487
Views
0
CrossRef citations to date
0
Altmetric
Review

The coming of age of cyclic peptide drugs: an update on discovery technologies

, &
Pages 961-973 | Received 25 Apr 2024, Accepted 07 Jun 2024, Published online: 14 Jun 2024

References

  • Buxbaum JD, Chernew ME, Fendrick AM, et al. Contributions of public health, pharmaceuticals, and other medical care to US life expectancy changes, 1990-2015. Health Aff. 2020 Sep;39(9):1546–1556. doi: 10.1377/hlthaff.2020.00284
  • Cohen P, Cross D, Jänne PA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov. 2021 Jul;20(7):551–569. doi: 10.1038/s41573-021-00195-4
  • Benedek TG. History of the development of corticosteroid therapy. Clin Exp Rheumatol. 2011 Sep;29(5 Suppl 68):S-5–12.
  • Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002 Sep;1(9):727–730. doi: 10.1038/nrd892
  • Shepard HM, Phillips GL, Dt C, et al. Developments in therapy with monoclonal antibodies and related proteins. Clin Med (Lond). 2017 Jun;17(3):220–232. doi: 10.7861/clinmedicine.17-3-220
  • Muttenthaler M, King GF, Adams DJ, et al. Trends in peptide drug discovery. Nat Rev Drug Discov. 2021 Apr;20(4):309–325. doi: 10.1038/s41573-020-00135-8
  • Vu QN, Young R, Sudhakar HK, et al. Cyclisation strategies for stabilising peptides with irregular conformations. RSC Med Chem. 2021 Jun 23;12(6):887–901. doi: 10.1039/d1md00098e
  • Wang CK, Swedberg JE, Northfield SE, et al. Effects of cyclization on peptide backbone dynamics. J Phys Chem B. 2015 Dec 31;119(52):15821–15830. doi: 10.1021/acs.jpcb.5b11085
  • Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem. 2021 Aug 18;12(8):1325–1351. doi: 10.1039/d1md00083g
  • Borel JF, Kis ZL, Beveridge T. The history of the discovery and development of Cyclosporine (Sandimmune®). In: Merluzzi V Adams J, editors. The search for anti-inflammatory drugs: case histories from concept to clinic. Boston (MA): Birkhäuser Boston; 1995. p. 27–63.
  • Corbett KM, Ford L, Warren DB, et al. Cyclosporin structure and permeability: from a to Z and beyond. J Med Chem. 2021 Sep 23;64(18):13131–13151. doi: 10.1021/acs.jmedchem.1c00580
  • Abdel-Kahaar E, Keller F. Clinical pharmacokinetics and pharmacodynamics of Voclosporin. Clin Pharmacokinet. 2023 May;62(5):693–703. doi: 10.1007/s40262-023-01246-2
  • Ueda H, Nakajima H, Hori Y, et al. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J Antibiot (Tokyo). 1994 Mar;47(3):301–310. doi: 10.7164/antibiotics.47.301
  • Furumai R, Matsuyama A, Kobashi N, et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 2002 Sep 1;62(17):4916–4921.
