540
Views
24
CrossRef citations to date
0
Altmetric
BIOMECHANICS AND MOTOR CONTROL

Non-physical approaches to counteract age-related functional deterioration: Applications for rehabilitation and neural mechanisms

ORCID Icon & ORCID Icon

References

  • Abbruzzese, G., Avanzino, L., Marchese, R., & Pelosin, E. (2015). Action observation and motor imagery: Innovative cognitive tools in the rehabilitation of Parkinson’s disease. Parkinson’s Disease, 2015, 1–9. doi: 10.1155/2015/124214
  • Azadian, E., Torbati, H. R. T., Kakhki, A. R. S., & Farahpour, N. (2016). The effect of dual task and executive training on pattern of gait in older adults with balance impairment: A randomized controlled trial. Archives of Gerontology and Geriatrics, 62, 83–89. doi: 10.1016/j.archger.2015.10.001
  • Baloh, R. W., Ying, S. H., & Jacobson, K. M. (2003). A longitudinal study of gait and balance dysfunction in normal older people. Archives of Neurology, 60(6), 835–839. doi: 10.1001/archneur.60.6.835
  • Boisgontier, M. P., Beets, I. A., Duysens, J., Nieuwboer, A., Krampe, R. T., & Swinnen, S. P. (2013). Age-related differences in attentional cost associated with postural dual tasks: Increased recruitment of generic cognitive resources in older adults. Neuroscience & Biobehavioral Reviews, 37(8), 1824–1837. doi: 10.1016/j.neubiorev.2013.07.014
  • Boraxbekk, C., Hagkvist, F., & Lindner, P. (2016). Motor and mental training in older people: Transfer, interference, and associated functional neural responses. Neuropsychologia, 89, 371–377. doi: 10.1016/j.neuropsychologia.2016.07.019
  • Bouchard, C., Shephard, R. J., Stephens, T., Sutton, J., & McPherson, B. (1990). Exercise, fitness, and health: A consensus of current knowledge. Proceedings of the International Conference on Exercise, Fitness, and Health, May 29–June 3, 1988, Toronto, Canada.
  • Bourrelier, J., Kubicki, A., Rouaud, O., Crognier, L., & Mourey, F. (2015). Mental rotation as an indicator of motor representation in patients with mild cognitive impairment. Frontiers in Aging Neuroscience, 7, 238. doi: 10.3389/fnagi.2015.00238
  • Braun, S., Beurskens, A., Kleynen, M., Schols, J., & Wade, D. (2011). Rehabilitation with mental practice has similar effects on mobility as rehabilitation with relaxation in people with Parkinson’s disease: A multicentre randomised trial. Journal of Physiotherapy, 57(1), 27–34. doi: 10.1016/S1836-9553(11)70004-2
  • Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage, 17(3), 1394–1402. doi: 10.1006/nimg.2002.1280
  • Caligiore, D., Mustile, M., Spalletta, G., & Baldassarre, G. (2017). Action observation and motor imagery for rehabilitation in Parkinson’s disease: A systematic review and an integrative hypothesis. Neuroscience and Biobehavioral Reviews, 72, 210–222. doi: 10.1016/j.neubiorev.2016.11.005
  • Chapman, S. B., Aslan, S., & Spence, J. S. (2015). Neural mechanisms of brain plasticity with complex cognitive training in healthy seniors. Cerebral Cortex, 25(2), 396–405. doi: 10.1093/cercor/bht234. Epub 2013 Aug 28
  • Clare, L., Woods, R. T., Moniz Cook, E. D., Orrell, M., & Spector, A. (2003). Cognitive rehabilitation and cognitive training for early-stage Alzheimer’s disease and vascular dementia. Cochrane Database of Systematic Reviews, 4.
  • Coley, N., Andrieu, S., Gardette, V., Gillette-Guyonnet, S., Sanz, C., Vellas, B., & Grand, A. (2008). Dementia prevention: Methodological explanations for inconsistent results. Epidemiologic Reviews, 30, 35–66. doi: 10.1093/epirev/mxn010
  • Daselaar, S. M., Rombouts, S. A. R. B., Veltman, D. J., Raaijmakers, J. G. W., & Jonker, C. (2003). Similar network activated by young and old adults during the acquisition of a motor sequence. Neurobiology of Aging, 24(7), 1013–1019. doi: 10.1016/S0197-4580(03)00030-7
  • Decety, J. (1996). The neurophysiological basis of motor imagery. Behavioural Brain Research, 77(1–2), 45–52. doi: 10.1016/0166-4328(95)00225-1
  • de Vries, S., & Mulder, T. (2007). Motor imagery and stroke rehabilitation: A critical discussion. Journal of Rehabilitation Medicine, 39(1), 5–13. doi: 10.2340/16501977-0020
  • Dickstein, R., Dunsky, A., & Marcovitz, E. (2004). Motor imagery for gait rehabilitation in post-stroke hemiparesis. Physical Therapy, 84(12), 1167–1177.
