013;8(10):1916–1939. doi: 10.1038/nprot.2013.119
  • Chung DH, Kong S, Young NJ, et al. Rare antibody phage isolation and discrimination (RAPID) biopanning enables identification of high-affinity antibodies against challenging targets. Commun Biol. 2023;6(1):1036. doi: 10.1038/s42003-023-05390-0
  • Hie BL, Shanker VR, Xu D, et al. Efficient evolution of human antibodies from general protein language models. Nat Biotechnol. 2024;42(2):275–283. doi: 10.1038/s41587-023-01763-2
  • Maxwell MA, Wang L, Safavi C, et al. Discovery and optimization of novel complement component 5a receptor 1 antagonist antibodies. In: Conference poster presentation, Antibody Engineering & Therapeutics. San Diego; 2023 Dec.
  • Petrenko VA. Phage Display’s prospects for early diagnosis of prostate cancer. Viruses. 2024;16(2):277. doi: 10.3390/v16020277
  • Wang M, Pang S, Zhang H, et al. Phage display derived probes in biosensing. Trends Analyt Chem. 2024;173:117629. doi: 10.1016/j.trac.2024.117629
  • San Segundo-Acosta P, Montero-Calle A, Fuentes M, et al. Identification of Alzheimer’s disease autoantibodies and their target biomarkers by phage microarrays. J Proteome Res. 2019;18(7):2940–2953. doi: 10.1021/acs.jproteome.9b00258
  • Han L, Liu P, Petrenko VA, et al. A label-free electrochemical impedance cytosensor based on specific peptide-fused phage selected from landscape phage library. Sci Rep. 2016;6:22199. doi: 10.1038/srep22199