  • Lamarre D, Anderson PC, Bailey M, et al. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature. 2003 Nov 13;426(6963):186–189. doi: 10.1038/nature02099
  • Tsantrizos YS, Bolger G, Bonneau P, et al. Macrocyclic inhibitors of the NS3 protease as potential therapeutic agents of hepatitis C virus infection. Angew Chem Int Ed Engl. 2003 Mar 28;42(12):1356–1360. doi: 10.1002/anie.200390347
  • de Leuw P, Stephan C. Protease inhibitors for the treatment of hepatitis C virus infection. GMS Infect Dis. 2017;5:Doc08. doi: 10.3205/id000034
  • Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985 Jun 14;228(4705):1315–1317. doi: 10.1126/science.4001944
  • Heinis C, Rutherford T, Freund S, et al. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat Chem Biol. 2009 Jul;5(7):502–507. doi: 10.1038/nchembio.184
  • Mastellos DC, Ricklin D, Sfyroera G, et al. From discovery to approval: A brief history of the compstatin family of complement C3 inhibitors. Clin Immunol. 2022 Feb;235:108785. doi: 10.1016/j.clim.2021.108785
  • Sahu A, Kay BK, Lambris JD. Inhibition of human complement by a C3-binding peptide isolated from a phage-displayed random peptide library. J Immunol. 1996 Jul 15;157(2):884–891. doi: 10.4049/jimmunol.157.2.884
  • Hasturk H, Hajishengallis G, Lambris JD, et al. Phase IIa clinical trial of complement C3 inhibitor AMY-101 in adults with periodontal inflammation. J Clin Invest. 2021 Dec 1;131(23). doi: 10.1172/jci152973
  • Rafii S, Avecilla ST, Jin DK. Tumor vasculature address book: identification of stage-specific tumor vessel zip codes by phage display. Cancer Cell. 2003 Nov;4(5):331–333. doi: 10.1016/s1535-6108(03)00278-2
  • Dean A, Gill S, McGregor M, et al. Dual αV-integrin and neuropilin-1 targeting peptide CEND-1 plus nab-paclitaxel and gemcitabine for the treatment of metastatic pancreatic ductal adenocarcinoma: a first-in-human, open-label, multicentre, phase 1 study. Lancet Gastroenterol Hepatol. 2022 Oct;7(10):943–951. doi: 10.1016/s2468-1253(22)00167-4
  • Teufel DP, Bennett G, Harrison H, et al. Stable and long-lasting, novel bicyclic peptide plasma kallikrein inhibitors for the treatment of diabetic macular edema. J Med Chem. 2018 Apr 12;61(7):2823–2836. doi: 10.1021/acs.jmedchem.7b01625
  • Bennett G, Brown A, Mudd G, et al. MMAE delivery using the bicycle toxin conjugate BT5528. Mol Cancer Ther. 2020 Jul;19(7):1385–1394. doi: 10.1158/1535-7163.Mct-19-1092
  • Gowland C, Berry P, Errington J, et al. Development of a LC-MS/MS method for the quantification of toxic payload DM1 cleaved from BT1718 in a Phase I study. Bioanalysis. 2021 Jan;13(2):101–113. doi: 10.4155/bio-2020-0256
  • Hurov K, Lahdenranta J, Upadhyaya P, et al. BT7480, a novel fully synthetic Bicycle tumor-targeted immune cell agonist™ (Bicycle TICA™) induces tumor localized CD137 agonism. J Immunother Cancer. 2021 Nov;9(11):e002883. doi: 10.1136/jitc-2021-002883
  • Mudd GE, Scott H, Chen L, et al. Discovery of BT8009: a Nectin-4 targeting bicycle toxin conjugate for the treatment of cancer. J Med Chem. 2022 Nov 10;65(21):14337–14347. doi: 10.1021/acs.jmedchem.2c00065
  • Rigby M, Bennett G, Chen L, et al. BT8009; a Nectin-4 targeting bicycle toxin conjugate for treatment of solid tumors. Mol Cancer Ther. 2022 Dec 2;21(12):1747–1756. doi: 10.1158/1535-7163.Mct-21-0875
  • Tweed JA, Adams-Dam F, Allanson J, et al. Bioanalysis of the Bicycle(®) toxin conjugate BT5528 and released monomethyl auristatin E via liquid chromatography-tandem mass spectrometry. Bioanalysis. 2024 Feb;16(3):155–169. doi: 10.4155/bio-2023-0189