  • DiPietro, L. (2001). Physical activity in aging: Changes in patterns and their relationship to health and function. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(suppl_2), 13–22. doi: 10.1093/gerona/56.suppl_2.13
  • Earles, D., Vardaxis, V., & Koceja, D. (2001). Regulation of motor output between young and elderly subjects. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 112(7), 1273–1279. doi: 10.1016/S1388-2457(01)00571-5
  • Eaves, D. L., Riach, M., Holmes, P. S., & Wright, D. J. (2016). Motor imagery during action observation: A brief review of evidence, theory and future research opportunities. Frontiers in Neuroscience, 10, 514. doi: 10.3389/fnins.2016.00514
  • Gentili, R., Papaxanthis, C., & Pozzo, T. (2006). Improvement and generalization of arm motor performance through motor imagery practice. Neuroscience, 137(3), 761–772. doi: 10.1016/j.neuroscience.2005.10.013
  • Giné-Garriga, M., Roqué-Fíguls, M., Coll-Planas, L., Sitjà-Rabert, M., & Salvà, A. (2014). Physical exercise interventions for improving performance-based measures of physical function in community-dwelling, frail older adults: A systematic review and meta-analysis. Archives of Physical Medicine and Rehabilitation, 95(4), 753–769. e753. doi: 10.1016/j.apmr.2013.11.007
  • Grosprêtre, S., Lebon, F., Papaxanthis, C., & Martin, A. (2016). New evidence of corticospinal network modulation induced by motor imagery. Journal of Neurophysiology, 115(3), 1279–1288. doi: 10.1152/jn.00952.2015
  • Grosprêtre, S., Ruffino, C., & Lebon, F. (2015). Motor imagery and cortico-spinal excitability: A review. European Journal of Sport Science, 1–8. doi: 10.1080/17461391.2015.1024756
  • Guillot, A., & Collet, C. (2005). Contribution from neurophysiological and psychological methods to the study of motor imagery. Brain Research Reviews, 50(2), 387–397. doi: 10.1016/j.brainresrev.2005.09.004
  • Hamel, M. F., & Lajoie, Y. (2005). Mental imagery. Effects on static balance and attentional demands of the elderly. Aging Clinical and Experimental Research, 17(3), 223–228. doi: 10.1007/BF03324601
  • Heuninckx, S., Wenderoth, N., Debaere, F., Peeters, R., & Swinnen, S. P. (2005). Neural basis of aging: The penetration of cognition into action control. Journal of Neuroscience, 25(29), 6787–6796. doi: 10.1523/JNEUROSCI.1263-05.2005
  • Ietswaart, M., Johnston, M., Dijkerman, H. C., Joice, S., Scott, C. L., MacWalter, R. S., & Hamilton, S. J. C. (2011). Mental practice with motor imagery in stroke recovery: Randomized controlled trial of efficacy. Brain, 134(5), 1373–1386. doi: 10.1093/brain/awr077
  • Jackson, P. L., Doyon, J., Richards, C. L., & Malouin, F. (2004). The efficacy of combined physical and mental practice in the learning of a foot-sequence task after stroke: A case report. Neurorehabilitation and Neural Repair, 18(2), 106–111. doi: 10.1177/0888439004265249
  • Jams, T., & Ratzon, N. Z. (2000). Can you imagine? The effect of mental practice on the acquisition and retention of a motor skill as a function of age. OTJR: Occupation, Participation and Health, 20(3), 163–178. doi: 10.1177/153944920002000302
  • Johnson, D. K., Langford, Z., Garnier-Villarreal, M., Morris, J. C., & Galvin, J. E. (2016). Onset of mild cognitive impairment in Parkinson disease. Alzheimer Disease & Associated Disorders, 30(2), 127–133. doi: 10.1097/WAD.0000000000000088
  • Kalicinski, M., Thomas, M., & Lobinger, B. H. (2016). Chapter 8 – Motor imagery and mental training in older adults. In Performance Psychology (pp. 121–132). doi: 10.1016/B978-0-12-803377-7.00008-9
