1,091
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Effects of power variation on cycle performance during simulated hilly time-trials

&

References

  • Atkinson, G., & Brunskill, A. (2000). Pacing strategies during a cycling time trial with simulated headwinds and tailwinds. Ergonomics, 43(10), 1449–1460. doi:10.1080/001401300750003899
  • Atkinson, G., Peacock, O., & Law, M. (2007). Acceptability of power variation during a simulated hilly time trial. International Journal of Sports Medicine, 28(2), 157–163. doi:10.1055/s-2006-924209
  • Atkinson, G., Peacock, O., & Passfield, L. (2007). Variable versus constant power strategies during cycling time-trials: Prediction of time savings using an up-to-date mathematical model. Journal of Sports Sciences, 25(9), 1001–1009. doi:10.1080/02640410600944709
  • Black, M. I., Durant, J., Jones, A. M., & Vanhatalo, A. (2013). Critical power derived from a 3-min all-out test predicts 16.1-km road time-trial performance. European Journal of Sport Science.
  • Boswell, G. P. (2012). Power variation strategies for cycling time trials: A differential equation model. Journal of Sports Sciences, 30(7), 651–659. doi:10.1080/02640414.2012.654397
  • Brickley, G., Green, S., Jenkins, D. G., McEinery, M., Wishart, C., Doust, J. D., & Williams, C. A. (2007). Muscle metabolism during constant- and alternating-intensity exercise around critical power. International Journal of Sports Medicine, 28(4), 300–305. doi:10.1055/s-2006-924354
  • Broker, J. P., & Gregor, R. J. (1994). Mechanical energy management in cycling: Source relations and energy expenditure. Medicine and Science in Sports and Exercise, 26(1), 64–74. doi: 10.1249/00005768-199401000-00012
  • Burnley, M., Doust, J. H., & Vanhatalo, A. (2006). A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Medicine and Science in Sports and Exercise, 38(11), 1995–2003. doi:10.1249/01.mss.0000232024.06114.a6
  • Cangley, P., Passfield, L., Carter, H., & Bailey, M. (2011). The effect of variable gradients on pacing in cycling time-trials. International Journal of Sports Medicine, 32(2), 132–136. doi:10.1055/s-0030-1268440
  • Jeukendrup, A. E., & Martin, J. (2001). Improving cycling performance: How should we spend our time and money. Sports Medicine, 31(7), 559–569. doi: 10.2165/00007256-200131070-00009
  • Jobson, S. A., Passfield, L., Atkinson, G., Barton, G., & Scarf, P. (2009). The analysis and utilization of cycling training data. Sports Medicine, 39(10), 833–844. doi:10.2165/11317840-000000000-00000
  • Lepers, R., Theurel, J., Hausswirth, C., & Bernard, T. (2008). Neuromuscular fatigue following constant versus variable-intensity endurance cycling in triathletes. Journal of Science and Medicine in Sport, 11(4), 381–389. doi:10.1016/j.jsams.2007.03.001
  • Liedl, M. A., Swain, D. P., & Branch, J. D. (1999). Physiological effects of constant versus variable power during endurance cycling. Medicine and Science in Sports and Exercise, 31(10), 1472–1477. doi: 10.1097/00005768-199910000-00018
  • Martin, J., & Cobb, M. (2002). Body position and aerodynamics. Leeds: Human Kinetics.
  • Martin, J. C., Gardner, A. S., Barras, M., & Martin, D. T. (2006). Modeling sprint cycling using field-derived parameters and forward integration. Medicine and Science in Sports and Exercise, 38(3), 592–597. doi:10.1249/01.mss.0000193560.34022.04
  • Martin, J. C., Milliken, D. L., Cobb, J. E., McFadden, K. L., & Coggan, A. R. (1998). Validation of a mathematical model for road cycling power. Journal of Applied Biomechanics, 14(3), 276–291.
  • Nimmerichter, A., Eston, R., Bachl, N., & Williams, C. (2012). Effects of low and high cadence interval training on power output in flat and uphill cycling time-trials. European Journal of Applied Physiology and Occupational Physiology, 112(1), 69–78. doi:10.1007/s00421-011-1957-5
  • Padilla, S., Mujika, I., Orbananos, J., & Angulo, F. (2000). Exercise intensity during competition time trials in professional road cycling. Medicine and Science in Sports and Exercise, 32(4), 850–856. doi: 10.1097/00005768-200004000-00019
  • Swain, D. P. (1997). A model for optimizing cycling performance by varying power on hills and in wind. Medicine and Science in Sports and Exercise, 29(8), 1104–1108. doi: 10.1097/00005768-199708000-00017
  • Theurel, J., & Lepers, R. (2008). Neuromuscular fatigue is greater following highly variable versus constant intensity endurance cycling. European Journal of Applied Physiology, 103(4), 461–468. doi:10.1007/s00421-008-0738-2
  • Thomas, K., Stone, M. R., Thompson, K. G., Gibson, A. S., & Ansley, L. (2012). The effect of self- even- and variable-pacing strategies on the physiological and perceptual response to cycling. European Journal of Applied Physiology, 112(8), 3069–3078. doi:10.1007/s00421-011-2281-9
  • Tucker, R., Bester, A., Lambert, V. E., Noakes, T. D., Vaughan, C. L., & St Clair Gibson, A. (2006). Non-random fluctuations in power output during self-paced exercise. British Journal of Sports Medicine, 40(11), 912–917. doi:10.1136/bjsm.2006.026435
  • Tucker, R., Kayser, B., Rae, E., Raunch, L., Bosch, A., & Noakes, T. (2007). Hyperoxia improves 20 km cycling time trial performance by increasing muscle activation levels while perceived exertion stays the same. European Journal of Applied Physiology, 101(6), 771–781. doi:10.1007/s00421-007-0458-z
  • Vogt, S., Roecker, K., Schumacher, Y., Pottgiesser, T., Dickhuth, H. H., Schmid, A., & Heinrich, L. (2008). Cadence-power-relationship during decisive mountain ascents at the Tour de France. International Journal of Sports Medicine, 29(3), 244–250. doi:10.1055/s-2007-965353
  • Wells, M., Atkinson, G., & Marwood, S. (2013). Effects of magnitude and frequency of variations in external power output on simulated cycling time-trial performance. Journal of Sports Sciences, 31(15), 1639–1646. doi:10.1080/02640414.2013.794299
  • Winter, D. A. (1990). Biomechanics and motor control of human movement (2nd ed.). Chichester: Wiley Interscience.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.