554
Views
7
CrossRef citations to date
0
Altmetric
PHYSIOLOGY & NUTRITION

Transcranial direct current stimulation and repeated sprint ability: No effect on sprint performance or ratings of perceived exertion

, , , , ORCID Icon, , ORCID Icon & ORCID Icon show all

References

  • Alix-Fages, C., García-Ramos, A., Calderón-Nadal, G., Colomer-Poveda, D., Romero-Arenas, S., Fernández-del-Olmo, M., & Márquez, G. (2020). Anodal transcranial direct current stimulation enhances strength training volume but not the force–velocity profile. European Journal of Applied Physiology, 120(8), 1881–1891. doi:10.1007/s00421-020-04417-2
  • Alix-Fages, C., Romero-Arenas, S., Castro-Alonso, M., Colomer-Poveda, D., Río-Rodriguez, D., Jerez-Martínez, A., … Márquez, G. (2019). Short-term effects of anodal transcranial direct current stimulation on endurance and maximal force production: A systematic review and meta-analysis. Journal of Clinical Medicine, 8(4), 536. doi:10.3390/jcm8040536
  • Amann, M., Blain, G. M., Proctor, L. T., Sebranek, J. J., Pegelow, D. F., & Dempsey, J. A. (2010). Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans. Journal of Applied Physiology, 109(4), 966–976. doi:10.1152/japplphysiol.00462.2010
  • Angius, L., Pageaux, B., Hopker, J., Marcora, S. M., & Mauger, A. R. (2016). Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience, 339, 363–375. doi:10.1016/j.neuroscience.2016.10.028
  • Angius, L., Santarnecchi, E., Pascual-Leone, A., & Marcora, S. M. (2019). Transcranial direct current stimulation over the left dorsolateral prefrontal cortex improves inhibitory control and endurance performance in healthy individuals. Neuroscience, 419, 34–45. doi:10.1016/j.neuroscience.2019.08.052
  • Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. The Journal of Physiology, 591(7), 1987–2000. doi:10.1113/jphysiol.2012.249730
  • Borg, G. (1998). Borg's perceived exertion and pain scales. Champaign, IL: Humankinetics.
  • Cao, N., Pi, Y., Liu, K., Meng, H., Wang, Y., Zhang, J., … Tan, X. (2018). Inhibitory and facilitatory connections from dorsolateral prefrontal to primary motor cortex in healthy humans at rest – an rTMS study. Neuroscience Letters, 687, 82–87. doi:10.1016/j.neulet.2018.09.032
  • Cogiamanian, F., Marceglia, S., Ardolino, G., Barbieri, S., & Priori, A. (2007). Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. European Journal of Neuroscience, 26(1), 242–249. doi:10.1111/j.1460-9568.2007.05633.x
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates. https://doi.org/10.1234/12345678.
  • Collins, B. W., Pearcey, G. E. P., Buckle, N. C. M., Power, K. E., & Button, D. C. (2018). Neuromuscular fatigue during repeated sprint exercise: Underlying physiology and methodological considerations. Applied Physiology, Nutrition, and Metabolism, 43(11), 1166–1175. doi:10.1139/apnm-2018-0080
  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. doi:10.1146/annurev-psych-113011-143750
  • Girard, O., Mendez-Villanueva, A., & Bishop, D. (2011). Repeated-sprint ability part I: Factors contributing to fatigue. Sports Medicine, 41(8), 673–694. doi:10.2165/11590550-000000000-00000
  • Goodall, S., Charlton, K., Howatson, G., & Thomas, K. (2015). Neuromuscular fatigability during repeated-sprint exercise in male athletes. Medicine and Science in Sports and Exercise, 47(3), 528–536. doi:10.1249/MSS.0000000000000443
  • Hagger, M. S., Wood, C. W., Stiff, C., & Chatzisarantis, N. L. D. (2010). Self-regulation and self-control in exercise: The strength-energy model. International Review of Sport and Exercise Psychology, 3(1), 62–86. doi:10.1080/17509840903322815