  • Li, B. Y., Wang, Y., Tang, H. D., & Chen, S. D. (2017). The role of cognitive activity in cognition protection: from bedside to bench. Translational Neurodegeneration, 6(1), 7. doi: 10.1186/s40035-017-0078-4
  • Lindenberger, U., Wenger, E., & Lövdén, M. (2017). Towards a stronger science of human plasticity. Nature Reviews Neuroscience, 18(5), 261–262. doi: 10.1038/nrn.2017.44
  • Malouin, F., & Richards, C. L. (2010). Mental practice for relearning locomotor skills. Physical Therapy, 90(2), 240–251. doi: 10.2522/ptj.20090029
  • Malouin, F., Richards, C. L., & Durand, A. (2010). Normal aging and motor imagery vividness: Implications for mental practice training in rehabilitation. Archives of Physical Medicine and Rehabilitation, 91(7), 1122–1127. doi: 10.1016/j.apmr.2010.03.007
  • Martin, M., Clare, L., Altgassen, A. M., Cameron, M. H., & Zehnder, F. (2011). Cognition-based interventions for healthy older people and people with mild cognitive impairment. Cochrane Database of Systematic Reviews, (1), CD006220. doi: 10.1002/14651858.CD006220.pub2
  • Marusic, U., Giordani, B., Moffat, S. D., Petric, M., Dolenc, P., Pisot, R., & Kavcic, V. (2018). Computerized cognitive training during physical inactivity improves executive functioning in older adults. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 1–21. doi: 10.1080/13825585.2016.1263724
  • Marusic, U., Grosprêtre, S., Paravlic, A., Kovač, S., Pišot, R., & Taube, W. (in press). Motor imagery during action observation of locomotor tasks improves rehabilitation outcome in older adults after total hip arthroplasty. Neural Plasticity.
  • Marusic, U., Kavcic, V., Giordani, B., Gerzevic, M., Meeusen, R., & Pisot, R. (2015). Computerized spatial navigation training during 14 days of bed rest in healthy older adult men: Effect on gait performance. Psychology and Aging, 30(2), 334–340. doi: 10.1037/pag0000021
  • Marusic, U., Verghese, J., & Mahoney, J. (in press). Cognitive-based interventions to improve mobility: A systematic review and meta-analysis. Journal of the American Medical Directors Association.
  • Mattay, V. S., Fera, F., Tessitore, A., Hariri, A. R., Das, S., Callicott, J. H., & Weinberger, D. R. (2002). Neurophysiological correlates of age-related changes in human motor function. Neurology, 58(4), 630–635. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11865144 doi: 10.1212/WNL.58.4.630
  • Mattay, V. S., & Weinberger, D. R. (1999). Organization of the human motor system as studied by functional magnetic resonance imaging. European Journal of Radiology, 30(2), 105–114. doi: 10.1016/S0720-048X(99)00049-2
  • Milman, U., Atias, H., Weiss, A., Mirelman, A., & Hausdorff, J. M. (2014). Can cognitive remediation improve mobility in patients with Parkinson’s disease? Findings from a 12 week pilot study. Journal of Parkinson’s Disease, 4(1), 37–44.
  • Montero-Odasso, M., Verghese, J., Beauchet, O., & Hausdorff, J. M. (2012). Gait and cognition: A complementary approach to understanding brain function and the risk of falling. Journal of the American Geriatrics Society, 60(11), 2127–2136.
  • Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews, 60(2), 306–326. doi: 10.1016/j.brainresrev.2008.12.024
  • Nedelko, V., Hassa, T., Hamzei, F. (2010). Age-independent activation in areas of the mirror neuron system during action observation and action imagery. A fMRI study. Restorative Neurology and Neuroscience, 28(6), 737–747. doi: 10.3233/RNN-2010-0542
  • Needle, A. R., Lepley, A. S., & Grooms, D. R. (2016). Central nervous system adaptation after ligamentous injury: A summary of theories, evidence, and clinical interpretation. Sports Medicine, 47(7), 1–18.
