835
Views
2
CrossRef citations to date
0
Altmetric
PHYSIOLOGY AND NUTRITION

Changes in lactate kinetics underpin soccer performance adaptations to cycling-based sprint interval training

, ORCID Icon & ORCID Icon

References

  • Altmann, S., Spielmann, M., Engel, F. A., Neumann, R., Ringhof, S., Oriwol, D., & Haertel, S. (2017). Validity of single-beam timing lights at different heights. Journal of Strength and Conditioning Research, doi: 10.1519/JSC.0000000000001889
  • Aslan, A., Açikada, C., Güvenç, A., Gören, H., Hazir, T., & Özkara, A. (2012). Metabolic demands of match performance in young soccer players. Journal of Sports Science and Medicine, 11, 170–179.
  • Bailey, S. J., Wilkerson, D. P., Dimenna, F. J., & Jones, A. M. (2009). Influence of repeated sprint training on pulmonary O2 uptake and muscle deoxygenation kinetics in humans. Journal of Applied Physiology, 106(6), 1875–1887. doi: 10.1152/japplphysiol.00144.2009
  • Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, doi: 10.3758/BF03192707
  • Barker, A. R., Day, J., Smith, A., Bond, B., & Williams, C. A. (2014). The influence of 2 weeks of low-volume high-intensity interval training on health outcomes in adolescent boys. Journal of Sports Sciences, doi: 10.1080/02640414.2013.853132
  • Beneke, R., Hütler, M., Jung, M., & Leithäuser, R. M. (2005). Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescents, and adults. Journal of Applied Physiology, doi: 10.1152/japplphysiol.00062.2005
  • Beneke, R., Pollmann, C., Bleif, I., Leithäuser, R. M., & Hütler, H. (2002). How anaerobic is the wingate anaerobic test for humans? European Journal of Applied Physiology, 87(4–5), 388–392. doi: 10.1007/s00421-002-0622-4
  • Berg, A., Kim, S. S., & Keul, J. (1986). Skeletal muscle enzyme activities in healthy young subjects. International Journal of Sports Medicine, doi: 10.1055/s-2008-1025766
  • Best, R., Simon, P., Niess, A., & Striegel, H. (2013). Influence of various preseason training in elite youth soccer players. Open Medicine (Poland). doi: 10.2478/s11536-013-0236-8
  • Bowen, L., Gross, A. S., Gimpel, M., & Li, F. X. (2017). Accumulated workloads and the acute: Chronic workload ratio relate to injury risk in elite youth football players. British Journal of Sports Medicine, doi: 10.1136/bjsports-2015-095820
  • Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J. F., Bradwell, S. N., & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of Applied Physiology, 98(6), 1985–1990. doi: 10.1152/japplphysiol.01095.2004
  • Cometti, G., Maffiuletti, N. A., Pousson, M., Chatard, J. C., & Maffulli, N. (2001). Isokinetic strength and anaerobic power of elite, subelite and amateur French soccer players. International Journal of Sports Medicine, doi: 10.1055/s-2001-11331
  • Edwards, A. M., Clark, N., & Macfadyen, A. M. (2003). Lactate and ventilatory thresholds reflect the training status of professional soccer players where maximum aerobic power is unchanged. Journal of Sports Science and Medicine, 2(1), 23–29.
  • Engel, F. A., Ackermann, A., Chtourou, H., & Sperlich, B. (2018). High-intensity interval training performed by young athletes: A systematic review and meta-analysis. Frontiers in Physiology, doi: 10.3389/fphys.2018.01012
  • Falgairette, G., Bedu, M., Fellmann, N., Van-Praagh, E., & Coudert, J. (1991). Bio-energetic profile in 144 boys aged from 6 to 15 years with special reference to sexual maturation. European Journal of Applied Physiology and Occupational Physiology, doi: 10.1007/BF00643734
  • Faude, O., Schnittker, R., Schulte-Zurhausen, R., Müller, F., & Meyer, T. (2013). High intensity interval training vs. high-volume running training during pre-season conditioning in high-level youth football: A cross-over trial. Journal of Sports Sciences, doi: 10.1080/02640414.2013.792953
