565
Views
3
CrossRef citations to date
0
Altmetric
SPORT & EXERCISE MEDICINE & HEALTH

Genetic variants within the COL5A1 gene are associated with ligament injuries in physically active populations from Australia, South Africa, and Japan

, ORCID Icon, , ORCID Icon, ORCID Icon, , , , , , , , , , & ORCID Icon show all

References

  • Abrahams, S., Posthumus, M., & Collins, M. (2014). A polymorphism in a functional region of the COL5A1 gene: Association with ultraendurance-running performance and joint range of motion. International Journal of Sports Physiology and Performance, 9(3), 583–590.
  • Abrahams, Y., Laguette, M.-J., Prince, S., & Collins, M. (2013). Polymorphisms within the COL5A1 3'-UTR that alters mRNA structure and the MIR608 gene are associated with Achilles tendinopathy. Annals of Human Genetics, 77(3), 204–214.
  • Ahmetov, I., Kulemin, N., Popov, D., Naumov, V., Akimov, E., Bravy, Y., … Govorun, V. (2015). Genome-wide association study identifies three novel genetic markers associated with elite endurance performance. Biology of Sport, 32(1), 3–9.
  • Boden, B., Sheehan, F. T., Torg, J. S., & Hewett, T. E. (2010). Noncontact anterior cruciate ligament injuries: Mechanisms and risk factors. American Academy of Orthopaedic Surgeon, 18(9), 520–527.
  • Bouchard, C. (2015). Exercise genomics—a paradigm shift is needed: A commentary: Table 1. British Journal of Sports Medicine, 49(23), 1492–1496.
  • Brown, K. L., Seale, K. B., El Khoury, L. Y., Posthumus, M., Ribbans, W. J., Raleigh, S. M., … September, A. V. (2017). Polymorphisms within the COL5A1 gene and regulators of the extracellular matrix modify the risk of Achilles tendon pathology in a British case-control study. Journal of Sports Sciences, 35(15), 1475–1483.
  • Collins, M., & Posthumus, M. (2011). Type V collagen genotype and exercise-related phenotype relationships: A novel hypothesis. Exercise and Sport Sciences Reviews, 39(4), 191–198.
  • Collins, M., September, A. V., & Posthumus, M. (2015). Biological variation in musculoskeletal injuries: Current knowledge, future research and practical implications. British Journal of Sports Medicine, 49(23), 1497–1503.
  • Everhart, J. S., Sojka, J. H., Kaeding, C. C., Bertone, A. L., & Flanigan, D. C. (2017). The ACL injury response: A collagen-based analysis. The Knee, 24(3), 601–607.
  • Eynon, N., Ruiz, J. R., Oliveira, J., Duarte, J. A., Birk, R., & Lucia, A. (2011). Genes and elite athletes: A roadmap for future research. The Journal of Physiology, 589(13), 3063–3070.
  • Eynon, N., Voisin, S., Lucia, A., Wang, G., & Pitsiladis, Y. (2017). Preface: Genomics and biology of exercise is undergoing a paradigm shift. BMC Genomics, 18(Suppl 8), 825.
  • Flynn, R. K., Pedersen, C. L., Birmingham, T. B., Kirkley, A., Jackowski, D., & Fowler, P. J. (2005). The familial predisposition toward tearing the anterior cruciate ligament. The American Journal of Sports Medicine, 33(1), 23–28.
  • Gelse, K., Po ̈schlb, E., & Aigner, T. (2003). Collagens—structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 55(12), 1531–1546.
  • Kaynak, M., Nijman, F., van Meurs, J., Reijman, M., & Meuffels, D. E. (2017). Genetic variants and anterior cruciate ligament rupture: A systematic review. Sports Medicine, 47(8), 1637–1650.
  • Kim, J. H., Jung, E. S., Kim, C.-H., Youn, H., & Kim, H. R. (2014). Genetic associations of body composition, flexibility and injury risk with ACE, ACTN3 and COL5A1 polymorphisms in Korean ballerinas. Journal of Exercise Nutrition and Biochemistry, 18(2), 205–214.
  • Kubo, K., Yata, H., & Tsunoda, N. (2013). Effect of gene polymorphisms on the mechanical properties of human tendon structures. Springerplus, 2, 343.
  • Laguette, M. J., Abrahams, Y., Prince, S., & Collins, M. (2011). Sequence variants within the 3'-UTR of the COL5A1 gene alters mRNA stability: Implications for musculoskeletal soft tissue injuries. Matrix Biology, 30(5-6), 338–345.