  • Ng, T. P., Feng, L., Nyunt, M. S. Z. (2015). Nutritional, physical, cognitive, and combination interventions and frailty reversal among older adults: A randomized controlled trial. The American Journal of Medicine, 128(11), 1225–1236. e1221. doi: 10.1016/j.amjmed.2015.06.017
  • Oostra, K., Oomen, A., Vanderstraeten, G., & Vingerhoets, G. (2015). Influence of motor imagery training on gait rehabilitation in sub-acute stroke: A randomized controlled trial. Journal of Rehabilitation Medicine, 47(3), 204–209. doi: 10.2340/16501977-1908
  • Parihar, R., Mahoney, J. R., & Verghese, J. (2013). Relationship of gait and cognition in the elderly. Current Translational Geriatrics and Experimental Gerontology Reports, 2(3), 167–173. doi: 10.1007/s13670-013-0052-7
  • Personnier, P., Ballay, Y., & Papaxanthis, C. (2010). Mentally represented motor actions in normal aging: III. Electromyographic features of imagined arm movements. Behavioural Brain Research, 206(2), 184–191. doi: 10.1016/j.bbr.2009.09.011
  • Personnier, P., Kubicki, A., Laroche, D., & Papaxanthis, C. (2010). Temporal features of imagined locomotion in normal aging. Neuroscience Letters, 476(3), 146–149. doi: 10.1016/j.neulet.2010.04.017
  • Peters, A. (2002). The effects of normal aging on myelin and nerve fibers: A review. Journal of Neurocytology, 31(8–9), 581–593. doi: 10.1023/A:1025731309829
  • Rebok, G. W., Ball, K., Guey, L. T. (2014). Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. Journal of the American Geriatrics Society, 62(1), 16–24. doi: 10.1111/jgs.12607
  • Reiser, M., Büsch, D., & Munzert, J. (2011). Strength gains by motor imagery with different ratios of physical to mental practice. Frontiers in Psychology, 2, 194. doi: 10.3389/fpsyg.2011.00194
  • Rodrigue, K. M., Kennedy, K. M., & Raz, N. (2005). Aging and longitudinal change in perceptual-motor skill acquisition in healthy adults. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 60(4), P174–P181. doi: 10.1093/geronb/60.4.P174
  • Rozand, V., Lebon, F., Papaxanthis, C., & Lepers, R. (2014). Does a mental training session induce neuromuscular fatigue? Medicine and Science in Sports and Exercise, 46(10), 1981–1989. doi: 10.1249/MSS.0000000000000327
  • Saimpont, A., Malouin, F., Tousignant, B., & Jackson, P. L. (2013). Motor imagery and aging. Journal of Motor Behavior, 45(1), 21–28. doi: 10.1080/00222895.2012.740098
  • Saimpont, A., Mourey, F., Manckoundia, P., Pfitzenmeyer, P., & Pozzo, T. (2010). Aging affects the mental simulation/planning of the “rising from the floor” sequence. Archives of Gerontology and Geriatrics, 51(3), e41–e45. doi: 10.1016/j.archger.2009.11.010
  • Salomon, J. A., Wang, H., Freeman, M. K., Vos, T., Flaxman, A. D., Lopez, A. D., & Murray, C. J. (2013). Healthy life expectancy for 187 countries, 1990–2010: A systematic analysis for the global burden disease study 2010 . The Lancet, 380(9859), 2144–2162. doi: 10.1016/S0140-6736(12)61690-0
  • Sawaki, L., Yaseen, Z., Kopylev, L., & Cohen, L. G. (2003). Age-dependent changes in the ability to encode a novel elementary motor memory. Annals of Neurology, 53(4), 521–524. doi: 10.1002/ana.10529
  • Scaglioni, G., Narici, M. V, Maffiuletti, N. A., Pensini, M., & Martin, A. (2003). Effect of ageing on the electrical and mechanical properties of human soleus motor units activated by the H reflex and M wave. The Journal of Physiology, 548(2), 649–661. doi: 10.1113/jphysiol.2002.032763
  • Sharma, N., & Baron, J.-C. (2014). Effects of healthy ageing on activation pattern within the primary motor cortex during movement and motor imagery: An fMRI study. PLoS ONE, 9(6), e88443. doi: 10.1371/journal.pone.0088443
  • Simmons, L., Sharma, N., Baron, J.-C., & Pomeroy, V. M. (2008). Motor imagery to enhance recovery after subcortical stroke: Who might benefit, daily dose, and potential effects. Neurorehabilitation and Neural Repair, 22(5), 458–467. doi: 10.1177/1545968308315597
  • Skoura, X., Personnier, P., Vinter, A., Pozzo, T., & Papaxanthis, C. (2008). Decline in motor prediction in elderly subjects: Right versus left arm differences in mentally simulated motor actions. Cortex, 44(9), 1271–1278. doi: 10.1016/j.cortex.2007.07.008
  • Slimani, M., Tod, D., Chaabene, H., Miarka, B., & Chamari, K. (2016). Effects of mental imagery on muscular strength in healthy and patient participants: A systematic review. Journal of Sports Science & Medicine, 15(3), 434–450.