  • Ferrete, C., Requena, B., Suarez-Arrones, L., & De Villarreal, E. S. (2014). Effect of strength and high-intensity training on jumping, sprinting, and intermittent endurance performance in prepubertal soccer players. Journal of Strength and Conditioning Research, doi: 10.1519/JSC.0b013e31829b2222
  • Gharbi, A., Chamari, K., Kallel, A., Ahmaidi, S., Tabka, Z., & Abdelkarim, Z. (2008). Lactate kinetics after intermittent and continuous exercise training. Journal of Sports Science and Medicine.
  • Gist, N. H., Fedewa, M. V., Dishman, R. K., & Cureton, K. J. (2014). Sprint interval training effects on aerobic capacity: A systematic review and meta-analysis. Sports Medicine, 44(2), 269–279. doi: 10.1007/s40279-013-0115-0
  • Haugen, T., Tønnessen, E., Oksenholt, Ø, Haugen, F. L., Paulsen, G., Enoksen, E., & Seiler, S. (2015). Sprint conditioning of junior soccer players: Effects of training intensity and technique supervision. PLoS ONE, doi: 10.1371/journal.pone.0121827
  • Helgerud, J., Engen, L. C., Wisløff, U., & Hoff, J. (2001). Aerobic endurance training improves soccer performance. Medicine and Science in Sports and Exercise, doi: 10.1097/00005768-200111000-00019
  • Jakeman, J., Adamson, S., & Babraj, J. (2012). Extremely short duration high-intensity training substantially improves endurance performance in triathletes. Applied Physiology, Nutrition, and Metabolism, 37(5), 976–981. doi: 10.1139/h2012-083
  • Kavaliauskas, M., Aspe, R. R., & Babraj, J. (2015). High-intensity cycling training: The effect of work-to-rest intervals on running performance measures. Journal of Strength and Conditioning Research, 29(8), 2229–2236. doi: 10.1519/JSC.0000000000000868
  • Kunz, P., Engel, F. A., Holmberg, H.-C., & Sperlich, B. (2019). A meta-comparison of the effects of high-intensity interval training to those of small-sided games and other training protocols on parameters related to the physiology and performance of youth soccer players. Sports Medicine – Open, 5(1), 7. doi: 10.1186/s40798-019-0180-5
  • Lehnert, M., De Ste Croix, M., Zaatar, A., Hughes, J., Varekova, R., & Lastovicka, O. (2017). Muscular and neuromuscular control following soccer-specific exercise in male youth: Changes in injury risk mechanisms. Scandinavian Journal of Medicine and Science in Sports, doi: 10.1111/sms.12705
  • Linossier, M., Dormois, D., Perier, C., Frey, J., Geyssant, A., & Denis, C. (1997). Enzyme adaptations of human skeletal muscle during bicycle short-sprint training and detraining. Acta Physiologica Scandinavica, 161(4), 439–445. doi: 10.1046/j.1365-201X.1997.00244.x
  • Martinez-Valdes, E., Falla, D., Negro, F., Mayer, F., & Farina, D. (2017). Differential motor unit changes after endurance or high-intensity interval training. Medicine and Science in Sports and Exercise, doi: 10.1249/MSS.0000000000001209
  • Messonnier, L., Freund, H., Denis, C., Dormois, D., Dufour, A. B., & Lacour, J. R. (2002). Time to exhaustion at VO2max is related to the lactate exchange and removal abilities. International Journal of Sports Medicine, doi: 10.1055/s-2002-33740
  • Mohr, M., Krustrup, P., & Bangsbo, J. (2003). Match performance of high-standard soccer players with special reference to development of fatigue. Journal of Sports Sciences, doi: 10.1080/0264041031000071182
  • Mujika, I., Spencer, M., Santisteban, J., Goiriena, J. J., & Bishop, D. (2009). Age-related differences in repeated-sprint ability in highly trained youth football players. Journal of Sports Sciences, doi: 10.1080/02640410903350281
  • Nevill, M. E., Boobis, L. H., Brooks, S., & Williams, C. (2017). Effect of training on muscle metabolism during treadmill sprinting. Journal of Applied Physiology, doi: 10.1152/jappl.1989.67.6.2376