  • Upadhyaya P, Kristensson J, Lahdenranta J, et al. Discovery and optimization of a synthetic class of Nectin-4-Targeted CD137 agonists for immuno-oncology. J Med Chem. 2022 Jul 28;65(14):9858–9872. doi: 10.1021/acs.jmedchem.2c00505
  • Sandborn WJ, Mattheakis LC, Modi NB, et al. PTG-100, an oral α4β7 antagonist peptide: preclinical development and phase 1 and 2a studies in ulcerative colitis. Gastroenterology. 2021 Dec;161(6):1853–1864.e10. doi: 10.1053/j.gastro.2021.08.045
  • Modi NB, Cheng X, Mattheakis L, et al. Single- and multiple-dose pharmacokinetics and pharmacodynamics of PN-943, a gastrointestinal-restricted oral peptide antagonist of α4β7, in healthy volunteers. Clin Pharmacol Drug Dev. 2021 Nov;10(11):1263–1278. doi: 10.1002/cpdd.946
  • Bissonnette R, Pinter A, Ferris LK, et al. An Oral Interleukin-23-receptor antagonist peptide for plaque psoriasis. N Engl J Med. 2024 Feb 8;390(6):510–521. doi: 10.1056/NEJMoa2308713
  • Nemoto N, Miyamoto-Sato E, Husimi Y, et al. In vitro virus: bonding of mRNA bearing puromycin at the 3’-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett. 1997 Sep 8;414(2):405–408. doi: 10.1016/s0014-5793(97)01026-0
  • Roberts RW, Szostak JW. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12297–12302. doi: 10.1073/pnas.94.23.12297
  • Chen KE, Guo Q, Hill TA, et al. De novo macrocyclic peptides for inhibiting, stabilizing, and probing the function of the retromer endosomal trafficking complex. Sci Adv. 2021 Dec 3;7(49):eabg4007. doi: 10.1126/sciadv.abg4007
  • Johansen-Leete J, Ullrich S, Fry SE, et al. Antiviral cyclic peptides targeting the main protease of SARS-CoV-2. Chem Sci. 2022 Mar 30;13(13):3826–3836. doi: 10.1039/d1sc06750h
  • Liu W, de Veer SJ, Huang YH, et al. An ultrapotent and selective cyclic peptide inhibitor of human β-factor XIIa in a cyclotide scaffold. J Am Chem Soc. 2021 Nov 10;143(44):18481–18489. doi: 10.1021/jacs.1c07574
  • Passioura T, Suga H. A RaPID way to discover nonstandard macrocyclic peptide modulators of drug targets. Chem Commun (Camb). 2017 Feb 7;53(12):1931–1940. doi: 10.1039/c6cc06951g
  • Katoh T, Suga H. In vitro genetic code reprogramming for the expansion of usable noncanonical amino acids. Annu Rev Biochem. 2022 Jun 21;91(1):221–243. doi: 10.1146/annurev-biochem-040320-103817
  • Passioura T, Katoh T, Goto Y, et al. Selection-based discovery of druglike macrocyclic peptides. Annu Rev Biochem. 2014;83(1):727–752. doi: 10.1146/annurev-biochem-060713-035456
  • Schlippe YV, Hartman MC, Josephson K, et al. In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors. J Am Chem Soc. 2012 Jun 27;134(25):10469–10477. doi: 10.1021/ja301017y
  • Yamagishi Y, Shoji I, Miyagawa S, et al. Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library. Chem Biol. 2011 Dec 23;18(12):1562–1570. doi: 10.1016/j.chembiol.2011.09.013
  • Ohta A, Tanada M, Shinohara S, et al. Validation of a new methodology to create oral drugs beyond the rule of 5 for intracellular tough targets. J Am Chem Soc. 2023 Nov 8;145(44):24035–24051. doi: 10.1021/jacs.3c07145
  • de la Torre Bg, Albericio F. The pharmaceutical industry in 2023: an analysis of FDA drug approvals from the perspective of molecules. Molecules. 2024 Jan 25;29(3). doi: 10.3390/molecules29030585
  • Howard JF Jr., Bresch S, Genge A, et al. Safety and efficacy of zilucoplan in patients with generalised myasthenia gravis (RAISE): a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Neurol. 2023 May;22(5):395–406. doi: 10.1016/s1474-4422(23)00080-7