  • Hassmén, P. (1990). Perceptual and physiological responses to cycling and running in groups of trained and untrained subjects. European Journal of Applied Physiology and Occupational Physiology, 60(6), 445–451. doi:10.1007/BF00705035
  • Haugen, T. A., Breitschädel, F., & Samozino, P. (2020). Power-force-velocity profiling of sprinting athletes: Methodological and practical considerations when using timing gates. Journal of Strength and Conditioning Research, 34(6), 1769–1773. doi:10.1519/JSC.0000000000002890
  • Holgado, D., Zandonai, T., Ciria, L. F., Zabala, M., Hopker, J., & Sanabria, D. (2019). Transcranial direct current stimulation (tDCS) over the left prefrontal cortex does not affect time-trial self-paced cycling performance: Evidence from oscillatory brain activity and power output. PLoS ONE, 14(2), e0210873. doi:10.1371/journal.pone.0210873
  • Huang, L., Deng, Y., Zheng, X., & Liu, Y. (2019). Transcranial direct current stimulation with halo sport enhances repeated sprint cycling and cognitive performance. Frontiers in Physiology, 10, 118. doi:10.3389/fphys.2019.00118
  • Jamil, A., Batsikadze, G., Kuo, H. I., Labruna, L., Hasan, A., Paulus, W., & Nitsche, M. A. (2017). Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. The Journal of Physiology, 595(4), 1273–1288. doi:10.1113/JP272738
  • Jasper, H. (1958). The ten-twenty system of the international Federation of Societies for Electroencephalography: Appendix to report of the committee on methods of clinical examination in electroencephalography. Journal of Electroencephalography and Clinical Neurophysiology, 10, 371–375.
  • Kan, B., Dundas, J. E., & Nosaka, K. (2013). Effect of transcranial direct current stimulation on elbow flexor maximal voluntary isometric strength and endurance. Applied Physiology, Nutrition, and Metabolism, 38(7), 734–739. doi:10.1139/apnm-2012-0412
  • Khalil, R., Karim, A. A., Kondinska, A., & Godde, B. (2020). Effects of transcranial direct current stimulation of left and right inferior frontal gyrus on creative divergent thinking are moderated by changes in inhibition control. Brain Structure and Function, 225(6), 1691–1704. doi:10.1007/s00429-020-02081-y
  • Lattari, E., Andrade, M. L., Filho, A. S., Moura, A. M., Neto, G. M., Silva, J. G., … Machado, S. (2016). Can transcranial direct current stimulation improve the resistance strength and decrease the rating perceived scale in recreational weight-training experience? Journal of Strength and Conditioning Research, 30(12), 3381–3387. doi:10.1519/JSC.0000000000001457
  • Lattari, E., Campos, C., Lamego, M. K., Legey, S., Neto, G. M., Rocha, N. B., … Machado, S. (2020a). Can transcranial direct current stimulation improve muscle power in individuals with advanced weight-training experience? Journal of Strength and Conditioning Research, 34(1), 97–103. doi:10.1519/JSC.0000000000001956
  • Lattari, E., de Oliveira, B. S., Oliveira, B. R. R., de Mello Pedreiro, R. C., Machado, S., & Neto, G. A. M. (2018). Effects of transcranial direct current stimulation on time limit and ratings of perceived exertion in physically active women. Neuroscience Letters, 662, 12–16. doi:10.1016/j.neulet.2017.10.007
  • Lattari, E., Rosa Filho, B. J., Fonseca Junior, S. J., Murillo-Rodriguez, E., Rocha, N., Machado, S., & Maranhão Neto, G. A. (2020b). Effects on volume load and ratings of perceived exertion in individuals' advanced weight training after transcranial direct current stimulation. Journal of Strength and Conditioning Research, 34(1), 89–96. doi:10.1519/JSC.0000000000002434
  • Li, L. M., Uehara, K., & Hanakawa, T. (2015). The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Frontiers in Cellular Neuroscience, 9, 181.
