8,034
Views
4
CrossRef citations to date
0
Altmetric
BIOMECHANICS AND MOTOR CONTROL

Drop jump neuromuscular performance qualities associated with maximal horizontal deceleration ability in team sport athletes

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Bezodis, I. N., Kerwin, D. G., & Salo, A. I. T. (2008). Lower-limb mechanics during the support phase of maximum-velocity sprint running. Medicine and Science in Sports and Exercise, 40(4), 707–715. doi:10.1249/MSS.0b013e318162d162
  • Colby, S., Francisco, A., Yu, B., Kirkendall, D., Finch, M., & Garrett, W. (2000). Electromyographic and kinematic analysis of cutting maneuvers implications for anterior cruciate ligament injury. The American Journal of Sports Medicine, 28(2), 234–240. doi:10.1016/S1440-2440(99)80066-8
  • Cronin, J. B., & Templeton, R. L. (2008). Timing light height affects sprint times. Journal of Strength and Conditioning Research, 22(1), 318–320. doi:10.1519/JSC.0b013e31815fa3d3
  • Dalleau, G., Belli, A., Viale, F., Lacour, J. R., & Bourdin, M. (2004). A simple method for field measurements of leg stiffness in hopping. International Journal of Sports Medicine, 25(3), 170–176. doi:10.1055/s-2003-45252
  • Dos'Santos, T., Thomas, C., Jones, P. A., & Comfort, P. (2017). Mechanical determinants of faster change of direction speed performance in male athletes. Journal of Strength and Conditioning Research, 31(3), 696–705. doi:10.1519/JSC.0000000000001535
  • Douglas, J., Pearson, S., Ross, A., & McGuigan, M. (2018). Kinetic determinants of reactive strength in highly trained sprint athletes. Journal of Strength and Conditioning Research, 32(6), 1562–1570. doi:10.1519/JSC.0000000000002245
  • Douglas, J., Pearson, S., Ross, A., & McGuigan, M. (2020). Reactive and eccentric strength contribute to stiffness regulation during maximum velocity sprinting in team sport athletes and highly trained sprinters. Journal of Sports Sciences, 38(1), 29–37. doi:10.1080/02640414.2019.1678363
  • Fernandes, R., Bishop, C., Turner, A. N., Chavda, S., & Maloney, S. J. (2021). Train the engine or the brakes? Influence of momentum on the change of direction deficit. International Journal of Sports Physiology and Performance, 16(1), 90–96. doi:10.1123/ijspp.2019-1007
  • Freitas, T. T., Alcaraz, P. E., Calleja-González, J., Arruda, A. F. S., Guerriero, A., Kobal, R., … Loturco, I. (2019). Differences in change of direction speed and deficit between male and female national rugby sevens players. Journal of Strength and Conditioning Research. doi:10.1519/JSC.0000000000003195
  • Graham-Smith, P., Rumpf, M., & Jones, P. A. (2018). Assessment of deceleration ability and relationship to approach speed and eccentric strength. ISBS-Conference Proceedings Archive, 36(1). Retrieved from https://commons.nmu.edu/isbs/vol36/iss1/3/
  • Harper, D. J., Carling, C., & Kiely, J. (2019). High-intensity acceleration and deceleration demands in elite team sports competitive match play: A systematic review and meta-analysis of observational studies. Sports Medicine, 49(12), 1923–1947. doi:10.1007/s40279-019-01170-1
  • Harper, D. J., Cohen, D. D., Carling, C., & Kiely, J. (2020). Can countermovement jump neuromuscular performance qualities differentiate maximal horizontal deceleration ability in team sport athletes? Sports, 8(76), 1–20. doi:10.3390/sports8060076
  • Harper, D. J., Jordan, A. R., & Kiely, J. (2021). Relationships between eccentric and concentric knee strength capacities and maximal linear deceleration ability in male academy soccer players. Journal of Strength and Conditioning Research, 35(2), 465–472. doi:10.1519/JSC.0000000000002739
  • Harper, D. J., Morin, J. B., Carling, C., & Kiely, J. (2020). Measuring maximal horizontal deceleration ability using radar technology: Reliability and sensitivity of kinematic and kinetic variables. Sports Biomechanics. doi:10.1080/14763141.2020.1792968
  • Helm, M., Freyler, K., Waldvogel, J., Gollhofer, A., & Ritzmann, R. (2019). The relationship between leg stiffness, forces and neural control of the leg musculature during the stretch-shortening cycle is dependent on the anticipation of drop height. European Journal of Applied Physiology, 119(9), 1981–1999. doi:10.1007/s00421-019-04186-7
  • Hopkins, W. G. (2002). A scale of magnitudes for effect statistics. Sportscience.
