527
Views
4
CrossRef citations to date
0
Altmetric
PHYSIOLOGY AND NUTRITION

Voluntary hypocapnic hyperventilation lasting 5 min and 20 min similarly reduce aerobic metabolism without affecting power outputs during Wingate anaerobic test

, ORCID Icon, , & ORCID Icon

References

  • ACSM. (2009). American college of sports medicine position stand. Progression models in resistance training for healthy adults. Medicine & Science in Sports & Exercise, 41, doi: 10.1249/MSS.0b013e3181915670
  • Ainslie, P. N., & Duffin, J. (2009). Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: Mechanisms of regulation, measurement, and interpretation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 296(5), R1473–R1495. doi: 10.1152/ajpregu.91008.2008
  • Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377–381. doi: 10.1249/00005768-198205000-00012
  • Brandi, G., & Clode, M. (1969). CO2 washout during hyperventilation in man. Respiration Physiology, 7(2), 163–172. doi: 10.1016/0034-5687(69)90003-6
  • Bruce, E. N., & Cherniack, N. S. (1987). Central chemoreceptors. Journal of Applied Physiology, 62(2), 389–402. doi: 10.1152/jappl.1987.62.2.389
  • Calbet, J. A., De Paz, J. A., Garatachea, N., Cabeza de Vaca, S., & Chavarren, J. (2003). Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. Journal of Applied Physiology, 94(2), 668–676. doi: 10.1152/japplphysiol.00128.2002
  • Chin, L. M., Heigenhauser, G. J., Paterson, D. H., & Kowalchuk, J. M. (2010). Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis. Journal of Applied Physiology, 108(6), 1641–1650. doi: 10.1152/japplphysiol.01346.2009
  • Chin, L. M., Heigenhauser, G. J., Paterson, D. H., & Kowalchuk, J. M. (2013). Effect of voluntary hyperventilation with supplemental CO2 on pulmonary O2 uptake and leg blood flow kinetics during moderate-intensity exercise. Experimental Physiology, 98(12), 1668–1682. doi: 10.1113/expphysiol.2013.074021
  • Chin, L. M., Leigh, R. J., Heigenhauser, G. J., Rossiter, H. B., Paterson, D. H., & Kowalchuk, J. M. (2007). Hyperventilation-induced hypocapnic alkalosis slows the adaptation of pulmonary O2 uptake during the transition to moderate-intensity exercise. Journal of Physiology, 583(Pt 1), 351–364. doi: 10.1113/jphysiol.2007.132837
  • de Jonge, J. (2003). Effects of the menstrual cycle on exercise performance. Sports Medicine (Auckland, NZ), 33(11), 833–851. doi: 10.2165/00007256-200333110-00004
  • Dobashi, K., Fujii, N., Watanabe, K., Tsuji, B., Sasaki, Y., Fujimoto, T., … Nishiyasu, T. (2017). Effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise. European Journal of Applied Physiology, 117(8), 1573–1583. doi: 10.1007/s00421-017-3646-5
  • Duffin, J. (2005). Role of acid-base balance in the chemoreflex control of breathing. Journal of Applied Physiology, 99(6), 2255–2265. doi: 10.1152/japplphysiol.00640.2005
  • Duffin, J. (2010). The role of the central chemoreceptors: A modeling perspective. Respiratory Physiology & Neurobiology, 173(3), 230–243. doi: 10.1016/j.resp.2010.03.010
  • Duffin, J., Mohan, R. M., Vasiliou, P., Stephenson, R., & Mahamed, S. (2000). A model of the chemoreflex control of breathing in humans: Model parameters measurement. Respiration Physiology, 120(1), 13–26. doi: 10.1016/S0034-5687(00)00095-5
  • Forbes, S. C., Kowalchuk, J. M., Thompson, R. T., & Marsh, G. D. (2007). Effects of hyperventilation on phosphocreatine kinetics and muscle deoxygenation during moderate-intensity plantar flexion exercise. Journal of Applied Physiology, 102(4), 1565–1573. doi: 10.1152/japplphysiol.00895.2006
  • Fujii, N., Tsuchiya, S., Tsuji, B., Watanabe, K., Sasaki, Y., & Nishiyasu, T. (2015). Effect of voluntary hypocapnic hyperventilation on the metabolic response during Wingate anaerobic test. European Journal of Applied Physiology, 115(9), 1967–1974. doi: 10.1007/s00421-015-3179-8