  • López-Alonso, V., Cheeran, B., & Fernández-Del-Olmo, M. (2015). Relationship between non-invasive brain stimulation-induced plasticity and capacity for motor learning. Brain Stimulation, 8(6), 1209–1219. doi:10.1016/j.brs.2015.07.042
  • Menotti, F., Berchicci, M., Di Russo, F., Damiani, A., Vitelli, S., & Macaluso, A. (2014). The role of the prefrontal cortex in the development of muscle fatigue in Charcot-Marie-Tooth 1A patients. Neuromuscular Disorders, 24(6), 516–523. doi:10.1016/j.nmd.2014.03.010
  • Morin, J. B., Edouard, P., & Samozino, P. (2011). Technical ability of force application as a determinant factor of sprint performance. Medicine and Science in Sports and Exercise, 43(9), 1680–1688. doi:10.1249/MSS.0b013e318216ea37
  • Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633–639. doi:10.1111/j.1469-7793.2000.t01-1-00633.x
  • Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901. doi:10.1212/WNL.57.10.1899
  • Pageaux, B., & Lepers, R. (2016). Fatigue induced by physical and mental exertion increases perception of effort and impairs subsequent endurance performance. Frontiers in Physiology, 7, 587. doi:10.3389/fphys.2016.00587
  • Park, S.-B., Sung, D. J., Kim, B., Kim, S., Han, J.-K., & Tremblay, F. (2019). Transcranial direct current stimulation of motor cortex enhances running performance. PLoS ONE, 14(2), e0211902.
  • Radel, R., Tempest, G., Denis, G., Besson, P., & Zory, R. (2017). Extending the limits of force endurance: Stimulation of the motor or the frontal cortex? Cortex, 97, 96–108. doi:10.1016/j.cortex.2017.09.026
  • Rampinini, E., Sassi, A., Morelli, A., Mazzoni, S., Fanchini, M., & Coutts, A. J. (2009). Repeated-sprint ability in professional and amateur soccer players. Applied Physiology, Nutrition, and Metabolism, 34(6), 1048–1054. doi:10.1139/H09-111
  • Robertson, C. V., Marino, F. E., Meeusen, R., Pires, F. O., Pinheiro, F. A., Lutz, K., … Hettinga, F. (2016). A role for the prefrontal cortex in exercise tolerance and termination. Journal of Applied Physiology, 120(4), 467–469. doi:10.1152/japplphysiol.00967.2015
  • Romero-Arenas, S., Calderón-Nadal, G., Alix-Fages, C., Jerez-Martínez, A., Colomer-Poveda, D., & Márquez, G. (2019). Transcranial direct current stimulation does not improve countermovement jump performance in young healthy men. Journal of Strength and Conditioning Research. doi:10.1519/JSC.0000000000003242
  • Sasada, S., Endoh, T., Ishii, T., Kawashima, K., Sato, S., Hayashi, A., & Komiyama, T. (2020). Differential effects of transcranial direct current stimulation on sprint and endurance cycling. Translational Sports Medicine, 3(3), 204–212. doi:10.1002/tsm2.129
  • Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17(1), 37–53. doi:10.1177/1073858410386614
  • Taylor, J. L., Amann, M., Duchateau, J., Meeusen, R., & Rice, C. L. (2016). Neural contributions to muscle fatigue: From the brain to the muscle and back again. Medicine and Science in Sports and Exercise, 48(11), 2294–2306. doi:10.1249/MSS.0000000000000923
  • Tremblay, S., Lepage, J. F., Latulipe-Loiselle, A., Fregni, F., Pascual-Leone, A., & Théoret, H. (2014). The uncertain outcome of prefrontal tDCS. Brain Stimulation, 7(6), 773–783. doi:10.1016/j.brs.2014.10.003
  • Vöröslakos, M., Takeuchi, Y., Brinyiczki, K., Zombori, T., Oliva, A., Fernández-Ruiz, A., … Berényi, A. (2018). Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nature Communications, 9(1), 1–17. doi:10.1038/s41467-018-02928-3
  • Wiethoff, S., Hamada, M., & Rothwell, J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimulation, 7(3), 468–475. doi:10.1016/j.brs.2014.02.003
  • Wolff, W., Bieleke, M., Hirsch, A., Wienbruch, C., Gollwitzer, P. M., & Schüler, J. (2018). Increase in prefrontal cortex oxygenation during static muscular endurance performance is modulated by self-regulation strategies. Scientific Reports, 8(1), 1–10. doi:10.1038/s41598-018-34009-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.