6,264
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Determining optimal cadence for an individual road cyclist from field data

, , &

References

  • Abbiss, C. R., Peiffer, J. J., & Laursen, P. B. (2009). Optimal cadence selection during cycling. International Sports Medicine Journal, 10, 1–15. Retrieved from Sabinet: http://reference.sabinet.co.za/sa_epublication_article/ismj_v10_n1_a1
  • Angrist, J. D., Imbens, G. W., & Rubin, D. B. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association, 91, 444–455. doi:10.1080/01621459.1996.10476902
  • Arkesteijn, M., Jobson, S. A., Hopker, J., & Passfield, L. (2013). Effect of gradient on cycling gross efficiency and technique. Medicine and Science in Sports and Exercise, 45, 920–926. doi:10.1249/MSS.0b013e31827d1bdb
  • Calvert, T. W., Banister, E. W., Savage, M. V., & Bach, T. (1976). A systems model of the effects of training on physical performance. IEEE Transactions on Systems Man Cybernetics, 6, 94–102. doi:10.1109/TSMC.1976.5409179
  • Casella, G., & Berger, R. L. (2002). Statistical inference (2nd ed.). Pacific Grove, CA: Duxbury Press. ISBN-13: 978-0-534-24312-8
  • Chavarren, J., & Calbet, J. A. L. (1999). Cycling efficiency and pedalling frequency in road cyclists. European Journal of Applied Physiology, 50, 555–563. doi: 10.1007/s004210050634
  • Churchill, T., Sharma, D., & Balachandran, B. M. (2009). Correlation of training load and heart-rate variability indices in elite cyclists. In Koning & Scarf (Eds.), Mathematics in sport II (pp. 191–196). London: The Institute of Mathematics and Its Applications.
  • Coast, J. R., & Welch, H. G. (1985). Linear increase in optimal pedal rate with increased power output in cycle ergometry. European Journal of Applied Physiology, 53, 339–342. doi: 10.1007/BF00422850
  • Eckermann, P., & Millahn, H. P. (1967). Der Einfluss der Drehzahl auf die Herzfrequenz und die Sauerstoffaufnahme bei konstanter Leistung am Fahrradergometer. Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie, 23, 340–344.
  • Foss, O., & Hallen, J. (2004). The most economical cadence increases with increasing workload. European Journal of Applied Physiology, 92, 443–451. doi:10.1007/s00421-004-1175-5
  • Grazzi, G., Alfieri, N., Borsetto, C., Casoni, I., Manfredini, F., Mazzoni, G., & Conconi, F. (1999). The power output/heart-rate relationship in cycling: Test standardization and repeatability. Medicine and Science in Sports and Exercise, 31, 1478–1483. doi:10.1097/00005768-199910000-00019
  • Hagberg, J. M., Mullin, J. P., Giese, M. D., & Spitznagel, E. (1981). Effect of pedalling rate on submaximal exercise responses of competitive cyclists. Journal of Applied Physiology, 51, 447–451. American Physiology Society. Retrieved from http://jap.physiology.org/content/51/2/447
  • Jacobs, R. D., Berg, K. E., Slivka, D. R., & Noble, J. M. (2013). The effect of cadence on cycling efficiency and local tissue oxygenation. The Journal of Strength & Conditioning Research, 27, 637–642. doi:10.1519/JSC.0b013e31825dd224
  • Jeukendrup, A., & van Diemen, A. (1998). Heart-rate monitoring during training and competition in cyclists. Journal of Sports Sciences, 16, S91–S99. doi:10.1080/026404198366722
  • Jobson, S. A., Passfield, L., Atkinson, G., Barton, G., & Scarf P. A. (2009). The analysis and utilisation of cycling training data. Sports Medicine, 39, 833–844. doi:10.2165/11317840-000000000-00000
  • Kariya, T., & Kurata, H. (2004). Generalized least squares. Chichester: Wiley. ISBN 0-470-86697-7
  • Kendall, M., Stuart A., Ord, K., & Arnold, S. (1999). Kendall's theory of advanced statistics vol 2A: Classical inference and the linear model. London: Arnold. ISBN 0340662301
