549
Views
1
CrossRef citations to date
0
Altmetric
PHYSIOLOGY & NUTRITION

Cooling during short-term heat acclimation enhances aerobic capacity but not sweat capacity

ORCID Icon, , , &

References

  • Alhadad, S. B., Tan, P. M. S., & Lee, J. K. W. (2019). Efficacy of heat mitigation strategies on core temperature and endurance exercise: A meta-analysis. Frontiers in Physiology, 10, 71.
  • Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14, 377–381.
  • Buller, M. J., Latzka, W. A., Yokota, M., Tharion, W., & Moran, D. S. (2008). A real-time heat strain risk classifier using heart rate and skin temperature. Physiological Measurement, 29, N79–N85.
  • Buono, M. J., Ball, K. D., & Kolkhorst, F. W. (2007). Effect of heat acclimation on the sweat sodium ion concentration vs. sweat rate relationship in humans. Journal of Applied Physiology, 103, 990–994.
  • Burdon, C. A., Hoon, M. W., Johnson, N. A., Chapman, P. G., & O’Connor, H. T. (2013). The effect of ice slushy ingestion and mouthwash on thermoregulation and endurance performance in the heat. International Journal of Sport Nutrition and Exercise Metabolism, 23, 458–469.
  • Castle, P. C., Macdonald, A. L., Philp, A., Webborn, A., Watt, P. W., & Maxwell, N. S. (2006). Precooling leg muscle improves intermittent sprint exercise performance in hot, humid conditions. Journal of Applied Physiology, 100, 1377–1384.
  • Castle, P., Mackenzie, R. W., Maxwell, N., Webborn, A. D. J., & Watt, P. W. (2011). Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect. Journal of Sports Sciences, 29, 1125–1134.
  • Cheung, S. S., & McLellan, T. M. (1998). Influence of short-term aerobic training and hydration status on tolerance during uncompensable heat stress. European Journal of Applied Physiology, 78, 50–58.
  • Chinevere, T. D., Kenefick, R. W., Cheuvront, S. N., Lukaski, H. C., & Sawka, M. N. (2008). Effect of heat acclimation on sweat minerals. Medicine & Science in Sports & Exercise, 40, 886–891.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum, 567 p.
  • Gale, R. M., Etxebarria, N., Pumpa, K. L., & Pyne, D. B. (2020). Cycling-based repeat sprint training in the heat enhances running performance in team sport players. European Journal of Sport Science, 14, 1–10.
  • Garrett, A. T., Goosens, N. G., Rehrer, N. J., Patterson, M. J., Harrison, J., Sammut, I., & Cotter, J. D. (2014). Short-term heat acclimation is effective and may be enhanced rather than impaired by dehydration. American Journal of Human Biology, 26, 311–320.
  • Girard, O., Mendez-Villanueva, A., & Bishop, D. (2011). Repeated-sprint ability – Part I: Factors contributing to fatigue. Sports Medicine, 41, 673–694.
  • Hodge, D., Jones, D., Martinez, R., & Buono, M. J. (2013). Time course of the attenuation of sympathetic nervous activity during active heat acclimation. Autonomic Neuroscience, 177, 101–103.
  • Kashimura, O. (1986). Changes in thermal sensation during endurance exercise. Japanese Journal of Physical Fitness and Sports Medicine, 35, 264–269.
  • Lee, D. T., Shirreffs, S. M., & Maughan, R. J. (2008). Cord drink ingestion improves exercise endurance capacity in the heat. Medicine & Science in Sports & Exercise, 40, 1637–1644.
  • Lee, J. K., Nio, A. Q., Fun, D. C., Teo, Y. S., Von Chia, E., & Lim, C. L. (2012). Effects of heat acclimatisation on work tolerance and thermoregulation in trained tropical natives. Journal of Thermal Biology, 37, 366–373.
  • Lorenzo, S., Halliwill, J. R., Sawka, M. N., & Minson, C. T. (2010). Heat acclimation improves exercise performance. Journal of Applied Physiology, 109, 1140–1147.
  • McGarr, G. W., Hartley, G. L., & Cheung, S. S. (2014). Neither short-term sprint nor endurance training enhances thermal response to exercise in a hot environment. Journal of Occupational and Environmental Hygiene, 11, 47–53.
  • Mohr, M., Mujika, I., Santisteban, J., Randers, M. B., Bischoff, R., Solano, R., … Krustrup, P. (2010). Examination of fatigue development in elite soccer in a hot environment: A multi-experimental approach. Scandinavian Journal of Medicine & Science in Sports, 20(Suppl. 3), 125–132.
  • Moran, D. S., Shitzer, A., & Pandolf, K. B. (1998). A physiological strain index to evaluate heat stress. American Journal of Physiology, 275, R129–R134.
  • Moreira, D. S., Johnson, R. E., & Forbes, A. P. (1945). Adrenal cortext and work in the heat. American Journal of Physiology-Legacy Content, 143, 169–176.
  • Morris, N. B., Coombs, G., & Jay, O. (2016). Ice slurry ingestion leads to a lower net heat loss during exercise in the heat. Medicine & Science in Sports & Exercise, 48, 114–122.