  • Lahiri, D. K., & Numberger, Jr., J. I. (1991). A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Research, 19(19), 5444–5444.
  • Lim, S. T., Kim, C.-S., Kim, W.-N., & Min, S.-K. (2015). The COL5A1 genotype is associated with range of motion. Journal of Exercise Nutrition and Biochemistry, 19(2), 49–53.
  • Lulinska-Kuklik, E., Rahim, M., Domańska-Senderowska, D., Ficek, K., Michałowska-Sawczyn, M., Moska, W., … September, A. V. (2018). Interactions between COL5A1 gene and risk of the anterior cruciate ligament rupture. Journal of Human Kinetics, 62, 65–71.
  • Magnusson, K., Turkiewicz, A., Hughes, V., Frobell, R., & Englund, M. (2021). High genetic contribution to anterior cruciate ligament rupture: Heritability ∼69%. British Journal of Sports Medicine, 55, 385–389.
  • Miyamoto-Mikami, E., Miyamoto, N., Kumagai, H., Hirata, K., Kikuchi, N., Zempo, H., … Fuku, N. (2019). COL5A1 rs12722 polymorphism is not associated with passive muscle stiffness and sports-related muscle injury in Japanese athletes. BMC Medical Genetics, 20(1), 192.
  • Mokone, G. G., Schwellnus, M. P., Noakes, T. D., & Collins, M. (2006). The COL5A1 gene and Achilles tendon pathology. Scandinavian Journal of Medicine and Science in Sports, 16(1), 19–26.
  • O’Connell, K., Knight, H., Ficek, K., Leonska-Duniec, A., Maciejewska-Karlowska, A., Sawczuk, M., … Collins, M. (2015). Interactions between collagen gene variants and risk of anterior cruciate ligament rupture. European Journal of Sport Science, 15(4), 341–350.
  • Pabalan, N., Tharabenjasin, P., Phababpha, S., & Jarjanazi, H. (2018). Association of COL5A1 gene polymorphisms and risk of tendon-ligament injuries among Caucasians: A meta-analysis. Sports Medicine – Open, 4(1), 46.
  • Posthumus, M., September, A. V., O’Cuinneagain, D., van der Merwe, W., Schwellnus, M. P., & Collins, M. (2009). The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. The American Journal of Sports Medicine, 37(11), 2234–2240.
  • Rahim, M., Collins, M., & September, A. (2016). Genes and musculoskeletal soft-tissue injuries. Medicine and Sport Science, 61, 68–91.
  • Rahim, M. S., September, A. V., & Collins, M. (2019). Systems Genetic factors underlying soft tissue injury. In J. H. Lightfoot, M. J. Hubal, & S. M. Roth (Eds.), Routledge handbook of Sport and Exercise Systems Genetics (pp. 402–415). London: Routledge.
  • September, A. V., Posthumus, M., & Collins, M. (2012). Application of genomics in the prevention, treatment and management of Achilles tendinopathy and anterior cruciate ligament ruptures. Recent Patents on DNA & Gene Sequences, 6(3), 216–223.
  • Sivertsen, E. A., Haug, K. B. F., Kristianslund, E. K., Trøseid, A.-M. S., Parkkari, J., Lehtimäki, T., … Bahr, R. (2019). No association between risk of anterior cruciate ligament rupture and selected candidate collagen gene variants in female elite athletes from high-risk team sports. The American Journal of Sports Medicine, 47(1), 52–58.
  • Suijkerbuijk, M. A. M., Ponzetti, M., Rahim, M., Posthumus, M., Häger, C. K., Stattin, E., … September, A. V. (2019). Functional polymorphisms within the inflammatory pathway regulate expression of extracellular matrix components in a genetic risk dependent model for anterior cruciate ligament injuries. Journal of Science and Medicine in Sport, 22(11), 1219–1225.
  • Willard, K., Laguette, M.-J. N., Alves de Souza Rios, L., D’Alton, C., Nel, M., Prince, S., … September, A. V. (2020). Altered expression of proteoglycan, collagen and growth factor genes in a TGF-β1 stimulated genetic risk model for musculoskeletal soft tissue injuries. Journal of Science and Medicine in Sport, 23(8), 695–700.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.