  • Nikolaïdis, P. (2011). Anaerobic power across adolescence in soccer players. Human Movement, doi: 10.2478/v10038-011-0039-1
  • Ostojic, S. M. (2004). Elite and nonelite soccer players: Preseasonal physical and physiological characteristics. Research in Sports Medicine, doi: 10.1080/15438620490460495
  • Pilegaard, H., Domino, K., Noland, T., Juel, C., Hellsten, Y., Halestrap, A., & Bangsbo, J. (1999). Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. The American Journal of Physiology, 276, E255–261.
  • Rampinini, E., Bishop, D., Marcora, S. M., Ferrari Bravo, D., Sassi, R., & Impellizzeri, F. M. (2007). Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. International Journal of Sports Medicine, doi: 10.1055/s-2006-924340
  • Rampinini, E., Impellizzeri, F. M., Castagna, C., Azzalin, A., Bravo, D. F., & Wisløff, U. (2008). Effect of match-related fatigue on short-passing ability in young soccer players. Medicine and Science in Sports and Exercise, doi: 10.1249/MSS.0b013e3181666eb8
  • Reilly, T., Bangsbo, J., & Franks, A. (2000). Anthropometric and physiological predispositions for elite soccer. Journal of Sports Sciences, doi: 10.1080/02640410050120050
  • Shinohara, M., Kouzaki, M., Yoshihisa, T., & Fukunaga, T. (1997). Mechanomyography of the human quadriceps muscle during incremental cycle ergometry. European Journal of Applied Physiology and Occupational Physiology, doi: 10.1007/s004210050254
  • Sperlich, B., De Marées, M., Koehler, K., Linville, J., Holmberg, H. C., & Mester, J. (2011). Effects of 5 weeks of high-intensity interval training vs. volume training in 14-year-old soccer players. Journal of Strength and Conditioning Research, doi: 10.1519/JSC.0b013e3181d67c38
  • Thomas, C., Perrey, S., Lambert, K., Hugon, G., Mornet, D., & Mercier, J. (2005). Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. Journal of Applied Physiology, 98(3), 804–809. doi: 10.1152/japplphysiol.01057.2004
  • Tomáš, M., František, Z., Lucia, M., & Jaroslav, T. (2014). Profile, correlation and structure of speed in youth elite soccer players. Journal of Human Kinetics, doi: 10.2478/hukin-2014-0017
  • Vanhatalo, A., Fulford, J., Dimenna, F. J., & Jones, A. M. (2010). Influence of hyperoxia on muscle metabolic responses and the power-duration relationship during severe-intensity exercise in humans: A 31P magnetic resonance spectroscopy study. Experimental Physiology, doi: 10.1113/expphysiol.2009.050500
  • World Medical Association declaration of Helsinki: Ethical principles for medical research involving human subjects. (2013). JAMA – Journal of the American Medical Association. doi: 10.1001/jama.2013.281053
  • Yamagishi, T., & Babraj, J. (2017). Effects of reduced-volume of sprint interval training and the time course of physiological and performance adaptations. Scandinavian Journal of Medicine & Science in Sports (December 2016), 1–11. doi: 10.1111/sms.12831
  • Zelt, J. G. E., Hankinson, P. B., Foster, W. S., Williams, C. B., Reynolds, J., Garneys, E., … Gurd, B. J. (2014). Reducing the volume of sprint interval training does not diminish maximal and submaximal performance gains in healthy men. European Journal of Applied Physiology, 114(11), 2427–2436. doi: 10.1007/s00421-014-2960-4
  • Zupan, M. F., Arata, A. W., Dawson, L. H., Wile, A. L., Payn, T. L., & Hannon, M. E. (2009). Wingate anaerobic test peak power and anaerobic capacity classifications for men and women intercollegiate athletes. Journal of Strength and Conditioning Research / National Strength & Conditioning Association, doi: 10.1519/JSC.0b013e3181b1b21b

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.