  • Naito, T., Haramura, M., Muraishi, K., Yamazaki, M., & Takahashi, H. (2020). Impact of ice slurry ingestion during break-times on repeated-sprint exercise in the heat. Sports Medicine International Open, 4, E45–E52.
  • Naito, T., & Ogaki, T. (2017). Comparison of the effects of cold water and ice ingestion on endurance cycling capacity in the heat. Journal of Sport and Health Science, 6, 111–117.
  • Naito, T., Sagayama, H., Akazawa, N., Haramura, M., Tasaki, M., & Takahashi, H. (2018). Ice slurry ingestion during break times attenuates the increase of core temperature in a simulation of physical demand of match-play tennis in the heat. Temperature (Austin), 5, 371–379.
  • Neal, R. A., Corbett, J., Massey, H. C., & Tipton, M. J. (2016). Effect of short-term heat acclimation with permissive dehydration on thermoregulation and temperate exercise performance. Scandinavian Journal of Medicine & Science in Sports, 26, 875–884.
  • Newell, J., Higgins, D., Madden, N., Cruickshank, J., Einbeck, J., McMillan, K., & McDonald, R. (2007). Software for calculating blood lactate endurance markers. Journal of Sports Sciences, 25, 1403–1409.
  • Onitsuka, S., Nakamura, D., Onishi, T., Arimitsu, T., Takahashi, H., & Hasegawa, H. (2018). Ice slurry ingestion reduces human brain temperature measured using non-invasive magnetic resonance spectroscopy. Scientific Reports, 8, 2757.
  • Petersen, C. J., Portus, M. R., Pyne, D. B., Dawson, B. T., Cramer, M. N., & Kellett, A. D. (2010). Partial heat acclimation in cricketers using a 4-day high intensity cycling protocol. International Journal of Sports Physiology and Performance, 5, 535–545.
  • Périard, J. D., Pyne, D. B., Bishop, D. J., Wallett, A., & Girard, O. (2020). Short-term repeated-sprint training in hot and cool conditions similarly benefits performance in team-sport athletes. Frontiers in Physiology, 11, 1023.
  • Périard, J. D., Racinais, S., & Sawka, M. N. (2015). Adaptations and mechanisms of human heat acclimation: Applications for competetive athletes and sports. Scandinavian Journal of Medicine & Science in Sports, 25, 20–38.
  • Reeve, T., Gordon, R., Laursen, P. B., Lee, J. K. W., & Tyler, C. J. (2019). Impairment of cycling capacity in the heat in well-trained endurance athletes after high-intensity short-term heat acclimation. International Journal of Sports Physiology and Performance, 14, 1058–1065.
  • Roberts, M. F., Wenger, C. B., Stolwijk, J. A., & Nadel, E. R. (1997). Skin blood flow and sweating changes following exercise training and heat acclimation. Journal of Applied Physiology, 43, 133–137.
  • Schlader, Z. J., Simmons, S. E., Stannard, S. R., & Mundel, T. (2011). The independent roles of temperature and thermal perception in the control of human thermoregulatory behavior. Physiology & Behavior, 103, 217–224.
  • Schleh, N. W., Ruby, B. C., & Dumke, C. L. (2018). Short term heat acclimation reduces heat stress, but is not augmented by dehydration. Journal of Thermal Biology, 78, 227–234.
  • Schmit, C., Duffield, R., Hausswirth, C., Brisswalter, J., & Le Meur, Y. (2018). Optimizing heat acclimation for endurance athletes: High- versus low-intensity training. International Journal of Sports Physiology and Performance, 13, 816–823.
  • Shamsuddin, A. K. M., Kuwahara, T., Oue, A., Nomura, C., Koga, S., Inoue, Y., & Kondo, N. (2005b). Effect of skin temperature on the ion reabsorption capacity of sweat glands during exercise in humans. European Journal of Applied Physiology, 94, 442–447.
  • Shamsuddin, A. K., Yanagimoto, S., Kuwahara, T., Zhang, Y., Nomura, C., & Kondo, N. (2005a). Changes in the index of sweat ion concentration with increasing sweat during passive heat stress in humans. European Journal of Applied Physiology, 94, 292–297.
  • Siegel, R., Mate, J., Brearley, M. B., Watson, G., Nosaka, K., & Laursen, P. B. (2010). Ice slurry ingestion increases core temperature capacity and running time in the heat. Medicine & Science in Sports & Exercise, 42, 717–725.
  • Stevens, C. J., Dascombe, B., Boyko, A., Sculley, D., & Callister, R. (2013). Ice slurry ingestion during cycling improves Olympic distance triathlon performance in the heat. Journal of Sports Sciences, 31, 1271–1279.
  • Tyler, C. J., Reeve, T., Hodges, C. J., & Cheung, S. S. (2016). The effects of heat adaptation on physiology, perception and exercise performance in the heat: A meta-analysis. Sports Medicine, 46, 1699–1724.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.