  • Gastin, P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports Medicine (Auckland, NZ), 31(10), 725–741. doi: 10.2165/00007256-200131100-00003
  • Green, S., & Dawson, B. (1993). Measurement of anaerobic capacities in humans. Definitions, limitations and unsolved problems. Sports Medicine (Auckland, NZ), 15(5), 312–327. doi: 10.2165/00007256-199315050-00003
  • Guyton, A. C., & Hall, J. E. (2011). In: Guyton and Hall Text book of Medical Physiology (12th edition). Elsevier. pp. 495–504.
  • Keir, D. A., Pollock, M., Thuraisingam, P., Paterson, D. H., Heigenhauser, G. J. F., Rossiter, H. B., & Kowalchuk, J. M. (2018). Slow ⩒O2 kinetics in acute hypoxia are not related to a hyperventilation-induced hypocapnia. Respiratory Physiology & Neurobiology, 251, 41–49. doi: 10.1016/j.resp.2018.02.010
  • LeBlanc, P. J., Parolin, M. L., Jones, N. L., & Heigenhauser, G. J. F. (2002). Effects of respiratory alkalosis on human skeletal muscle metabolism at the onset of submaximal exercise. Journal of Physiology, 544(1), 303–313. doi: 10.1113/jphysiol.2002.022764
  • Leithauser, R. M., Boning, D., Hutler, M., & Beneke, R. (2016). Enhancement on Wingate anaerobic test performance with hyperventilation. International Journal of Sports Physiology and Performance, 11(7), 627–634. doi: 10.1123/ijspp.2015-0001
  • Ogawa, T., Hayashi, K., Ichinose, M., Wada, H., & Nishiyasu, T. (2007). Metabolic response during intermittent graded sprint running in moderate hypobaric hypoxia in competitive middle-distance runners. European Journal of Applied Physiology, 99(1), 39–46. doi: 10.1007/s00421-006-0315-5
  • Ogawa, T., Ohba, K., Nabekura, Y., Nagai, J., Hayashi, K., Wada, H., & Nishiyasu, T. (2005). Intermittent short-term graded running performance in middle-distance runners in hypobaric hypoxia. European Journal of Applied Physiology, 94(3), 254–261. doi: 10.1007/s00421-005-1322-7
  • Rodríguez, F., & Mader, A. (2011). Energy systems in swimming. In World book of swimming: From science to performance (pp. 225–240). doi: 10.13140/2.1.3260.5128
  • Sacks, J., & Sacks, W. C. (1937). Blood and muscle lactic acid in the steady state. American Journal of Physiology-Legacy Content, 118(4), 697–702. doi: 10.1152/ajplegacy.1937.118.4.697
  • Spencer, M. R., & Gastin, P. B. (2001). Energy system contribution during 200- to 1500-m running in highly trained athletes. Medicine & Science in Sports & Exercise, 33(1), 157–162. doi: 10.1097/00005768-200101000-00024
  • Spriet, L. L., & Heigenhauser, G. J. (2002). Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise. Exercise and Sport Sciences Reviews, 30(2), 91–95. doi: 10.1097/00003677-200204000-00009
  • Tabata, I. (2019). Tabata training: One of the most energetically effective high-intensity intermittent training methods. The Journal of Physiological Sciences, 69(4), 559–572. doi: 10.1007/s12576-019-00676-7
  • Tanaka, M., Sato, M., Umehara, S., & Nishikawa, T. (2003). Influence of menstrual cycle on baroreflex control of heart rate: Comparison with male volunteers. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 285(5), R1091–R1097. doi: 10.1152/ajpregu.00162.2003
  • Ward, S. A., Whipp, B. J., Koyal, S., & Wasserman, K. (1983). Influence of body CO2 stores on ventilatory dynamics during exercise. Journal of Applied Physiology, 55(3), 742–749. doi: 10.1152/jappl.1983.55.3.742
  • Weyand, P. G., Lee, C. S., Martinez-Ruiz, R., Bundle, M. W., Bellizzi, M. J., & Wright, S. (1999). High-speed running performance is largely unaffected by hypoxic reductions in aerobic power. Journal of Applied Physiology, 86(6), 2059–2064. doi: 10.1152/jappl.1999.86.6.2059

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.