  • Jian, Y., Winter, D., Ishac, M., & Gilchrist, L. (1993). Trajectory of the body COG and COP during initiation and termination of gait. Gait & Posture, 1(1), 9–22. doi:10.1016/0966-6362(93)90038-3
  • Jones, P. A., Herrington, L. C., & Graham-Smith, P. (2016). Technique determinants of knee abduction moments during pivoting in female soccer players. Clinical Biomechanics, 31, 107–112. doi:10.1016/j.clinbiomech.2015.09.012
  • Jones, P. A., Thomas, C., Dos’Santos, T., McMahon, J. J., & Graham-Smith, P. (2017). The role of eccentric strength in 180° turns in female soccer players. Sports, 5(2), 42. doi:10.3390/sports5020042
  • Kipp, K., Kiely, M. T., Giordanelli, M. D., Malloy, P. J., & Geiser, C. F. (2018). Biomechanical determinants of the reactive strength index during drop jumps. International Journal of Sports Physiology and Performance, 13(1), 44–49. doi:10.1123/ijspp.2017-0021
  • Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155–163. doi:10.1016/j.jcm.2016.02.012
  • Kovacs, M. S., Roetert, E. P., & Ellenbecker, T. S. (2008). Efficient deceleration: The forgotten factor in tennis-specific training. Strength and Conditioning Journal, 30(6), 58–69. doi:10.1519/SSC.0b013e31818e5fbc
  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4(863). doi:10.3389/fpsyg.2013.00863
  • Lockie, R. G., Schultz, A. B., Callaghan, S. J., & Jeffriess, M. D. (2014). The effects of traditional and enforced stopping speed and agility training on multidirectional speed and athletic function. Journal of Strength and Conditioning Research, 28(6), 1538–1551. doi:10.1519/JSC.0000000000000309
  • Loturco, I., Pereira, L. A., Freitas, T. T., Alcaraz, P. E., Zanetti, V., Bishop, C., & Jeffreys, I. (2019). Maximum acceleration performance of professional soccer players in linear sprints: Is there a direct connection with change-of-direction ability? PLoS One, 14(5), e0216806. doi:10.1371/journal.pone.0216806
  • McBride, J. M., McCaulley, G. O., & Cormie, P. (2008). Influence of preactivity and eccentric muscle activity on concentric performance during vertical jumping. Journal of Strength and Conditioning Researchesearch, 22(3), 750–757. doi:10.1519/JSC.0b013e31816a83ef
  • McBride, J. M., & Nimphius, S. (2020). Biological system energy algorithm reflected in sub-system joint work distribution movement strategies: Influence of strength and eccentric loading. Scientific Reports, 10(1), 1–11. doi:10.1038/s41598-020-68714-8
  • McMahon, J. J., Suchomel, T. J., Lake, J. P., & Comfort, P. (2021). Relationship between reactive strength index variants in rugby league players. Journal of Strength and Conditioning Research, 35(1), 280–285. doi:10.1519/JSC.0000000000002462
  • Nedergaard, N. J., Kersting, U., & Lake, M. (2014). Using accelerometry to quantify deceleration during a high-intensity soccer turning manoeuvre. Journal of Sports Sciences, 32(20), 1897–1905. doi:10.1080/02640414.2014.965190
  • Newans, T., Bellinger, P., Dodd, K., & Minahan, C. (2019). Modelling the acceleration and deceleration profile of elite-level soccer players. International Journal of Sports Medicine, 40(05), 331–335. doi:10.1055/a-0853-7676
  • Oliva-Lozano, J. M., Fortes, V., Krustrup, P., & Muyor, J. M. (2020). Acceleration and sprint profiles of professional male football players in relation to playing position. PLoS One, 15(8), e0236959. doi:10.1371/journal.pone.0236959
  • Pedley, J. S., Lloyd, R. S., Read, P., Moore, I. S., & Oliver, J. L. (2017). Drop jump: A technical model for scientific application. Strength and Conditioning Journal, 39(5), 1–9. doi:10.1519/SSC.0000000000000331
  • Peng, H.-T. (2011). Changes in biomechanical properties during drop jumps of incremental height. Journal of Strength and Conditioning Research, 25(9), 2510–2518. doi:10.1519/JSC.0b013e318201bcb3
  • Roberts, T. J., & Azizi, E. (2011). Flexible mechanisms: The diverse roles of biological springs in vertebrate movement. Journal of Experimental Biology, 214(3), 353–361. doi:10.1242/jeb.038588
  • Simperingham, K. D., Cronin, J. B., Pearson, S. N., & Ross, A. (2019). Reliability of horizontal force-velocity-power profiling during short sprint-running accelerations using radar technology. Sports Biomechanics, 18(1), 88–99. doi:10.1080/14763141.2017.1386707
  • Thomas, C., Dos'Santos, T., Comfort, P., & Jones, P. A. (2020). Effect of asymmetry on biomechanical characteristics during 180° change of direction. Journal of Strength and Conditioning Research, 34(5), 1297–1306. doi:10.1519/JSC.0000000000003553
  • Thomas, C., Dos’Santos, T., Cuthbert, M., Fields, C., & Jones, P. A. (2020). The effect of limb preference on braking strategy and knee joint mechanics during pivoting in female soccer players. Science and Medicine in Football, 4(1), 30–36. doi:10.1080/24733938.2019.1667020
  • Tirosh, O., & Sparrow, W. A. (2005). Age and walking speed effects on muscle recruitment in gait termination. Gait and Posture, 21(3), 279–288. doi:10.1016/j.gaitpost.2004.03.002
  • Verheul, J., Nedergaard, N. J., Pogson, M., Lisboa, P., Gregson, W., Vanrenterghem, J., & Robinson, M. A. (2019). Biomechanical loading during running: Can a two mass-spring-damper model be used to evaluate ground reaction forces for high-intensity tasks? Sports Biomechanics. doi:10.1080/14763141.2019.1584238
  • Werkhausen, A., Albracht, K., Cronin, N. J., Meier, R., Bojsen-Møller, J., & Seynnes, O. R. (2017). Modulation of muscle–tendon interaction in the human triceps surae during an energy dissipation task. The Journal of Experimental Biology, 220(22), 4141–4149. doi:10.1242/jeb.164111
  • Young, W. B. (1995). Laboratory strength assessment of athletes. New Studies in Athletics, 10(1), 89–96.