  • Stoter, A. J. R., Scherder, E. J. A., Kamsma, Y. P. T., & Mulder, T. (2008). Rehearsal strategies during motor-sequence learning in old age: Execution vs motor imagery. Perceptual and Motor Skills, 106(3), 967–978. doi: 10.2466/pms.106.3.967-978
  • Takeuchi, H., Sekiguchi, A., Taki, Y. (2010). Training of working memory impacts structural connectivity. Journal of Neuroscience, 30(9), 3297–3303. doi: 10.1523/JNEUROSCI.4611-09.2010
  • Tardif, S., & Simard, M. (2011). Cognitive stimulation programs in healthy elderly: A review. International Journal of Alzheimer’s Disease, 2011, 378934. doi: 10.4061/2011/378934
  • United Nations. (2013). World population ageing 2013. Department of Economic and Social Affairs PD.
  • Verghese, J. (2012). Mental stimulation and dementia. Pathy’s principles and practice of geriatric medicine. John Wiley & Sons, Ltd. pp. 903–909 10.1002/9781119952930.ch76
  • Verghese, J., Ayers, E., Mahoney, J., Ambrose, A. F., Wang, C., & Holtzer, R. (2016). Cognitive remediation to enhance mobility in older adults: The CREM study. Neurodegenerative Disease Management, 6(6), 457–466. doi: 10.2217/nmt-2016-0034
  • Verghese, J., Mahoney, J., Ambrose, A. F., Wang, C., & Holtzer, R. (2010). Effect of cognitive remediation on gait in sedentary seniors. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 65(12), 1338–1343. doi: 10.1093/gerona/glq127
  • Vogt, S., Rienzo, F. Di, Collet, C., Collins, A., & Guillot, A. (2013). Multiple roles of motor imagery during action observation. Frontiers in Human Neuroscience, 7, 807. doi: 10.3389/fnhum.2013.00807
  • Walter, S., Mackenbach, J., Voko, Z. (2012). Genetic, physiological, and lifestyle predictors of mortality in the general population. American Journal of Public Health, 102(4), e3–e10. doi: 10.2105/AJPH.2011.300596
  • Waxman, S. G. (1980). Determinants of conduction velocity in myelinated nerve fibers. Muscle & Nerve, 3(2), 141–150. doi: 10.1002/mus.880030207
  • Willis, S. L., Tennstedt, S. L., Marsiske, M. (2006). Long-term effects of cognitive training on everyday functional outcomes in older adults. Jama, 296(23), 2805–2814. doi: 10.1001/jama.296.23.2805
  • Wimo, A., Winblad, B., Aguero-Torres, H., & von Strauss, E. (2003). The magnitude of dementia occurrence in the world. Alzheimer Disease and Associated Disorders, 17(2), 63–67. doi: 10.1097/00002093-200304000-00002
  • Zangrando, F., Piccinini, G., Pelliccioni, A., Saraceni, V. M., & Paolucci, T. (2015). Neurocognitive Rehabilitation in Parkinson’s Disease with Motor Imagery: A Rehabilitative Experience in a Case Report. Case Reports in Medicine, 2015, 1–4. doi: 10.1155/2015/670385
  • Zapparoli, L., Invernizzi, P., Gandola, M. (2013). Mental images across the adult lifespan: A behavioural and fMRI investigation of motor execution and motor imagery. Experimental Brain Research, 224(4), 519–540. doi: 10.1007/s00221-012-3331-1
  • Zich, C., Debener, S., Thoene, A.-K., Chen, L.-C., & Kranczioch, C. (2017). Simultaneous EEG-fNIRS reveals how age and feedback affect motor imagery signatures. Neurobiology of Aging, 49, 183–197. doi: 10.1016/j.neurobiolaging.2016.10.011
  • Zwergal, A., Linn, J., Xiong, G., Brandt, T., Strupp, M., & Jahn, K. (2012). Aging of human supraspinal locomotor and postural control in fMRI. Neurobiology of Aging, 33(6), 1073–1084. doi: 10.1016/j.neurobiolaging.2010.09.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.