  • Howard JF Jr., Nowak RJ, Wolfe GI, et al. Clinical effects of the self-administered subcutaneous complement inhibitor Zilucoplan in patients with moderate to severe generalized myasthenia gravis: results of a phase 2 randomized, double-blind, placebo-controlled, multicenter clinical trial. JAMA Neurol. 2020 May 1;77(5):582–592. doi: 10.1001/jamaneurol.2019.5125
  • Tucker TJ, Embrey MW, Alleyne C, et al. A series of novel, highly potent, and orally bioavailable next-generation tricyclic peptide PCSK9 inhibitors. J Med Chem. 2021 Nov 25;64(22):16770–16800. doi: 10.1021/acs.jmedchem.1c01599
  • Alleyne C, Amin RP, Bhatt B, et al. Series of novel and highly potent cyclic peptide PCSK9 inhibitors derived from an mRNA display screen and optimized via structure-based design. J Med Chem. 2020 Nov 25;63(22):13796–13824. doi: 10.1021/acs.jmedchem.0c01084
  • Johns DG, Campeau LC, Banka P, et al. Orally bioavailable macrocyclic peptide that inhibits binding of PCSK9 to the low density lipoprotein receptor. Circulation. 2023 Jul 11;148(2):144–158. doi: 10.1161/circulationaha.122.063372
  • Tanada M, Tamiya M, Matsuo A, et al. Development of orally bioavailable peptides targeting an intracellular protein: from a hit to a clinical KRAS inhibitor. J Am Chem Soc. 2023 Aug 2;145(30):16610–16620. doi: 10.1021/jacs.3c03886
  • Jain AN, Brueckner AC, Jorge C, et al. Complex peptide macrocycle optimization: combining NMR restraints with conformational analysis to guide structure-based and ligand-based design. J Comput Aided Mol Des. 2023 Nov;37(11):519–535. doi: 10.1007/s10822-023-00524-2
  • Donnelly DJ, Kim J, Tran T, et al. The discovery and evaluation of [(18)F]BMS-986229, a novel macrocyclic peptide PET radioligand for the measurement of PD-L1 expression and in-vivo PD-L1 target engagement. Eur J Nucl Med Mol Imaging. 2024 Mar;51(4):978–990. doi: 10.1007/s00259-023-06527-3
  • Birch GC, Vergara-Cadavid J, Maqbool M, et al. Expansion, persistence, and characteristics of autologous, Bhv-1100 armored memory-like NK cells infused prior to autologous stem cell transplant in MRD+ multiple myeloma patients: a first-in-human trial. Blood. 2023;142(Supplement 1):2105–2105. doi: 10.1182/blood-2023-180224
  • Culler M, Milano S, Kurasaki H, et al. ODP353 sustained suppression of IGF1 with AZP-3813, a bicyclic 16-amino acid peptide antagonist of the human growth hormone receptor and a potential new treatment for acromegaly. J Endocr Soc. 2022 Nov 1;6(Suppl 1):A511. doi: 10.1210/jendso/bvac150.1062
  • Kurasaki H, Ohuchi M, Matsui K, et al. 2524. Safety and pharmacokinetics of PA-001, a new potential COVID-19 drug that targets the S2 subunit of SARS-CoV-2 spike protein, in healthy subjects. Open Forum Infect Dis. 2023;10(Supplement_2). doi: 10.1093/ofid/ofad500.2142
  • Kawamura T, Ohuchi M, Nagasawa T, et al. 2141. Preclinical evaluation of PA-001: a novel, potential macrocyclic peptide-based treatment for COVID-19 which binds to the S2 subunit of SARS-CoV-2 spike protein. Open Forum Infect Dis. 2023;10(Supplement_2). doi: 10.1093/ofid/ofad500.1764
  • Ito T, Nguyen TD, Saito Y, et al. Selection of target-binding proteins from the information of weakly enriched phage display libraries by deep sequencing and machine learning. MAbs. 2023 Jan;15(1):2168470. doi: 10.1080/19420862.2023.2168470
  • Chen H, Katoh T, Suga H. Macrocyclic peptides closed by a thioether-bipyridyl unit that grants cell membrane permeability. ACS Bio Med Chem Au. 2023 Oct 18;3(5):429–437. doi: 10.1021/acsbiomedchemau.3c00027

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.