  • Leirdal, S., & Ettema, G. (2011). The relationship between cadence, pedalling technique and gross efficiency in cycling. European Journal of Applied Physiology, 111, 2885–2893. doi:10.1007/s00421-011-1914-3
  • MacIntosh, B. R., Neptune, R. R., & Horton, J. F. (2000). Cadence, power and muscle activation in cycle ergometry. Medicine and Science in Sports and Exercise, 32, 1281–1287. doi:0195-9131/00/3207-1281/0
  • Morton, R. H., Fitz-Clarke, J. R., & Banister, E. W. (1990). Modelling human performance in running. Journal of Applied Physiology, 69, 1171–1177. American Physiology Society. Retrieved from http://jap.physiology.org/content/69/3/1171
  • Passfield, L., & Doust, J. H. (2000). Changes in cycling efficiency and performance after endurance exercise. Medicine and Science in Sports and Exercise, 32, 1935–1941. doi:0195-9131/00/3211-1935/0
  • R Development Core Team. (2005). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.  ISBN 3-900051-07-0. Retrieved from http://www.R-project.org
  • Reed, R. (2013). A mathematical model to determine optimum cadence for an individual cyclist using power output, heart-rate and cadence data collected in the field (PhD thesis). University of Salford. Retrieved from http://usir.salford.ac.uk/30698/
  • Samozino, P., Horvais, N., & Hintzy, F. (2006). Interactions between cadence and power output effects on mechanical efficiency during sub maximal cycling exercise. European Journal of Applied Physiology, 97, 133–139. doi:10.1007/s00421-006-0132-x
  • Sassi, A., Rampinini, E., Martin, D. T., & Morelli, A. (2008). Effects of gradient and speed on freely chosen cadence: The key role of crank inertial load. Journal of Biomechanics, 42, 171–177. doi:10.1016/j.jbiomech.2008.10.008
  • Seabury, J. J., Adams, W. C., & Ramey, M. R. (1977). Influence of pedalling rate and power output on energy expenditure during bicycle ergometry. Ergonomics, 20, 491–498. doi:10.1080/00140137708931658
  • Stebbins, C. L., Moore, J. L., & Casazza, G. A. (2014). Effects of cadence on aerobic capacity following a prolonged, varied intensity cycling trial. Journal of Sports Science and Medicine, 13, 114–119. Retrieved from NCBI: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918546/
  • Stirling, J. R., Zakynthinaki, M., Refoyo, I., & Sampredo, J. (2008). A model of heart-rate kinetics in response to exercise. Journal of Nonlinear Mathematical Physics, 15, 426–436. doi:10.2991/jnmp.2008.15.s3.41
  • Wildrick, J. J., Freedson, P. S., & Hamill, J. (1992). Effect of internal work on the calculation of optimal pedalling rates. Medicine and Science in Sports and Exercise, 24, 376–382. Retrieved from European PubMed Central http://europepmc.org/abstract/MED/1549033
  • Wingo, J. E., Lafrenz, A. J., Ganio, M. S., Edwards, G. L., & Cureton, K. J. (2005). Cardiovascular drift is related to reduced maximal oxygen uptake during heat stress. Medicine and Science in Sports and Exercise, 37, 248–255. doi:0195-9131/05/3702-0248
  • Winter, E. M., & Knudsen, D. V. (2011). Terms and nomenclature. Journal of Sports Sciences, 29(10), 999–1000. doi:10.1080/02640414.2011.588821
  • Wooles, A. L., Robinson, A. J., & Keen, P. S. (2005). A static method for obtaining a calibration factor for SRM bicycle power cranks. Sports Engineering, 8, 137–144. doi:10.1007/BF02844014
  • World Medical Association. (2013). Declaration of Helsinki – ethical principles for medical research involving human subjects. Retrieved April 11, 2013, from http://www.wma.net/en/30publications/10policies/b3/.